
Extending Message-Oriented Middleware1

Elsa Estévez
Departamento de Ciencias e Ingeniería de la Computación

Universidad Nacional del Sur
Argentina

ece@cs.uns.edu.ar

Tomasz Janowski
International Institute for Software Technology

United Nations University
Macao

tj@iist.unu.edu

Abstract: Different types of middleware exist to facilitate the integration of software running on
heterogeneous computing platforms. Message Oriented Middleware (MOM), for instance, enables the
interaction between heterogeneous applications by exchanging packets of structured data (messages)
through communication channels. The core responsibility of a MOM is asynchronous delivery of
messages from senders to receivers, as well as management of the corresponding message queues.
However, realistic software applications need many more messaging functions, for instance functions
to enable auditing, encryption, tracking and transformation of messages. Such functions should be
clearly provided by the underlying MOM and not implemented and re-implemented by applications
themselves. In this paper, we present an approach for extending the core functionality of a MOM. In
particular, we investigate how such extensions can be configured and combined, to ensure correct
delivery of messages.

Keywords: software engineering, message-oriented middleware, software integration.

1. Introduction

In the past, private and public sector organizations were focused on the custom development of
software applications and paid little attention to the integration issues. Software applications were
integrated within each organization and the integration required using the same Information
Technology (IT) platform to run all of them.

Recently, many organizations are faced with the software integration problem. Sometimes, the problem
is a consequence of the globalization process. For instance, when different organizations are merged,
each with its own IT infrastructure, there is a need to consolidate data produced and maintained by the
applications that cross organizational boundaries, often developed in different programming languages
and running on different platforms. The integration problem may also arise when the applications are

1 This work was partially funded by Universidad Nacional del Sur, Bahía Blanca, Argentina, PICT 2003 Nº 15043, PAV
00076 (Agencia Nacional de Promoción Científica y Tecnológica) and Macau Foundation through the e-Macao Project.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

designed to run as web services, with high-level services built by integrating multiple individual
services. Not only such services are running in different environments, the integration must be done
dynamically at runtime. The integration problem is particularly acute in the public sector, where
government agencies are developing their own IT solutions based on individual needs. Now, trying to
deliver better public services and improve efficiency through the use of Information and
Communication Technologies (ICT), they have to integrate heterogeneous software applications to
deliver public services that seamlessly cross agency boundaries.

Different programming abstractions, called middleware, were created to facilitate the integration of
software applications running on heterogeneous computing platforms [1]. These include systems based
on: Remote Procedure Calls (RPC), Transaction Processing (TP) monitors, object brokers, object
monitors, Message-Oriented Middleware (MOM) and Message Brokers. Currently, MOM and Message
Brokers are most popular solutions for software integration. MOM implements the administration of
message queues for sending and receiving asynchronous messages. Built upon an old idea, MOM
promotes a totally new approach for designing distributed systems, particularly well suited to tackle the
integration problem. A message broker extends a MOM with functions for filtering and transformation
of messages, and others. A MOM is implemented in several products: IBM WebSphere MQ [2],
Microsoft Message Queuing Services (MSMQ) [3], WebMethods Enterprise by WebMethods [4], and
also the messaging services of CORBA (Common Object Request Broker Architecture) [5]. Common
functions include: distribution of real-time information, secure delivery of messages, validation and
transformation of messages between different formats, and routing of messages based of the pre-
defined business rules.

Despite the active development of MOM, several problems exist that limit their potential. One is the
absence of specific functions required by business applications running on top of a MOM. While a
MOM provides only the core functionality for queuing and delivering messages, additional functions,
for instance for auditing and tracking of messages, would have to be build by each application
individually, unless provided as MOM extensions. Another problem is the lack of formal models to
support reasoning and verification of how different extensions can be combined while preserving the
core behavior and its required properties. For instance, if the middleware is required to encrypt and
validate messages, how to assure that the encryption and validation extensions can seamlessly work
with each other, delivering messages that are both encrypted and valid. Finally, as most MOM
solutions are proprietary products, it is crucial for their vendors to openly publish all interfaces and data
formats used. The opposite would cause lack of interoperability between different MOM
implementations as well as vendor dependence for maintenance support and future enhancements.

In this paper we present an overview of the core Extensible Government-to-Government Messaging
Gateway (XG2G) [6] and provide an approach for extending the functionality of this framework.
XG2G was originally introduced to coordinate the exchange of messages between different government
agencies, but is really a generic framework to enable automated messaging among any number of
public or private sector organizations. XG2G has a complete formal definition and an implementation
which relies entirely on open source technologies. The contribution of this paper is the definition of a
set of different messaging extensions of XG2G, in terms of the features and properties provided by the
core framework. The definitions use a simple graphical notation introduced for this purpose. We also
provide a concrete illustration describing how the auditing extension can be built on top of the
functionality provided by a MOM.

The rest of this paper is organized as follows. Section 2 describes the core messaging framework.
Section 3 presents a set of possible extensions to this framework. Section 4 describes the details of the
auditing extension. Finally, Section 5 presents some conclusions, related work and outlines directions
for future work.

2. Core Message Gateway

MOM systems rely upon the basic concepts of messages and channels. A message is an atomic packet
of data that can be transmitted through a channel. A channel is a virtual pipe that connects a sender to a
receiver [7]. Many design decisions must be taken related to messages and channels when designing a
messaging system, such as: how to distribute messages, how to format them, how the channels are
defined, and others.

Two particular models for communicating messages through channels are publish-and-subscribe and
point-to-point. The publish-and-subscribe model describes a one-to-many broadcast of messages
between a single producer and several consumers of messages. The point-to-point model describes one
communication between a single producer and a single consumer. In the former approach, many
consumers can receive the same message. In the latter, exactly one consumer receives the message.

The core XG2G framework [6] is based on the publish-and-subscribe model and is based on the three
main concepts as follows:

• Message: A message is a package of information. It is prepared and delivered to a particular

channel by one of its subscriber (producer) and is received by all other subscribers of this channel
(consumers). Messages are sent as XML documents.

• Member: A member is a registered user of the system, typically a software application or a human
user. Three distinguished member types are: guest, administrator and owner. A guest is the member
who can only communicate with the administrator, usually to register a new member. An
administrator is the member who can register and un-register other members. There is only one
guest and one administrator in the whole system. An owner is associated with every channel, being
the member who created this channel. An owner has the right to monitor the flow of messages
passing through the channel and to carry out channel management functions, including the right to
destroy the channel. Different members can ask the owner to subscribe and unsubscribe the
channel. Once subscribed, a member can post messages to this channel as well as receive all
messages posted to the channel by other subscribers. Each channel has exactly one owner and
several subscribers. The owner of a channel is also its subscriber.

• Channel: A channel is an abstraction created for the purpose of exchanging messages between a set

of members (subscribers). A subscriber of a channel is allowed to post messages to the channel,
read messages posted to the channel or both. The gateway contains three kinds of pre-defined
channels: administration channel, world channel and supervisory channels, one for every member-
defined channel. The administration channel connects all members with the administrator. The

world channel connects all members with each other. A supervisory channel connects all
subscribers of a given user-defined channel with the owner of this channel. Other channels are
member-defined.

These concepts are depicted in Figure 1 as the UML conceptual class diagram.

Figure 1: Core Framework, Conceptual Model

Figure 2 depicts the core functionality of the messaging framework using a UML sequence diagram.
The sequence begins with Guest asking Administrator to register two new members: M1 and M2. Once
registered, M1 asks Administrator to create a new channel c and M2 requests M1 to subscribe to this
channel. Once subscribed, M1 and M2 post messages to c that the other member can read. Afterwards,
M2 requests M1 to unsubscribe c and M1 requests Administrator to destroy c. Finally, both members
request Administrator to un-register.

Figure 2 : Core Framework, Behavioral Model

3. Message Gateway Extensions

The core messaging framework assures that the messages are delivered reliably between relevant
members of the gateway. However, for realistic applications this basic property is necessary but likely
insufficient. Other functions will be needed, allowing for instance to validate, transform and encrypt
messages. The aim of this section is to briefly present the set of possible extensions to the core
framework.

The extensions include:

1) Auditing: This extension enables the auditing of messages sent through a channel, so that the

history of messages can be scanned later by the owner of this channel. Once the owner of a
channel requests the administrator to audit the channel, all messages sent through the channel will
be stored in a database. With this function enabled, the owner of the channel will be able to scan
the history of messages sent as well as retrieve individual messages. A special audit member and
audit channel will be created for that purpose, with the owner and audit member as the only
subscribers. Possible criteria for selecting messages based on the history of the channel are: the
time period during which a message was sent, a member who sent a message, the format of a
message, and others.

2) Validation: This extension enables validating the format of messages sent through a channel.

Initially, the owner of a channel asks the administrator to validate the messages posted to this
channel, including the format definition document with the request. As messages are written with
XML syntax, one of several languages for defining XML instance languages may be used, such as
DTD, XML Schema, Relax NG or others. All messages that do not confirm to a given format
would be returned to the sender with an error status or audited for later inspection.

3) Transformation: This extension enables the transformation of messages sent through a channel

from one format to another. Initially, the owner of the channel requests the administrator to
transform messages passed through this channel. The request specifies the transformation to be
carried out. As all messages use XML syntax, the transformation is typically expressed as an
XSLT template, but other DOM- or SAX-compliant transformations could be used as well.
Different transformations may be applied depending on the member posting a message. While
passing messages through the channel, the transformation is carried out before the message is
delivered to the channel subscribers.

4) Composition: This extension enables the composition of existing channels into new, more complex

channels. Some operations to carry out composition include:

a. Linking: The exit-point of one channel (source) is joined with the entry-point of another channel
(target). As a result, all messages received from the source channel are automatically forwarded
to the target channel.

b. Splitting: The exit-point of the source channel is joined with the entry-points of all target
channels. This is similar to the linking operation but there are several target channels. As a

result, all messages received from the source channel are automatically forwarded to all target
channels.

c. Joining: The exit-points of all source channels are joined with the entry-point of a target
channel, symmetrically to the splitting operation. All messages passing through any of the
source channels are forwarded to the target channel.

d. Filtering: This is a linked channel structure, with a filter inserted between a source and target
channels to decide which messages received from the former channel will be forwarded to the
latter channel. Other messages are discarded.

e. Routing: This is a split channel structure with a router inserted between the source and target
channels. For each messages received from the source, the router selects the target channel to be
used to forward this message on the basis of a state maintained by the router or perhaps the
message itself.

5) Tracking: This extension enables to determine the position of a message in the system while in

transit from the sender to receivers. Initially, the owner of a channel requests the administrator to
add the tracking feature to the channel. Once enabled, any member posting a message to the
channel will be able to track its own messages, while the owner will be able to track all messages
posted to the channel. Tacking will take place by a member issuing requests to the special tracking
member through the designated tracking channel.

6) Encryption: This extension is responsible for transforming messages in transit through a channel

to a secret, not legible code. Encryption is requested by the channel owner, specifying the
encryption algorithm to be used. Messages passing through an encrypted channel cannot be
interpreted without knowing the decryption method. Messages are decrypted or transformed to a
legible code before being delivered to the subscribers.

7) Authentication: This extension helps to assure the identity of the subscribers of a channel using

digital signatures, assuring the integrity, confidentiality and non-repudiation of the messages
passing through the channel. Once an owner asks the administrator to authenticate the channel, all
subscribers will be required to provide their digital signatures issued by a Certification Authority.
Thereafter, every message posted to a channel will contain the digital signature of the sender.

8) Mailboxes: By default, each member is provided with a single mailbox to store all incoming

messages and a single mailbox to store all outgoing messages from all subscribed channels. In
order to facilitate the processing of messages from heavy-traffic channels, a member can ask the
owner of a channel to provide a dedicated pair of mailboxes for that particular channel. The
request would be forwarded to the administrator. It successful, the member would be assigned a
dedicated inbox to contain the messages received from the heavy-traffic channel and a dedicated
outbox to store the messages delivered to this channel.

9) Alliances: This extension enables the creation and management of member alliances. A member

alliance is a group of members that decide to act together to carry out messaging on particular
channels. A member may carry out messaging individually and at the same time belong to one or
more member alliances. In addition to its regular members, the alliance includes a member who
acts as its supervisor. The supervisor ensures that the whole member alliance appears to other
members in exactly the same way as a single regular member. The supervisor acts on behalf of the

whole alliance to add or remove regular members, to create or destroy channels, to subscribe or
unsubscribe channels, and to send and receive messages. The alliance exists as long as its
supervisor does.

10) Directories: This extension enables members to find existing channels and registered members

though a directory service. The service includes white and yellow pages. White pages allow
finding the unique identifier of a member or a channel through their names, provided during
respectively member registration or channel creation. Yellow pages allow finding all members or
channels that specialize in a particular topic, supported through the topics extension and specified
during member registration of channel creation.

11) Topics: This extension maintains a hierarchy of topics that can be used to describe the interest of

the members and the content of the channels. During registration, a member may choose any
number of topics to describe itself. Likewise, during channel creation a member may choose any
number of topics to describe the content of the channel. Each topic is selected from the tree-like
hierarchy of topics related using ancestor and descendant relationships. Members can use the
topics defined in the hierarchy to describe themselves and to search for other members through
yellows pages. They can also modify the hierarchy, by adding and removing topics, and adding
and removing relationships between topics.

12) Persistence: The core framework realizes the push model for message delivery - all messages

posted to a channel are automatically pushed into the inboxes of all channel subscribers. This
extension enables an alternative pop model - messages posted to a channel are stored in memory
until explicitly requested by each subscriber. In this way, a member can retrieve both new and
historical messages on demand. While push channels are created by default, this extension allows
choosing the delivery mode (push or pop) during channel creation. Not only different channels
may realize different delivery modes, the owner of a channel may request the administrator to
change the mode at run-time.

All extensions should be implemented using the features and components implemented in the core
framework. Moreover, it is crucial that all extensions conservatively enrich the whole messaging
framework, so that the core behavior and properties are maintained regardless of the presence of the
extra functionality.

4. The Auditing Extension

Following a brief overview of different messaging extensions, this section investigates the audit
extension in some detail.

The required functionality includes:

1) the owner of a channel can request the administrator to audit the channel,
2) when audited, all messages sent through the channel will be stored in a database,

3) the owner of an audited channel can retrieve historical messages according to some selection
criteria such as the period during which a message was sent, the sender of a message, the format of
a message, message content, or others.

Figure 3 depicts two configurations of a simple message gateway, one without and one with the audit
extension. We use a simple graphical notation where members are represented as ellipses and channels
as rectangles. Drawing a line between a member and a channel objects means that the member
subscribes to the channel. If the member owns the channel, the line is drawn with a bullet on the side of
the channel. For instance, in the upper part of Figure 4, a channel c is owned by the member M1 and is
subscribed by the member M2.

The lower part of Figure 3 depicts the auditing extension added to the upper part. A new Auditor
member has been introduced to carry out the auditing function. Auditor subscribes to the original
channel c and therefore receives copies of all messages posted to it by M1 and M2; Auditor does not
itself post any messages to c. The role of Auditor is to maintain a complete record of all messages
received from c, including the sender of a message, the time of sending, message content and others.

Figure 3: Simple Versus Audited Channel

The auditing extension also includes the new audit channel, designed as a private channel between M1
and Auditor; M1 is the owner of the c channel and Auditor is the owner of the audit channel. Using the
audit channel, M1 can post requests to Auditor to retrieve the record of messages received from c
according to certain selection criteria, and Auditor sends the record of all relevant messages back to
M1.

M2 c M1

Auditor audit

M2 c M1

In the simplest case, the auditing extension includes one Auditor member and one audit channel for
every audited channel. The extension also allows a single Auditor member to audit a collection of
channels. With many configurations possible, auditing individual channels can also start, end, suspend
and resume dynamically at run-time, in response to requests from channel owners. A single member
responsible for managing all audit requests is the audit supervisor - SuperAudit. When processing such
requests, SuperAudit communicates directly with the system administrator to register and un-register
Audit members, and to create and destroy audit channels.

The behavior of the auditing extension is depicted in the sequence diagram shown in Figure 5. A
typically action sequence includes the following steps:

1) M1 requests the audit supervisor, SuperAudit to audit the channel c,
2) SuperAudit requests the Administrator to register the new Auditor member,
3) Auditor requests M1 to subscribe to the channel c,
4) Auditor requests Administrator to create the audit channel,
5) Administrator creates the audit channel,
6) SuperAudit asks Auditor to subscribe M1 to the audit channel,
7) M1 sends a message m1 to c,
8) M2 receives the message m1,
9) Auditor receives and stores the message m1,
10) M1 sends a message m2 to c,
11) M2 receives the message m2,
12) Auditor receives and stores the message m2,
13) M1 sends a request to audit to retrieve the first message sent by itself,
14) Auditor receives the request from M1,
15) Auditor retrieves the message m1, and sends it to the audit channel,
16) M1 receives the message m1.

Figure 4 : Channel Auditing, Behavioral Model

5. Conclusions

The aim of this paper is to present an approach for extending the functionality provided by message-
oriented middleware. Based on the core functionality for delivering messages between members
through dynamic, member-defined channels, we propose a set of well-defined extensions to carry out a
variety of useful messaging services. We outlined 12 concrete services: message auditing, validation,
transformation, encryption and tracking, channel composition, member authentication, member
alliances, channel-dedicated mailboxes, directory services, hierarchies of topics, and persistent
channels. All extensional can be implemented on top of the core middleware. As an illustration, we
described the auditing extension in some detail.

Several message-oriented middleware solutions exist, most as commercial products. They assure
reliable delivery of messages and provide a range of complementary functions such as: user account
management, transaction support, mail query monitoring, persistency and encryption of messages
[9][4]. In addition, many support the standard Java-based API – Java Message Service (JMS) [10], and
usually realize both publish-and-subscribe and point-to-point delivery models. In our approach, these
complementary functions are explicitly regarded as functional extensions of the core messaging
framework, all expressed and realized in terms of the core messaging concepts. In addition, the core
framework has received a fully formal definition, and has been developed using open-source
technologies [6]. The contribution of this work is to extend this core messaging framework with a
range of useful messaging services. We aim to develop formal specifications for each of the proposed
extensions, analyze the mechanisms for their composition, and provide corresponding implementations.

The first step in our future work is to study in detail and model each of the extensions proposed in this
paper, providing formal specifications for each of them. The second step is to develop a mechanism for
seamless composition of extensions on top of the core framework, also providing the formal
specification. Based on the formal models of individual extensions and their composition, the third step
is to formally analyze the preservation of properties and behaviors realized by the core messaging
framework when adding new extensions. This step should ideally result in a well-founded theory to
underpin the development of provably correct messaging services. The fourth step is the application of
the resulting message gateway in different domains. Our particular interest is electronic government
and how to develop distributed software applications to facilitate communication between public and
private sector organizations in order to produce seamless services to citizens and businesses.

Acknowledgements

We wish to thank Adegboyega Ojo, Gabriel Oteniya and Benedikt Mas y Parareda for collaboration,
comments and useful discussion about this work.

References

[1] Web Services, Concepts, Architectures and Applications. Gustavo Alonso, Favio Casati, Harumi
Kuno, Vijay Machiraju. Springer, 2004.

[2] IBM WebSphere MQ, http://www-306.ibm.com/software/integration/wmq/v60/
[3] Microsoft Message Queuing Services, MSMQ,

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnfoxgen/html/ msmqwvfp6.asp
[4] WebMethods Enterprise, WebMethods,

http://www.webmethods.com/meta/default/folder/0000005877
[5] Messaging service Common Object Request Broker Architecture (CORBA)

http://www.omg.org/technology/corba/corba3releaseinfo.htm
[6] xG2G, Extensible G2G Message Gateway, Tomasz Janowski and Benedikt Mas y Parareda, e-

Macao Project, UNU-IIST, Macao SAR, China.
[7] Enterprise Integration Patterns, Designing Building and Deploying Messaging Solutions, Gregor

Hohpe and Bobby Woolf, Addison Wesley 2004.
[8] Enterprise Service Bus, David A. Chappell, O’Reilly Media Inc, 2004.
[9] IBM WebSphere MQ, http://www-306.ibm.com/software/integration/wmq/features/
[10] Java Message Service Tutorial, http://java.sun.com/products/jms/tutorial/

