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Abstract

The Flow Shop Scheduling Problem have been tackled using different techniques which goes from
mathematical techniques like Branch and Bound to metaheuristics like evolutionary a gorithms (EAS).
Although in the real world this problem will be found more frequently with more than one objective,
most work been done is based on a single objective. Evolutionary algorithms are very promising in this
area because the outcome of a multiobjective problem is a set of optimal solutions (the Pareto Front)
which EAs can provide in a single run. Yet another advantage of EA’s over other techniques is that
they are less liable to the shape or continuity of the Pareto Front. In this work, we show three imple-
mentations of multiobjective Evolutionary Algorithms. The first one uses Single Crossover Per Couple
(SCPC), while the other two use Multiple Crossover on Multiple Parents (MCMP), continuing with
previous workg 7, 8]. These two methods show an enhancement on the performance of the first
method. Details of implementation and results are discussed.

Keywords. Evolutionary Computation, Flow shop scheduling, multiobjective optimization, multire-
combination.
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1 - Introduction

In a multiobjective optimization problem (MOOP), a solution has a number of objective values, one per
each optimizing criterion (attributes). As many of these criteria can be in conflict it is impossible to
optimize any of the objective functions without degrading some of the remaining criteria. This leads to
a decision-making problem for choosing a suitable solution (or set of solutions) according to higher-
level organization goals.

Vilfredo Pareto [12] established that there exists a partial ordering in the searching space of a MOOP
based on a domination relationship. For instance, in a maximization problem given two solutions

X=(X, %y, %n) @A y=(y1,Yo,¥n), the Pareto criterion says that, x dominates y iff
x; 2 y; Ui and Oj such that Xj > Yj.

In the problem space some solutions will not be dominated by any other solution and they conform the
Pareto front, also known as the acceptable set, the efficient points and the Pareto optimal set. Knowl-
edge of the Pareto front is of utmost importance when search is applied before decision making. This
information provides to the judgement of a human decision-maker with the trade-offs to establish inter-
actions among different criteria, hence smplifying the decision process to choose an acceptable range
of solutions for amulticriteria problem

In our study we are interested in Permutation Flow Shop problems, where jobs must be scheduled in
the same order on all machines. Our multiobjective optimization problem can be formulated as follows:
Minimize f (o) and f,(o) where sought solutions o are feasible schedules and

f(0)=max. o {max.. (C} () LE)=Ymedoc -d} @

Ti=max{ 0L}
In expression (1) (makespan), Cik stands for the completion time of the last operation of job i in ma-
chine k, and in expression (2) (maximum tardiness), C; indicates the completion time of the last opera-
tion of job j and d; is the corresponding due date. Both problem are NP-Hard, which means that they
cannot be easily solved for medium and large instances.

In this work we contrast results of the three proposed algorithms between them and also against the
best results provided until now by Basseur [1]. In his work Basseur designed a so called dynamic mu-
tation Pareto Genetic Algorithm, where different operators are used simultaneously in adaptive man-
ner, a combined sharing technique is applied, and a hybrid approach combining the EA with local
search isimplemented. The ideais to know how approaches based only in multirecombination [5, 6 ,7]
approximate the best found results, and which is the relative quality between them.

2. Fitnessand Elitismin MOOP

The three main differences between a Single Objective Evolutionary Algorithm and a Multiple Objec-
tive Evolutionary Algorithm are how the fitness is determined, the inclusion, or not, of a sharing tech-
nigue, and how the elitism isimplemented [2, 3, 4].



The fitness cal culation is accomplished using a Pareto Front approach. In this method, the fitness is not
an absolute quality measure like in the single objective case, but it represents a quality measure of this
individual with respect to the other individuals in the same population. The method for assigning fit-
nessin this class of agorithmsisasfollows[10, 11]:

1) Eachindividual isranked according to the number of individuals by which it is dominated.
2) A sorting of the individuals according to its ranking in the population is made,
3) A fitnessisassigned to each individual using alinear function.

Elitism in a multiobjective Evolutionary Algorithm means maintaining the Pareto Front obtained up
until the current time (called Current Pareto Front).

3. Alternative Recombination M ethods

In what follows we will describe each of the recombination approaches applied on the same bench-
marks selected by Basseur. In all our EAS, an auxiliary structure maintains the current Pareto front. To
help evolution, al individuals in the current Pareto Front are inserted in the population, after each gen-
eration. In other words, after the recombination cycle, offspring go to an intermediate popul ation. Now
they are ranked according to dominance. Worst individuals of this intermediate population are replaced
by the individuals in the current Pareto front, and the intermediate population becomes the new popu-
lation. In this way elitism is implemented. Then the fitness calculation proceeds, and if necessary, the
current Pareto front is updated. A sharing technique was not implemented. The MCMP variants include
the use of a stud (breeding individual) which due to its best characteristics contributes with its genetic
material by repeatedly mating the remaining parents in the mating pool.

Multiobjective SCPC

In this approach a simple evolutionary algorithm isimplemented. A single crossover is applied to each
couple selected with proportional selection.

Multiobjective MCMP -1

The first multiple crossover operation was implemented in the following way: First it makes as many
rankings as objectives are (in this case two). Then it selects a set of parents for each objective using
Proportional Selection and then finds the stud for each group. Once the studs are selected, multiple
crossovers between each stud and the rest of the individuals of the other group are performed. In this
way breeding among different “species’ isforced. An auxiliary structure which initially holds the pairs
of parentsis used to retain the best individuals. Each time a crossover is performed, the corresponding
parent is only replaced in the case that the child dominates it. Once all the children are obtained, they
are inserted into the next population following this scheme: The algorithm first selects those offspring,
which are classified so far, as globally non-dominated. If none fulfilling this condition exists then half
of the m newly generated offspring are inserted, selecting them according to their dominance ranking.
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Fig. 1. The multirecombination processin MCMP-1

Multiobjective MCMP —2

The second multiple crossover operation was implemented in the following way: First it make as many
rankings as objetives are (in this case two). Then it selects a set of parents for each objective using Pro-
portional Selection and finds the stud for each group. Once the studs are selected, multiple crossover
between each stud and the rest of the individuals in the other groups are performed (until here is the
same method as MCMP-2). Once al the children individuals are obtained, they are inserted into the
next population following this scheme: The algorithm first selects those offspring, which are classified
so far, as globally non-dominated. If none fulfilling this condition exists then half of the m newly gen-
erated offspring are inserted, selecting first those that are non-dominated within the new offspring sub-

set and completing my2 insertions by random selection if necessary.
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3 —Contribution as a compar ative perfor mance measure

We will use this measure as defined by Basseur [1]. In his paper he says that: “...the contribution of a
set of solutions PO, relatively to a set of solutions PO, is the ratio of non-dominated solutions produced

Let C be the set of solutionsin PO; n PO,

Let Wy (resp. W,) the set of solutionsin PO, (resp. PO,) that dominate some solutions of PO,

Let L; (resp. L,) be the set of solutionsin PO; (resp. PO,) that are dominated by some solutions of PO,
(resp. POy)

Let Ny (resp. N2) be the other solutions of PO, (resp. PO,) : Nj = POi \ (C O W [ Li)

Let PO* be the set of Pareto solutions of PO, O PO,. So, [|PO*|| = |IC]l + || Wa || + [IN]l + [IW2|l + [IN2|
The contribution of the algorithm PO, relatively to PO, is given by

+IN|
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*
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... the contribution of the two sets of solutions PO; of PO, of figure3, is evaluated: solutions of PO;
(resp. PO,) are represented by circles (resp. Crosses). We have C(PO1, PO,) = 0.7 and C(PO,, PO,) =
03...7

Pareto Front
14
X
12 s¢ oPO1| |
o X PO2
10 - o
]
8 o
N X
6 X
o
4 [}
]
2 2
5]
0 I I
0 5 f1 10 15

Fig. 3. Contributionsexample (C=4, W; =4, W, =0, N; =1 N,=1)

Consequently as C(PO;, PO,) + C(PO,, PO;) = 1 this measure of performance tell us that two algo-
rithms are equivalent when building the Pareto front if both contributions are equal to 0.5.



4 — Experiments and results

All the experiments have a fixed number of generations, the same rate of probabilities and population
size, and as the representation adopted is a permutation of jobs PMX was the crossover method. The
following table shows the parameter settings, which were determined as the best after a set of initia
trials.

Algorithm SCPC | MCMP-1 | MCMP- 2
Population size 100 100 100
Generations 30000 30000 30000
Crossover PMX PMX PMX
Mutation SHIFT SHIFT SHIFT
Number of Parents 2 4 4
Number of crossovers 1 6 6
Probability of crossover | 0.65 0.65 0.65
Probability of mutacion 0.3 0.3 0.3

The following tables and graphics show the contribution values and the Pareto fronts of the corre-
sponding agorithms

SCPC MCMP-1 |MCMP-2
20X 5 0.000000 | 0.500000 0.000000
20x 10 0.027027 |0.171429 0.263158
20x 20 0.250000 | 0.300000 0.232143
Average 0.092333 | 0.323809 0.165100

Table 1. Comparison between the contributions values of the different EAs implemented and the benchmark.

Table 1 indicates that MCMP-1 reaches the benchmark in the 20x5 instance and it is the best performer
in average.

MCMP-1 |MCMP-2
20x5 1.000000 0.750000
20x10 0.866667 0.948718
20x 20 0.380000 0.600000
Average 0.748889 0.766239

Table 2. Comparison of the contribution values of the MCMP EA’s and the SCPC EAs

Table 2 shows that both multirecombined evolutionary algorithms dominate most points created by
SCPC.

In figure 4 we can see that for the 20x5 problem size all EAs using MCMP outperformed SCPC. It also
can be seen that MCMP-1 is the best performer in this size (this aso can be seen in both tables of con-
tribution values).
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Fig. 6 Pareto fronts built by the aternative agorithms for the 20x20 problem size

In figure 5, we can see the same thing as in figure 4, that is to say the points obtained by the SCPC al-
gorithm are almost always dominated by the EAs using MCMP. In particular MCMP-2 seems to be the
algorithm with the best behaviour. This also could be corroborated in the contribution values of table 2

Figure 6 is more difficult to analyze. At first glance, MCMP-1 seems to be the best performer. None-
theless this EA loses a big portion of the Pareto Front. Thisis why MCMP-1 provides better results in
the first table, but MCMP-2 provides better ones in the second table.

The agorithms that use multirecombination are clearly better performers than the single recombination
approach. The reasons for this could be: first, the advantages seen in single objective problems are also
applied for multiobjective problems, that is to say that the best individuals of the population are mated
with the other individuals more than once, giving the possibility of exploiting them better. The other
reason, is that the parents and the two studs chosen for the recombination operation are selected ac-
cording to different criterias (objectives). Thisallows that different ‘ properties of these individuals are
mixed more than once. The comparison between MCMP-1 and MCMP-2 is not so clear, because the
results are very much alike. Nonetheless, MCMP-2 performs better than MCMP-1, particularly in
larger problem sizes, besides been faster than MCMP-1. If the first instance, which only provides 3
solutions, is not taken into account the other sizes show a better performance in the graphics, where the
front is larger and in the contribution results are better. The benchmark provides very good results for
many reasons, but the main one in our point of view is the inclusion of two mutation operators alterna-



tively applied. We conjecture that because in past experiments using both Random Exchange Mutation
and Shift Mutation it was observed that for some sizes, the first method was much better but for other
sizesit was the opposite.

5 - Conclusions

An important issue in this work is that no sharing technique was used. The application of a sharing
technique is, according to many authors, fundamental in multiobjective optimization. In these experi-
ments we did not use it because the objective was to determine the raw potential of multirecombination
when dealing with MOORP for Flow Shop Scheduling.

As aresult of this work we determined that all agorithms using MCMP behave better than the algo-
rithm that uses SCPC. Both, in the contribution values and in the observation of the graphics, it can be
seen that these solutions are closer to the solutions provided by the evolutionary agorithm that was
taken as benchmark.

If we want to establish a comparison between the algorithms that use MCMP, considering only the first
table (contribution with respect to the benchmark) then MCMP-1 shows the best behaviour. But if we
consider the second table, (contribution with respect to the SCPC algorithm) MCMP-2 behaves better.
If we look at the graphics, we see that MCMP-2 behaves poorly in the smallest instance, but it is the
best in the next ones.

Another point to remark, is the relative speed of these algorithms. MCMP-2 is at least five times faster
than MCMP-1. This is due to the number of new individuals that are inserted each time a crossover
operation is performed.

Future work will be devoted to include sharing techniques and adaptive mutation methods together
with multirecombination to improve performance.
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