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Abstract

The aim of this work is to present a data mining application to software engineering. We
describe the use of data mining in some parts of the design process of a dynamic decision support
system agent-based architecture. The main function of this system is to guide information
requirements from users to the domains that offer greater possibilities of answering them. For that
purpose, a strategy is developed, which provides the system with capacity for analyzing an
information requirement, and determining to which domains it will be directed. To learn from errors
made during its operation, a learning mechanism based in CBR techniques is also proposed.

On the one hand, by using data mining techniques it is possible to define a discriminating
function to classify the system domains into two groups: those that can probably provide an answer
to the information requirement made to the system, and those that cannot.

On the other hand, the application of data mining to the cases base allows the specification
of rules to settle relationships among the stored cases with the aim of inferring possible causes of
error in the domains classification. In this way, a learning mechanism is designed to update the
knowledge base and thus improve the already made classification as regards the values assigned to
the discriminating function.
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Data Mining Use for Learning Process Design of an Information Source
Locator Agent

1. Introduction

The enterprise management involves making many different decisions. An enterprise can be
generally considered as being organized in several domains. Many of these enterprise domains,
such as product design, planning, control, scheduling, forecasting and sales constitute different
decision points and are generally located on different functional units geographically disperse. They
use specific models and techniques to each decision type, and need to share knowledge and
information. Therefore, a Decision Support System (DSS) that involves the whole organization
should be designed as a set of geographically distributed subsystems (Domains), operating with the
smallest level of possible joining, which we will call distributed Decision Support System (Figure
1).
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Figure 1: Distributed Decision Support System Domains

There are two kinds of information needs: the one that can be predicted on design time and
the one that can not (this occurs whenever new or non-habitual decisions should be made). To bring
support to the first type of information requirement, several enterprise integration systems have
been designed (Shen and Norrie, 1999). To attend the second type of information requirement, we
are developing a multi-agent system that we call dynamic DSS (Cabral et al., 2000). A dynamic
DSS is a distributed DSS able to work in a dynamic way. That is, a system able to look for
information, analyzing where it is available or can be generated. This system is composed by
Domain Representative Agents (DRAs); an Information Source Locator Agent (ISLA) and mobile
agents called Query Coordinator Agents (QCAs) (Figure 2).

When a user of the system needs some information, makes a query in natural language and
the dynamic DSS transfers that information requirement to a domain that can satisfy it. For that
purpose, the system determines the sites that offer a greater possibility of providing the required
information and those are firstly targeted. Then, when it gets the answer from a domain, it takes this
information to the domain that asked for it.



Figure 2: Multi-agent architecture for the dynamic DSS

The component in charge of doing such a determination is the ISLA. This agent has
knowledge about the information that can be provided by domains and the capacity for updating
that knowledge, learning from cases that result from its operation. The main function of this agent is
to deliver every query to a domain capable of answering it, avoiding the overload of the system
sending the queries to all the domains (Figure 3).

Figure 3: The main function of ISLA

Dingsoyr (1998) presents several possible uses of data mining and case-based reasoning. He
classifies these uses into two groups: data mining in case-based reasoning, and case-based reasoning
in data mining. He sketches the following possible uses:

Data mining search is the case. That is,  the information about the search results and the
whole knowledge discovery in database process might be stored in a case so that extra time will not
be spent on mining the same information more than once. Rodriguez et al. (2000) presented a
heterogeneous architecture for knowledge extraction from data. The architecture combines the
knowledge discovery in database process with a case-based reasoning system intended to record the
successful knowledge extraction experiments to be shared later on.

Case-based reasoning provides information that can be used in providing some background
knowledge about features in a database (for instance the weight of features for a classifier can be
learned).

Find features from cases base for a case to classify the cases in the cases base. This might
speed up the computation of similarity metrics in the retrieve step.

Find features from a database for a case to supplement the information given in it.
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Find domain knowledge by mining a database or a cases base in the form of functions, rules
or causal graphs which can be later used to identify features and explain away unimportant features.

Construct artificial cases from a database that are not present in a cases base. This would
require a tight integration where the data mining algorithm would search for patterns in the form of
cases, which could be evaluated by a novelty function that gives high values to cases not present in
the cases base.

Ruiz et al. (2001) describe a project of data mining application on software engineering.
Specifically, they propose to simulate the designed system to generate cases. Such cases are mined
to detect possible behavioral patterns of the design.

It is necessary to highlight that data mining and case-based reasoning applications on system
design offers a still little developed potential. On the other hand, in designing an information system
it is possible that several of the alternatives sketched by Dingsoyr (1998) are simultaneously used.

The aim of this work is to describe the usage of data mining to design the learning process
of the ISLA. That is, to define the data structure of the system cases base and the rules of
relationships among cases.

This paper is structured as follows. In section 2 a view into the system functionality is
presented. Then, in section 3, it is showed how the use of data mining allows designing the learning
process of the ISLA. Finally, three rules obtained by the mining process, which can be used to
develop the system learning process, are presented as example.

2. A brief view into the system functionality

To understand the learning process design, more knowledge about the system functionality
is needed.

The query: when a decision maker needs information, he/she can make a query in natural language
with the help of a user interface. This query, in order to be processed by the ISLA is filtered
becoming a set of keywords without connectors, articles, prepositions, etc.

q={keyword1, keyword2... keywordn}

The Domain Knowledge Base: the ISLA has a representation of the information managed by the
domain dj.

Kdj={( keyword, weight)/ 0 ≤ weight ≤ 1}

where keyword is one of the words that identify the knowledge managed by domain dj, and weight
is the strength that such a word represents this knowledge. The set of keywords in Kdj defines a
taxonomy of domain dj.

This information must be updated by both increasing/decreasing weights or
adding/removing keywords from the Kdj, with the aim to adapt the ISLA to its environment
changes (Stegmayer et al., 2001)



The Discriminant function (RSV): let D be the set of all domains being part of the system. Given
an information requirement qi, this function must define the subset of domains DP⊂D, which have
the potential for answering the information requirement.

Then, for each information requirement qi there will be a set of domains DP that have the
potential for providing the required information, and a set of domains DN that are not able to
provide the required information. In this way, the process can be seen as a domains classification
into: domains with potential for providing the required information and domains without it.

To carry out such a classification, a discriminating analysis can be employed (Kachigan,
1991). We define the discriminating function with a qualitative criterion variable defined by the
classification labels [Potential domain] and [Non potential domain]

RSV (dj,qi)= w1 p1 + ... + wk pk +.... + wn pn

where RSV is the resulting domain’s discriminating score.

Each domain (object) dj ∈ D will have a value on this discriminating function depending
upon its values on the predicting variables p1, ... pk, ... pn.

Every predicting variable is related to a keyword in Kdj, and it is 1 if such a keyword
belongs to the query, otherwise it is 0 and  wk are the weights associated to each keyword in Kdj.

The criterion variable is qualitative, and thus it will be necessary to define a cutoff score.
The cutoff score will be equal to or greater than zero. Domains with RSV equal to or greater than
the cutoff score are assigned to the DP criterion set, and domains with a RSV lower than the cutoff
score are assigned to the DN criterion group.

On the other hand, given an information requirement qi,  the RSV value of each domain
classified into the DP criterion set can be used to rank these domains. That is, the domain dj ∈ DP

with the greatest RSV will be ranked first, the domain dj ∈DP with the second greatest RSV will be
ranked second, and so forth.

Figure 4 shows an schematic representation of the main steps carried out by the DSS to
bring support to a decision maker. Note that the learning functionality is still missing.

Classification errors may affect the system efficiency and thus other domains dj whose
RSV(dj,qi)>cutoff scores are assigned to the DP criterion set. In fact, this classification error only
affects the system efficiency when RSV(dj, qi ) > RSV(dR, qi ). In that case, domain dR ∈DP but it
does not have the first place in the ranking.

Classification errors of the  discriminating function may be due to two main causes:

- The value of weights wk is not the right one.

- Not all keywords (predicting variables) characterizing the domain are included.

It is necessary to highlight that these errors can be originated by the evolution of domains
that could take place as time goes by. Then, it will be necessary to update the system knowledge
base to avoid these errors. This updating can be carried out by analyzing the results of all those
cases in which there were classification errors. In other words,  domain dR that answered to the
respective query qi did not have the greatest RSV(dR, qi ) and therefore it was not ranked first. This
process can be defined as a learning process that must be structured so that it can be automatically



developed by the system. In the following section, we describe the use of data mining for designing
the learning process.

Figure 4: Main steps carried out by the DSS to bring support to a decision maker

3. Use of Data Mining in Designing the Learning Process

The aim of the learning process is to attain the agent autonomy. That is to say, that the agent
be able to adapt itself to the environment changes. An agent will be autonomous when its behavior
is defined by its experience (Russell and Norvig, 1995). So, the learning process of the ISLA
conceptually consists of analyzing the data of stored cases (feedback from the answering domains)
to apply rules that allow updating the discriminating function of the system domains, which, as it
was previously indicated, conform the system knowledge base.

The first step in designing the learning process is to design a cases-base in which the data of
queries and their respective results are stored and in which we would be able to use data mining
techniques to infer rules for the learning process. Figure 5 shows an schematic representation of the
learning process.

Conventional data mining processes are carried out on a data base whose structure was
designed without taking into account such a process. For this reason, these processes at their initial
stages involve tasks such as selection, preprocessing, transformation, etc. that are needed to
generate a convenient data structure to be analyzed. A way of simplifying the mining process is to
take into account these tasks while designing the data structure to store cases in the cases base.
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Figure 5: Schematic representation of the learning process

Table I presents a logical structure of data in the cases base that allows observing a domain’s
behavior before the various queries. This structure will store, for a given domain dj, all queries qi,
for which RSV(dj, qi) > cutoff score. Essentially, this data structure uses binary fields to represent
the relationship between a query qi, which is defined by the set of keywords Kqi, and the domain
taxonomy Kdj.

Table I: Logical structure of data for the domain dj.

The first field, Query, stores the name that identifies each query qi. The second field, called
VA , stores the qualitative variable value va(dj, qi) that can take [Positive, Negative, Null] values.
The Positive value indicates that the required information qi was provided by the consulted domain
dj. The Negative value indicates that the consulted domain dj answered to the information query qi

in a negative way and the Null value indicates that domain dj did not provide any answer to query
qi. According to what has been described in previous sections, in order to determine possible errors
in the classification efficiency, it does not matter the RSV(dj, qi ) value itself, but the relative
position of each domain dj∈DP. Therefore, the third field (Order) stores the order that domain
obtained in the ranking of domains classified as potential to answer to the query qi. The remaining
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fields are divided into two groups: In the first group, each field represents a keyword of the domain
taxonomy. Each field is designated with a keyword pk ∈ Kdj, and represents a binary variable pk that
takes 1 as value if the keyword pk of the domain taxonomy is in the query qi , and takes 0 as value if
pk is not stated in that query.





∉∧∈
∈∧∈

=
ikjk

ikjk

k Kq pKd pif
Kq pKd pif

p
0
1

In the second group, each field represents a keyword stated in query qi that does not belong
to the domain taxonomy. Each of these fields is designated with a keyword p’k and represents a
binary variable p’k that takes 1 as value if the keyword p’k is stated in the query qi but does not
belong to the domain taxonomy dj , and takes 0 as value if p’k is not in that query.


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We have a structure for each system domain. Each structure stores the way in which the
domain behaved for the different queries for which it has been classified as potential.

In the following section, we will see how this logical data structure meets the posed learning
needs.

3.1. Inferring New Rules with Data Mining

Once the logical data structure is designed and the cases are stored, the latter must be
analyzed using data mining. The object is to analyze the data kept in the cases base so as to identify
relationships among the data from which possible behavior patterns of cases can be defined. Such
patterns are used to define rules for updating the discriminating function of each domain, which is
stored in the knowledge base. This requires working with the cases data associated with the
involved domain. For this purpose, the logical data structure presented in  Table I of the previous
section will be used. According to what has been discussed, the updating can be performed in two
ways: either updating the weights of the keywords (predicting variables) that define the domain
taxonomy or modifying the domain taxonomy by adding new keywords.

3.2. Patterns Discovery

Once a significant number of cases qi are stored, we can perform a mining of these data to
look for patterns. For that purpose, we define Qdj as the set of stored cases qi associated to dj. That
is, Qdj= {qi / RSV(dj, qi) > cutoff score}.

To start with, cases qi ∈ Qdj are classified into four groups. A first group formed by cases in
which no classification error occurred. A second group of cases in which the domain provided a
positive answer but it was not the first one in the ranking of potential domains. These are cases in
which the classification error affected the system efficiency. A third group of cases, in which the
domain provided a negative answer, and finally a fourth group of cases in which the query was not
answered.

To carry out this classification, va(dj,qi) and or(dj,qi) are defined as predicting variables.



Group of efficient cases Q+
dj: integrated by those cases that present va(dj,qi) = positive and

or(dj,qi) =1
Q+

dj = {qi ∈ Qdj / va(dj,qi) =positive ∧  or(dj,qi) =1}

Group of non-efficient cases Q*
dj: integrated by those cases that present va(dj,qi) = positive but

or(dj,qi) >1
Q*

dj = {qi ∈ Qdj / va(dj,qi)=positive ∧  or(dj,qi) >1}

Group of negative cases Q-
dj: integrated by those cases that were answered in a negative way.

Q-
dj = {qi ∈ Qdj / va(dj,qi) =negative}

Group of Null cases Q0
dj: integrated by those cases in which an answer was not provided.

Q0
dj = {qi ∈ Qdj / va(dj,qi) =null}

Once qi ∈ Qdj cases are classified into one of the four defined groups, the purpose is to infer
rules to update the discriminating function of each domain, which is stored in the knowledge base.
The action of this rules will be:

- Modifying the cases belonging to Q+
dj to the lowest extent.

- Determining the weights wpk of the keywords (variables) of the domain taxonomy. These
weights must be increased in order to correct the classification error produced in the cases of
group Q*

dj. These rules will operate on keywords pk ∈ Kdj that are frequently present in
queries qi ∈ Q*

dj, since it can be inferred that these predicting variables are more important
to classify domains than what their associated weights really reflect. In other words, the
current weight factors wpk are low.

- Encouraging the incoming of new keywords into the domain taxonomy. This means
including new predicting variables in the discriminating function of domain dj. These rules
will operate on keywords p'k ∉ Kdj that are frequently present in queries qi ∈ Q*

dj. In other
words, it is inferred that these predicting variables are important to classify domains.
However, if those words are also frequently present in queries answered by most of the
remaining domains, these keywords would not be useful to distinguish among domains and
thus they should not be incorporated.

Another possibility is that a domain presents many cases in which it answered in a negative
form although appearing as better positioned in the ranking than the domain that actually provided a
positive answer. This means that this domain taxonomy has words whose weights are too high
when compared to their importance in the domain. Therefore, there should be a rule that diminishes
the weights of these words.

With the aim of interpreting the relationships among variables, as example, we present three
rules obtained by the mining process, which can be used to develop the system learning process:

Given Qdj, to classify:
                          Q*

dj = {qi ∈ Qdj / va(dj,qi) =positive ∧  or(dj,qi) >1}
                          Q-

dj = {qi ∈ Qdj / va(dj,qi)=negative}.
Set
p ∈ Kdj



nP
*: frequence of p in queries of Q*

dj.
nP

-: frequence of p in queries of Q-
dj.

α1 and α2:  system parameters

IF 1# α>djQ  ∧  2

*

#
α>

dj

P

Q
n  ∧  −>> PP nn *

THEN p is a candidate for increasing its weight wp

In the condition of this rule, we are saying that a word belonging to the domain taxonomy is
a candidate for increasing its weight if:

a) more than α1 cases are stored in Qdj and

b) the number of times in which p is stated in queries of Q*
dj is greater than α2 and

c) np
* is much higher than np

-

Now, we present the rule for the incoming of new words into the domain taxonomy.

Given Qdj, to classify:

                          Q*
dj = {qi ∈ Qdj / va(dj,qi) = positive ∧  or(dj,qi) >1}

                          Q-
dj ={qi ∈ Qdj / va(dj,qi) = negative }

Set
p ∉ Kdj

np
*: frequence of p in queries of Q*

dj.
np

-: frequence of p in queries of Q-
dj.

dnp : number of domains in which p is stated or is a candidate for entering.
D={d1,d2,...,dn} set of system domains

IF 3# α>djQ  ∧  4

*

#
α>

dj

P

Q
n  ∧   −>> pp nn *

THEN  p is a candidate for entering Kdj

p can enter Kdj if it is not a candidate for entering the taxonomy of several domains and/or it
does not belong to the taxonomy of several domains

0
#

≅
D

dnp    ⇒⇒   p can be used to discriminate the domains, to which it is a candidate, from the

remaining domains. Then, p must enter the taxonomy of domains to which it is a candidate.

1
#

≅
D

dnp  ⇒⇒  p can not be used to discriminate, then it can be included as stopword.

In the first condition of this rule, we say that a word is a candidate for entering a Kdj if:

a) more than α3 cases are stored in Qdj and

b) the proportion between the number of times in which p is stated in queries of Q*
dj

with respect to the number of cases stored in Qdj is greater than α4.

c) np
* much higher than np

-.



A word can enter Kdj if the amount of domains in the system is much higher than the
quantity of domains in which p is stated or is a candidate.

Set
dR the domain that positively answer the query,
Q+

dj = {qi ∈ Qdj / va(dj,qi) =positive ∧  or(dj,qi) =1}
Q*

dj = {qi ∈ Qdj / va(dj,qi) =positive ∧  or(dj,qi) >1}
Q-

dj = {qi ∈ Qdj / va(dj,qi) =negative}
Q^

dj = {qi ∈ Q-
dj /or(dj,qi)<or(dR,qi) }

Q^
dj set of cases of domains that bring a negative answer to the query qi and are best ranked than dR

Set
p∈Kdj.
nP

+: frequence of p in queries of Q+
dj.

nP
*: frequence of p in queries of Q*

dj.
nP

^: frequence of p in queries of Q^
dj.

IF 5# α>djQ  ∧ 6

^

#
α>

dj

P

Q
n

 ∧ 
*^
PPP nnn +>> +

THEN  p is a candidate for diminishing its weight

In the condition of this rule, we are saying that a word p is a candidate for diminishing its
weight if:

a) more than α5 cases are stored in Qdj and

b) the proportion of the number of times in which p is stored in queries of Q∧
dj in

respect to the number of stored cases Qdj is greater than α6 and

c) np
∧ is much greater than the number of times in which p is stated in queries with

positive answer (np
+ + np

*)

4. Conclusions

A dynamic DSS that works efficiently, i.e., that does not constantly interrupt users with
information requirements they cannot satisfy, must be able to identify the relationship among the
characteristics of consults and domains. By using data mining techniques it was possible to define a
discriminating function to classify the system domains into two groups: those that can probably
provide an answer to the information requirement made to the system, and those that cannot.

The system needs to learn from the errors it could make during its operation so that it can
tend to diminish the number of consulted domains in each information requirement presented to the
system. The use of data mining allowed to define the data structure that is convenient for analyzing
the system operation results and according to that, designing a cases base to store the information
associated with the quality of each performed search.

Moreover, the application of data mining to the cases base allowed the specification of rules
to settle relationships among the stored cases with the aim of inferring possible causes of error in
the domains classification. In this way, a learning mechanism was designed to update the
knowledge base and thus improve the already made classification as regards the values assigned to
the discriminating function.
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