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Abstract

In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers
the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model
operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the
model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm.
We also develop a new mutation operator which incorporates knowledge of the problem. We validate our
proposed approach with a set of test functions taken from the specialized literature and we compare our results
with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and
with respect to an AIS previously proposed.
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Resumen

En este trabajo, se presenta un nuevo modelo de Sistema Inmune Artificial (SIA), basado en el proceso que
sufren las células T. El modelo propuesto se usa para resolver problemas de optimización (numéricos) re-
stringidos. El modelo trabaja sobre tres poblaciones: V́igenes, Efectoras y de Memoria. Cada una de ellas tiene
un rol diferente. Además, el modelo adapta dinamicamente el factor de tolerancia para mejorar las capacidades
de exploración del algortimo. Se desarrolló un nuevo operador de mutación el cual incorpora conocimiento del
problema. El modelo fue validado con un conjunto de funciones de prueba tomado de la literatura especial-
izada y se compararon los resultados con respecto a Stochastic Ranking (el cual es un enfoque representativo
del estado del arte en el area) y con respecto a un SIA propuesto previamente.

Palabras claves: Sistema Inmune Artificial, Problemas de Optimización Restringidos.
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1 INTRODUCTION

In many real-world problems, the decision variables are subject to a set of constraints, and the search
has to be bounded accordingly. Constrained optimization problems are very common, for example,
in engineering applications, and therefore the importance of being able to deal with them efficiently.

Many bio-inspired algorithms (particularly evolutionary algorithms) have been very successful in
the solution of a wide variety of optimization problems [30]. But, when they are used to solve con-
strained optimization problems, they need a special method to incorporate the problem’s constraints
into their fitness function. Evolutionary algorithms (EAs) often use exterior penalty functions in or-
der to do this [26]. However, penalty functions require the definition of accurate penalty factors and
performance is highly dependent on them.

Recently, several researchers have proposed novel constraint-handling techniques for EAs [3, 19,
24]. These approaches have been able to outperform penalty functions and can handle all types of
constraints (linear, nonlinear, equality, inequality).

The main motivation of the work presented in this paper is to explore the capabilities of a new AIS
model in the context of constrained global optimization. The proposed model is based on the process
that suffers the T-Cell. We also propose a dynamic tolerance factor and several mutation operators that
allow us to deal with different types of constraints. The remainder of the paper is organized as follows.
In Section 2, we define the problem we want to solve. Section 3 describes some previous work. In
Section 4, we introduce and describe our proposed model. In Section 5, we present our experimental
setup. In Section 6, our results are presented and they are discussed. Finally, in Section 7, we present
our conclusions and some possible paths for future work.

2 STATEMENT OF THE PROBLEM

We are interested in solving the general nonlinear programming problem which is defined as follows:
Find �� � ���� � � � � ��� which optimizes ����� � � � � ��� subject to:

������ � � � � ��� � � � � �� � � � � �
������ � � � � ��� � � 	 � �� � � � � 


where ���� � � � � ��� is the vector of solutions (or decision variables), � is the number of equality con-
straints and 
 is the number of inequality constraints (in both cases, constraints could be linear or
nonlinear).

3 PREVIOUS WORK

According to [10] the main models of Artificial Immune System are: Negative Selection, Clonal
Selection and Immune Network Models. They are briefly described next.

Forrest et al. [25] proposed the Negative Selection model for detection of changes. This model
is based on the discrimination principle that the immune system adopts to distinguish between self
and nonself. This model generates random detectors and discards the detectors that are unable of
recognizing themselves. Thus, it maintains the detectors that identify any nonself. It performs a
probabilistic detection and it is robust because it searchess any foreign action instead of a particular
action. Typical applications of negative selection [10] include those reported in [25, 11, 7], among
others.
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The Immune Network Model was proposed by Jerne [17], and it is a mathematical model of the
immune system. In this case, the dynamics of the lymphocytes are simulated by differential equations.
This model assumes that lymphocytes are an interconnected network. Several models have been
derived from it [12, 1]. Typical applications are [10]: detection of gene promoter sequences [13], data
mining [14], diagnosis [15] and cluster analysis [16, 27].

Clonal Selection is based on the way in which both B-cells and T-cells adapt in order to match and
kill the foreign cells [10]. Clonal Selection involves: 1) the AIS’ ability to adapt its B-cells to new
types of antigens and 2) the affinity maturation by hypermutation. CLONALG proposed by Nunes
de Castro and Von Zuben [22, 23] was originally used to solve pattern recognition and multimodal
optimization problems, and there are a few extensions of this algorithm for constrained optimization.
CLONALG works in the following way: first, it creates a random population of antibodies, it sorts it
according to some fitness function, it clones them, it mutates each clone, it selects the fittest antibodies
and clones it and replaces the worst antibodies for antibodies that are randomly generated. Typical
applications are described in [8, 23, 28], among others.

Those models have been used in several types of problems, but particularly, the use of artificial
immune systems to solve constrained (numerical) optimization problems is scarce. The only previous
related work that we found in the specialized literature is the following:

Hajela and Yoo [29, 30] have proposed a hybrid between a Genetic Algorithm (GA) and an AIS
for solving constrained optimization problems. This approach works on two populations. The first is
composed by the antigens (which are the best solutions), and the other by the antibodies (which are
the worst solutions). The idea is to have a GA embedded into another GA. The outer GA performs
the optimization of the original (constrained) problem. The second GA uses as its fitness function a
Hamming distance so that the antibodies are evolved to become very similar to the antigens, without
becoming identical. An interesting aspect of this work was that the infeasible individuals would
normally become feasible as a consequence of the evolutionary process performed. This approach
was tested with some structural optimization problems.

Kelsey and Timmis [18] proposed an immune inspired algorithm based on the clonal selection
theory to solve multimodal optimization problems. Its highlight is the mutation operator called So-
matic Contiguous Hypermutation, where mutation is applied on a subset of contiguous bits. The
length and beginning of this subset is determined randomly.

Coello Coello and Cruz-Cortés [5] have proposed an extension of Hajela and Yoo’s algorithm.
In this proposal, no penalty function is needed, and some extra mechanisms are defined to allow the
approach to work in cases in which there are no feasible solutions in the initial population. Addition-
ally, the authors proposed a parallel version of the algorithm and validated it using some standard test
functions reported in the specialized literature.

Balicki [2] made a proposal very similar to the approach of Coello Coello and Cruz-Cortés. Its
main difference is the way in which the antibodies’ fitness is computed. In this case, Balicki intro-
duces a ranking procedure. This approach was validated using a constrained three-objective optimiza-
tion problem.

Luh and Chueh [9, 21] have proposed an algorithm (called CMOIA, or Constrained Multi Objec-
tive Immune Algorithm) for solving constrained multiobjective optimization problems. In this case,
the antibodies are the potential solutions to the problem, whereas antigens are the objective functions.
CMOIA transforms the constrained problem into an unconstrained one by associating an interleukine
(IL) value with all the constraints violated. IL is a function of both the number of constraints violated
and the total magnitude of this constraint violation. Then, feasible individuals are rewarded and in-
feasible individuals are penalized. Other features of the approach were based on the clonal selection
theory and other immunological mechanisms. CMOIA was evaluated using six test functions and two
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structural optimization problems.
Coello Coello and Cruz-Cortés [6] have proposed an algorithm based on the clonal selection the-

ory for solving constrained optimization problems. The authors experimented with both binary and
real-value representation, considering Gaussian-distributed and Cauchy-distributed mutations. Fur-
thermore, they proposed a controlled and uniform mutation operator. This approach was tested with a
set of 13 test functions taken from the specialized literature on evolutionary constrained optimization.

In Section 4.5 we are going to explain the differences between the main models of AIS and our
proposed model.

4 OUR PROPOSED MODEL

This paper presents a novel bio-inspired model based on the T-Cell, it is called T-Cell Model. In a
very simple way, the processes that suffer the T-Cell are the following: first, they are divided in three
groups (Virgin Cell, Effector Cells and Memory Cells). Then, the natural immune system generates
a huge number of virgin cells. During the immunological response, the T-cells pass through different
phases: initiation, reaction and elimination. After the initiation phase, virgin cells becomes effector
cells. These react and undergo a process called �
�
����. This process eliminates any undesirable
cells. The surviving cells become memory cells.

Thus, this model operates on three populations, corresponding to the three groups in which the
T-cells are divided: (1) Virgin Cells (VC), (2) Effector Cells (EC) and (3) Memory Cells (MC). Each
of them has a specified function. VC has as its main goal to provide diversity. EC tries to explore the
conflicting zones of the search space. MC has to explore the neighborhood of the best solutions found
so far. VC and EC represent their cells with binary string using Gray coding, MC does the same, but
adopting vectors of real values. The general structure of this model is the following:

Repeat a predetermined number of times
1. Generate (in a random way) Virgin Cells
2. Insert a percentage of Virgin Cells in Effector Cells
3. Repeat a predetermined number of times

3.1. Make the Effector Cells React
End repeat.

4. Insert a percentage of Effectors Cells in Memory Cells
5. Repeat a predetermined number of times

5.1. Make the Memory Cells React
End repeat.

End repeat.

4.1 Handling Constraints

In our proposed model, the constraint-handling method needs to calculate, for each cell (solution)
regardless of the population to which it belongs, the following: 1) value of each constraint function,
2) sum of violation constraints (sum res), it is a positive value determined by the add of � ����� for
� � �� � � � � 
 and ������� for � � �� � � � � � and 3) value of objective function (only if the cell is feasible).

When the search process is driven by the value of each constraints and the sum of constraints
violation, then the selection mechanisms favors the feasible solutions over the infeasible ones. In this
case, it is probably that, in some functions, the search falls into a local optimum. For this reason, we
develop a dynamic tolerance factor (DTF). It changes with each new population, since it depends on
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the value of sum res. The DTF is calculated by adding the value of each constraint violated in each
cell from a particular population (VC or EC). Then, this value is divided by the number of Virgin
Cells (for DTF’s VC) or three times the number of Effector Cells (for DTF’s EC).

When we evalue the population using the DTF, it will be easier to generate solutions that are
considered ”feasible” (although they may be really infeasible if evaluated with the actual precision
required). This allows the exploration of each solution’s neighborhood, which otherwise, would not
be possible. This DTF is used by both VC and EC. If the value of DTF is lower than 0.0001, we set it
to 0.1 and 0.001 for VC and EC, respectively. In constrast, MC adopts a traditional tolerance factor,
which is set to 0.0001.

4.2 Incorporating Domain Knowledge

In order to explore the frontier between feasible and infeasible zones, EC is divided in EC f and
EC inf. The first is composed by feasible solutions and the other by infeasible solutions. Also, we
introduce domain knowledge through the mutation operator, which modify the decision variables
involve in the constraint with the highest violationed.

4.3 Mutation Operators

Each population that reacts (EC f, EC inf and MC) has its own mutation operator. These operators
are described next.

The mutation operator for EC inf works in the following way: first, it identifies the most vio-
lated constraint, say �. If this constraint value (�) is larger than sum res divided the total number of
constraints, then we change each bit from each decision variable involve in � with a random proba-
bility between 0.01 and 0.2. Otherwise, we change each bit from one decision variable involve in �,
randomly selected, with a random probability between 0.01 and 0.2. We use a random probability
because after some experiments, we observed that some test functions required different step sizes. If
after applying mutation, a cell becomes feasible, it is inserted in EC f according to an elitist selection.

The mutation operator for EC f works in the following way: it changes each bit from all decision
variables, with a random probability between 0.001 and 0.2. This random probability has the same
motivation that the previously.

The mutation operator for MC applies the following equation:

�
�

� ��

�
���� ����� ��

����������������

�������

(1)

where � and �
�

are the original and mutated decision variables, respectively. ���� �� refers to a
random number with a uniform distribution between (0,1). �� and �� are the upper and lower limits of
�. ������ refers to the number of constraints. ���� refers to the number of decision variables of the
problem, ��� is the current generation number and � is an integer.

4.4 Replace Mechanisms

The replace mechanisms are always applied in an elitist way, both within a population and between
different populations. They take into account the value of objective function or the sum of constraint
violation, depending on whether the cell is feasible or infeasible, respectively. Additionally, we al-
ways consider a feasible cell as better than an infeasible one. Note that before a cell is inserted into
another population, it is first evaluated with the tolerance factor of the receptor population.
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Therefore, the general structure of our proposed model for constrained problems is the following:

Repeat a predetermined number of times
1. Randomly generate Virgin Cells
2. Calculate DTF’s VC
3. Evaluate VC with its own DTF
4. Insert a percentage of Virgin Cells into Effector Cells population
5. Calculate DTF’s EC’s
6. Repeat 50 times

6.1. Make the Effector Cells React
6.2. Evaluate EC’s with its own DTF
End repeat.

7. Insert a percentage of Effectors Cells into Memory Cells population
8. Repeat 100 times

8.1. Make the Memory Cells React
8.2. Evaluate MC
End repeat.

End repeat.

The most relevant aspects of our proposed model are the following:1) all equality constraints are
converted into inequality constraints, �������� Æ � �, using a tolerance factor, 2) VC’s cells and MC’s
cell are sorted using the following criterion: the feasible cell whose objective function are the best are
placed first. Then, we place the infeasible cells that have the lowest sum of constraint violation, 3)
EC f’s cells are sorted in ascending order on their objective function y 4) EC inf’s cells are sorted in
ascending order on their sum of constraint violation.

4.5 Differences between the Models

The immune system models described in 3 are based on different immunological theories. Clonal
Selection is based on the replication of antibodies according to their affinity. The Immune Network
Model is a probabilistic approach to idiotypic networks. Negative Selection is based on the principles
of self-nonself discrimination that take place in the immune system. Aditionally, Negative Selection
and T-Cell Model are both based on the mechanisms of the T-Cell. However, these models give a
completely different treatment to the cells (in T-Cell Model) and detectors (in Negative Selection).
The Negative Selection Model tries to detect some change, whereas T-Cell Models categorizes the
T-cell and it uses their phases in order to achieve different goals.

5 EXPERIMENTAL SETUP

In order to validate our proposed model we tested it with a benchmark of 19 test functions taken from
the specialized literature [4]. The functions g02, g03, g08 and g12 are maximization problems (for
simplicity, these problems were converted into minimization problems using �����) and the rest are
minimization problems.

Our results are compared with respect to Stochastic Ranking, we take its result from [20], which
is a constraint handling technique representative of the state-of-the-art in the area, and with respect
to the AIS approach reported in [6]. For equation 1, we used � � ��� for all functions except for
g02, here we used � � ���. 25 independents runs were performed for each problem, each consisting
of 350,000 fitness function evaluations. We experimented with different population sizes, the best
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results were obtained using: 1) for VC 100 cells for all functions, except for g19 here we used 10
cells and for g10 and g15 we used 20 cells, 2) for EC f, EC inf and MC we used 20 cells for all
functions, except for g10 and g19, here we used 10 cells. We adopted a 100% and 50% replacement
for the cells in EC’s and MC, respectively. All the statistical measures reported are taken only with
respect to the runs in which a feasible solution was reached at the end.

6 DISCUSSION OF RESULTS

Tables 1, 2 and 3 show the results obtained with the AIS proposed in [6], Stochastic Ranking and our
T-Cell Model, respectively.

From Table 3, we can see that our model was able to reach the global optimum in 8 test functions
(g01, g04, g06, g08, g11, g12, g15 and g16). Additionally, our model reached feasible solutions
close to the global optimum in 7 more test functions (g02, g03, g07, g09, g13, g14 and g18) and it
found acceptable (but not too close from the global optimum) feasible solutions for the rest of the test
functions.

Comparing T-Cell Model with respect to Stochastic Ranking (see Tables 2 and 3), T-Cell Model
obtained better results in 9 test functions (g03, g04, g06, g11, g14, g15, g16, g17 and g18). Both
approaches found similar solutions for g01, g08 and g12. Our model was outperformed in 7 functions
(g02, g05, g07, g09, g10, g13 and g19) . With respect to the mean and worst found solutions, our
model was outperformed all functions except g03, g04, g06, g11, g14 and g16.

Comparing T-Cell Model with the AIS proposed in [6] (see Tables 1 and 3), T-Cell Model obtained
better results in 8 test functions (g01,g02, g03, g05, g06, g07, g10 and g11). Both approaches found
similar solutions for g04, g08 and g12. Finally, our model was outperformed in g09 and g13. With
respect to the mean and worst found solutions, our model was outperformed only in g02, g07, g09
and g13.

We conducted an analysis of variance of the results obtained by our T-Cell Model and of the results
obtained by Stochastic Ranking [20](we did not performe this analysis with the results obtained by the
AIS proposed in [6] because the values required by the tests (for this approach) were not available).
Due to, for some functions, the results do not follow a normal distribution, we used the Kruskal
Wallis test and then Turkey method. The first test indicates if the means between the results of the
algorithms had significant differences and the second one indicates in which experimental conditions
the means had significant differences. Table 4 shows the values obtained for these tests. The first
column represents to the function, the second column shows the values for Kruskal Wallis test (the
means had significant differences if this value 
 is lower than 0.05), the third and fourth column
indicate the lower and upper limits (if the values contained inside this interval does not contain the
zero then the means had significant differences). After the analysis of Table 4, we observed that for
all function the means have significant differences except for g11. Note that we do not apply these
tests to g01, g08 ang 12 because, for these functions both algorithms found the optimum solution in
all runs.

We argue that the model is capable of performing an efficient local search over each cell, which
allows the model to improve on the feasible solutions found. In cases in which no feasible solutions
are found in the initial population, the mutation applied is capable of reaching the feasible region even
when dealing with very small feasible search spaces.

Although there is clearly room for improving our proposed model, we have empirically shown that
this approach is able of dealing with a variety of constrained optimization problems (i.e., with both
linear and nonlinear constraints and objective function, and with both equality and inequality con-
straints). The benchmark adopted includes test functions with both small and large feasible regions,
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as well as a disjoint feasible region.

Table 1: Results obtained with AIS proposed in [6]. The asterisk (*) indicates a case in which
only 90% of the runs converged to a feasible solution

Function Optimum Best Mean Worst Std.Dev
g01 -15 -14.9874 -14.7264 -12.9171 0.6070
g02 -0.803619 -0.8017 -0.7434 -0.6268 0.0414
g03 -1.0005 -1.0 -1.0 -1.0 0.0000
g04 -30665.5386 -30665.5387 -30665.5386 -30665.5386 0.0000
g05� 5126.4967 5126.9990 5436.1278 6111.1714 300.8854
g06 -6961.81387 -6961.8105 -6961.8065 -6961.7981 0.0027
g07 24.306 24.5059 25.4167 26.4223 0.4637
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0000
g09 680.63 680.6309 680.6521 680.6965 0.0176
g10 7049.24 7127.9502 8453.7902 12155.1358 1231.3762
g11 0.7499 0.75 0.75 0.75 0.0000
g12 -1.0 -1.0 -1.0 -1.0 0.0000
g13 0.05395 0.05466 0.45782 1.49449 0.3790

Table 2: Results obtained with Stochastic Ranking [20]
Function Optimum Best Mean Worst

g01 -15 -15.0 -15.0 -15.0
g02 -0.803619 -0.803 -0.784 -0.734
g03 -1.0005 -1.0 -1.0 -1.0
g04 -30665.539 -30665.539 -30665.480 -30664.216
g05 5126.4967 5126.497 5130.752 5153.757
g06 -6961.81387 -6961.814 -6863.645 -6267.787
g07 24.306 24.310 24.417 24.830
g08 -0.095825 -0.095825 -0.095825 -0.095825
g09 680.63 680.63 680.646 680.697
g10 7049.24 7050.194 7423.434 8867.844
g11 0.7499 0.750 0.750 0.751
g12 -1.0 -1.0 -1.0 -1.0
g13 0.05395 0.053 0.061 0.128
g14 -47.7648 -41.551 -41.551 -40.125
g15 961.71502 961.715 961.731 962.008
g16 -1.905155 -1.905 -1.703 -1.587
g17 8853.539 8811.692 8805.99 8559.613
g18 -0.86602 -0.866 -0.786 -0.457
g19 32.655 33.147 34.337 37.477
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Table 3: Results obtained with our proposed T-Cell Model. The asterisk (*) indicates a case in
which only 96% of the runs converged to a feasible solution

Function Optimum Best Worst Mean Std.Dev
g01 -15.0 -15.0 -15.0 -15.0 0.0
g02 -0.803619 -0.802914 -0.301795 -0.546031 0.168392
g03 -1.0005 -1.000499 -1.000498 -1.000499 0.000001
g04 -30665.5386 -30665.5386 -30665.5386 -30665.5386 0.0
g05� 5126.4967 5126.6595 5850.9358 5307.1073 230.2466
g06 -6961.81387 -6961.81387 -6961.81387 -6961.81387 0.0
g07 24.306 24.3118 28.5089 25.8927 1.1297
g08 -0.095825 -0.095825 -0.095825 -0.095825 0.0
g09 680.63 680.6312 680.7411 680.6730 0.030547
g10 7049.24 7061.67 7894.75 7451.88 218.39739
g11 0.7499 0.7499 0.7499 0.7499 0.0
g12 -1.0 -1.0 -1.0 -1.0 0.0
g13 0.05395 0.054879 2.03033 0.64231 0.534641
g14 -47.7648 -46.2546 -40.2996 -43.6876 1.538386
g15 961.71502 961.71502 971.43611 065.02171 3.10270
g16 -1.905155 -1.905155 -1.905155 -1.905155 0.0
g17 8853.539 8862.383 9271.390 8984.399 117.5927
g18 -0.86602 -0.866019 -0.66920 -0.78805 0.09285
g19 32.655 34.649 73.151 52.617 10.1005

Table 4: Analysis of Variance
Function p lower limit upper limit

g02 2.54392e-009 16.0252 31.7348
g03 4.53296e-011 -35.0356 -18.9644
g04 8.98673e-011 17.4421 32.5579
g05 2.17934e-009 16.2556 32.0911
g06 9.06124e-011 17.4406 32.5594
g07 2.93747e-009 15.4582 30.7018
g09 1.08889e-008 14.9037 30.4563
g10 1.74435e-008 14.5837 30.1363
g11 0.1298 -1.7753 13.8553
g13 3.35698e-010 17.1443 32.6957
g14 0.0009 -21.3391 -5.4609
g15 2.01142e-008 14.9660 31.0340
g16 3.97653e-011 -32.4185 -17.5815
g17 3.60989e-010 17.1853 32.8147
g18 7.25903e-010 16.6646 32.2157
g19 3.15542e-010 16.8670 32.1330
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7 CONCLUSIONS AND FUTURE WORK

This paper has presented a new AIS model for solving constrained optimization problems in which
novel mutation operators are adopted. One of the operators incorporates knowledge of the problem,
by modifying the decision variables involve in the most violated constraint. For some functions, the
feasible region is very small, wich makes it difficult to find good solutions. For this reason, we were
motivated to develop a dynamic tolerance factor. It allows to explore regions of the search space that,
otherwise, would be unreachable, if we use a tolerance factor very restrictive.

The proposed model was found to be competitive in a well-known benchmark commonly adopted
in the specialized literature on constrained evolutionary optimization. The approach was also found
to be robust and able to converge to feasible solutions in most cases.

Our analysis of the benchmark adopted made us realize that these test functions require small step
sizes for mutation operators, except for g02, due to this function has a feasible region bigger than the
other functions. A lot of work remains to be done in order to improve the quality of some solutions
found, so that the approach can be competitive with respect to the algorithms representative of the
state-of-the-art in the area. For example, we plan to improve the mutation operators in order to find
the frontier and feasible zone faster. Nevertheless, it is important to emphasize that there is very little
work regarding the use of artificial immune systems for constrained numerical optimization, and in
that context, this approach provides a viable alternative.
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