
Parallel Matrix Multiplication on
Heterogeneous Networks of Workstations

Fernando Tinetti1, Emilio Luque2

1Universidad Nacional de La Plata
Facultad de Informática, 50 y 115

1900 La Plata, Argentina
fernando@ada.info.unlp.edu.ar

2Universidad Autónoma de Barcelona
Facultad de Ciencias

08193 Barcelona, España
e.luque@cc.uab.es

Abstract

Matrix multiplication is taken as a test bed for parallel processing on heterogeneous networks of
workstations (local areanetworks) used as parallel machines. Two algorithms are proposed taking
into account the specific kind of parallel hardware provided by local area networks, and
experimentation is used to drive the evaluation and identification of possible performance loss. A
specific broadcast communication between processes of a parallel application is also proposed,
taking advantage of the Ethernet interconnection network to achieve optimized performance. A
special emphasis is placeon already installed networks of workstations, which provide a hardware
zero cost parallel computer; but a homogeneous Beowulf-class system is used to show how the
algorithms are also useful on current classical high performance parallel computing with clusters.

Keywords: Cluster Computing, Heterogenous Parallel Computers, High Performance Computing,
Performance Evaluation, Linear Algebra Applications.

1.- Introduction

Computation intensive applications take advantage of the growing processing power of standard
workstations‚ along with their low cost and the relatively easy way in which they can be available
for parallel processing. Usually, computation intensive areas have been referred to as scientific
processing, such as linear algebra applications, where a great effort has been made in order to
optimize solution methods for serial as well as parallel computing [1] [2]. Along with the definition
of the LAPACK (Linear Algebra PACKage) library, linear algebra operations are characterized in
terms of memory as well as computing requirements. BLAS (Basic Linear Algebra Subroutines)
definition on threedifferent levels (Level 1, 2, and 3) represents the main result of these efforts. It
has been shown that routines within Level 3 BLAS are the most appropriate to be optimized in
order to have optimized performance in sequential and parallel computers [4]. Also, it has been
shown how the complete Level 3 BLAS can be implemented using matrix multiplication [6]. All of
this leads to choosing the matrix multiplication as the main operation to be solved in sequential as
well as parallel computers.

On the parallel hardware side, installed networks of workstations that can be used for parallel
processing provide a “hardware zero cost parallel computer” . Hardware installation as well as
maintenance cost is “zero” , because LANs are already installed and each computer has its own
application programs, user/s, etc., independently of parallel computing. However, parallel

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

computing on these platforms is not “zero cost” . Even if the minimum installation of libraries for
developing and running parallel programs -such as PVM (Parallel Virtual Machine) [3] or
implementations of MPI (Message Passing Interface) [7]- are discarded, there are other costs
involved, such as applications parallelization and computers availabilit y.

The parallelization of applications represents one of the main costs involved in parallel
computing, since there does not exist a generally defined guideline to be applied. Also, debugging
parallel software is still one of the main drawbacks for parallel processing in this area. To obtain an
acceptable performance, parallel algorithms are designed having into account the hardware. This
leads to having certain algorithms for a task to be solved (eff iciently enough) by certain parallel
computers. In this context, networks of workstations, clusters, or LAN constitute a new kind of
parallel computers taking into account that a) the computing hardware (processors) is usually
heterogeneous on already installed LAN, and b) the interconnection network is usually Ethernet
based. These two factors imply new problems in parallel applications in order to obtain acceptable
performance, such as: a) computing workload, which should beassigned according to thecomputers
relative speed, and b) special considerations should be taken for the communication pattern between
processes, because Ethernet imposes unavoidable performancepenalties (high startup time-low data
bandwidth).

Section 2 describes two matrix multiplication algorithms along with general guidelines for the
parallelization.The experimental evaluation is presented in Section 3, along with the considerations
for an optimized broadcast message. Section 4 presents the immediate conclusions based on the
experimental work as well as further work intended to improve/explore algorithmic and
performance issues.

2.- Two Parallel Matrix Multiplication Algorithms

Two algorithms for parallel matrix multiplication are proposed taking into account distinguishing
characteristics of heterogeneous NOW, one of them already published in [9]. Both are based in the
same data distribution, which is made according to the relative processing power of each computer.
This relative processing power can be obtained in several ways; two of them would be: 1) using a
general benchmark suite, such as that proposed by the SPEC [5], 2) using an “ad hoc benchmark”
according to the application area, or a short version of the application. The latter approach is chosen,
even at the expense of generality, because: it is more specific and it thus renders more accurate
values, and b) it is simpler at least in this application, because running a matrix multiplication is
easier than installi ng and running a general benchmark suite on each machine. The relative
processing power of each computer ws0, ..., wsP-1, is normalized obtaining pwi such that pw0 + ... +
pwP-1 = 1.

2.1 Common Data Distribution

If square matrices of order n are involved in the matrix multiplication C = A×B, data distribution to
computers is defined in terms of row blocks for matrices A and C and column blocks for matrix B:

� wsi contains rA i = n×pwi rows of matrix A,
� wsi contains rCi = n×pwi rows of matrix C (rCi = rA i), and
� wsi contains cBi = n/P columns of matrix B.
where x denotes the greatest integer number such that x ≤ x.

Thus, the number of rows of matrix A (and C) assigned to each wsi, (rA i) is proportional to the
computer relative processing power. This data distribution is not uniform when the machines are
heterogeneous. According to theprevious definition, it is possible that dr = rA0 + ... + rAP-1 < n. The

remaining rows can be uniformly distributed among computers, ws0, ..., ws(n-dr-1), one row for each
computer. Given that the usual case is P << n, this reassignment of rows can be considered
irrelevant from the point of view of proportional (according to the machines relative processing
power) data distribution. The same kind of reassignment can be accomplished with dc = cB0 + ... +
cBP-1 columns of matrix B. Fig. 1 shows this data distribution, where wsi contains: a) A(i), the local
block of matrix A, rA i×n elements, b) B(i), the local block of matrix B, n×cBi elements, and c) C(i),
the local block of matrix C, rA i×n elements (rCi = rA i). Also in Fig. 1 is shown that wsi has local
data only for a fraction of the local submatrix C(i), C(ii).

Figure 1. Local Data and Partial Computing in wsi.

2.2 Algorithms

The complete C(i) will be calculated as a sequenceof matrix multiplications C(ij) between A(i) and B(j)

blocks with j = 0, ..., P-1. There are several ways of arranging computing and communication steps
in order to have the complete submatrix C(i) calculated on each wsi. Fig. 2 shows the pseudocode of
the local processing in wsi for both of the parallel algorithms. In Fig. 2.a, SeqMsg, every
communication is carried out prior to the local computing step, imposing a sequence of
communication-computing steps. The pseudocode in Fig. 2.b, OvrMsg, is arranged to make use of
overlapped communication in the computers where it is available. The operations send_broadcast_o
and recv_broadcast_o are used to send and receive broadcast data in “background”, i.e. overlapped
with other processing in the computer. Performing overlapped (in background) communication
while computing depends on many factors such as the NIC (Network InterfaceCard) hardware.
Heterogeneous machines in a LAN do not necessarily have this facilit y though it will be used where
available.

 a) Sequential Steps (SeqMsg) b) Overlapped Communication (OvrMsg)

Figure 2. Local Computing on wsi for Two Parallel algorithms.

Both algorithms have well defined characteristics, which are taken as guidelines for the

ws
i

for (j = 0; j < P; j++)
{
 if (j == i)
 send_broadcast B(i)

 else
 recv_broadcast B(j)

 C(ij) = A (i) × B(j)

}

A(i)

C(i) C(i0) C(i1) C(iP-1)

B(i)
if (i == 0)
 send_broadcast B(i)
for (j = 0; j < P; j++){
 if (j != i){
 recv_broadcast_b B(j)

 if ((j+1) == i)
 send_broadcast_b B(i)

 }
 C(i j) = A (i) × B(j)

}

A(i)

C(i) C(i0) C(i1) C(iP-1)

B(i)

ws
i

n

C

C (i) pw
i
n

A

A(i) pw
i
n

n
B

B (i)

n/P

j

n/P

j

parallelization of linear algebra operations: a) SPMD (Single Program-Multiple Data) model, b)
broadcast-based, oriented to taking advantage of the most used hardware interconnection in LANs:
Ethernet, c) coarse granularity, which is always a good approach and even better on high startup
time-low data bandwidth networks.

SeqMsg is very simple and oriented towards synchronized and simultaneous computing on each
machine. However, the communication steps imply a huge performance penalty on Ethernet-based
LAN. It can be used for the evaluation of local computing as well as communication performance.
OvrMsg is oriented to obtain the maximum performanceof the complete parallel processing taking
into account computing and data communication.

3.- Experimental Evaluation

Two installed local areanetworks were used to evaluate both algorithms by experimentation. The
computers on one of the networks (LQT) are heterogeneous, and their details are shown in Table 1;
they are interconnected by 10 Mb/s Ethernet. The secondnetwork (LIDI) is homogenous with eight
identical computers, whose characteristics are summarized in Table 2; they are interconnected by
100 Mb/s switched Ethernet.

Table 1. Characteristics of the LQT LAN Computers.

Name CPU Clock Mem Mflop/s
lqt_07 Pentium III 1 GHz 512 Mb 625

lqt_06 Pentium III 1 GHz 512 Mb 625

lqt_02 Celeron 700 MHz 512 Mb 479

lqt_01 Pentium III 550 MHz 512 Mb 466

lqt_03 Pentium II 400 MHz 512 Mb 338

lqt_04 Pentium II 400 MHz 512 Mb 338

Table 2. Characteristics of the LIDI LAN Computers.

Name CPU Clock Mem Mflop/s
lidipar{ 14, 13, 12,

9, 8, 7, 6, 5}
Pentium III 700 MHz 64 Mb 579

On the LQT network, the matrix size used in the experiments is 5000×5000elements, which is
the greatest size which does not imply using swapping spaceduring multiplication. On the LIDI
network, the matrix size is 2000×2000 elements. Initially, the implementation was made using
PVM. The same results were obtained using the broadcast (in a group) and the multicast message.

The results in terms of the speedup value on the LQT network are shown in Fig. 3.a. The
reference value of the sequential algorithm was taken in the fastest computer (lqt_07), as expected
in heterogeneous networks [10]. Computers are included (indicated by a “+” prefixed to the name)
to the “parallel virtual machine” according to its relative processing power following the usual
better-to-worse approach. The speedupvalues shown as “Opt” are the optimal expected for each set
of machines. The obtained performance is clearly unacceptable for both algorithms.

Fig. 3.b shows the local execution times on each computer taken with OvrMsg when the six
machines are used, corresponding to the last speedupvalue shown in Fig. 3.a. Most of the running
time each computer is waiting for (executing) a message. The average computing time is
approximately 110s while the average time used for communications is approximately 629s. The
same kind of behavior in performance (local running times) is found for every combination of

computers and algorithms. Evidently, the performance lossis due to communications. Considering
that: a) a whole matrix, B, is transmitted using broadcast messages, b) every matrix is square of
order 5000,c) Ethernet broadcast facilit y is used, and d) assuming (rather optimistically on Ethernet
10 Mb/s) 1 MB/s data rate, the expected time for communications is about 100s. Then, the PVM
broadcast is the origin of the performance penalty imposed to the application.

Name Comp. time Comm. time
 lqt_07 89.21 657.71
 lqt_06 89.15 657.57
 lqt_02 109.13 637.87
 lqt_01 174.52 572.56
 lqt_03 92.79 654.50
 lqt_04 102.52 592.84

 Comp. time: total local running time for C(i) (in seconds).
 Comm. time: total local waiting time for communications (in seconds).

 a) Speedup values using PVM b) OvrMsg(PVM) local times

Figure 3. Algorithms Performance with PVM on LQT (5000×5000).

The performance of the algorithms is not better on the LIDI network, which has a 10 times
faster (Ethernet 100Mb/s) interconnection network. Experimental results in terms of speedupvalue
on the LIDI network are shown in Fig. 4.a, where the names of the machines are shortened to save
space. Fig. 4.b shows the local execution times on each computer taken with OvrMsg when the
eight machines are used, corresponding to the last speedup value shown in Fig. 4.a.

A facilit y is needed for broadcasting messages between application processes which take
advantageof the Ethernet broadcast facilit y. The low likelihoodof finding a library with a broadcast
message implemented in this way is mainly due to: a) the general purpose nature of the libraries,
such as PVM and MPI, and b) the (usually) large number of message operations provided by the
libraries, which implies having a littl e number of optimizations to reduce implementation and
maintenance costs. Also, if the previously mentioned broadcast-based guideline is used for
parallelization, the design and implementation of an optimized version of the broadcast
communication between processes of parallel programs are highly encouraged.

Name Comp. time Comm. time
 lidipar14 3.78 13.49
 lidipar13 3.75 13.52
 lidipar12 3.73 13.54
 lidipar9 3.74 13.54
 lidipar8 3.73 13.55
 lidipar7 3.74 13.54
 lidipar6 3.72 13.56
 lidipar5 3.73 12.08

 a) Speedup values using PVM b) OvrMsg(PVM) local times

Figure 4. Algorithms Performance with PVM on LIDI.

A new and broadcast message based on the UDP protocol [8] was implemented to replacethe
PVM broadcast in the experiments. This new function is independent of PVM. The experimental
results in terms of speedupvalues on the LQT and LIDI networks are shown in Fig. 5.a and Fig. 5.b

lp14 +lp13 +lp12 +lp9 +lp8 +lp7 +lp6 +lp5

1

2

3

4

5

6

7

8
Opt

OverMsg(PVM)
SeqMsg(PVM)

lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

1

2

3

4

5
Opt

OverMsg(PVM)
SeqMsg(PVM)

respectively. In every case, the same algorithms with the new UDP-based broadcast have better
values than those obtained with PVM (Fig. 4). Further conclusions can be drawn from Fig. 5:
1. SeqMsg(UDP) and OvrMsg(UDP) performance is improved when more computers are included

to solve the matrix multiplication, as at least expected for the granularity level given by the
matrix size and the interconnection network performance (among other factors).

2. The difference between SeqMsg(UDP) and the optimum (Opt) speedup values is the real
performancepenalty imposed mainly by data communications. The optimum speedup values do
not take into account any data communication.

3. Computers are able to overlap communication with computing in at least a fraction of the
computing time. This is shown by the speedup values of OvrMsg(UDP), which are higher than
those obtained by SeqMsg(UDP).
Differences between OvrMsg(UDP) and SeqMsg(UDP) in the LQT network, Fig. 5.a, are

greater than in the LIDI network, Fig. 5.b, and this may be due to:
� Application granularity is greater on the LQT, because matrices of order 5000elements are used

(matrices of order 2000are used in the LIDI network). This implies more time to communicate,
but also more time to compute, and the computing time grows O(n3) compared to the O(n2)
growth in communication.
The LIDI network is 10 times faster than the LQT network which, among other facts, implies that
communication time is less important in the total execution time, and this implies that every
other overhead (operating system, library function, etc.) becomes more relevant and is not
avoided by the use of an optimized broadcast function.

 a) LQT Network (5000×5000) b) LIDI Network (2000×2000)

Figure 5. Algorithms Performance with UDP on LQT and LIDI.

4.- Conclusions and Further Work

Two algorithms (SeqMsg and OvrMsg), specifically designed for heterogeneous networks of
workstations are presented and their performance is verified by experimental work. Both follow the
guidelines for the parallelization of linear algebra operations: a) SPMD (Single Program-Multiple
Data) model, b) broadcast-based, and c) coarse granularity. It is shown that the algorithms do not
have acceptable performancedue to the overheads imposed by the PVM library, more specifically,
broadcast and multicast messages.

Having in mind the general guidelines to parallelize linear algebra operations, (in particular,
broadcast-based parallel applications), a UDP-based broadcast message between parallel application
processes is designed and implemented. This version of broadcast takes advantage of the Ethernet
broadcast and the experimental work shows a substantial improvement in performance. Also, it is
shown that most of the currently installed computers (or, at least, the PCs used) are capable of

lqt_07 +lqt_06 +lqt_02 +lqt_01 +lqt_03 +lqt_04

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
Opt

OverMsg(UDP)
SeqMsg(UDP)

lp14 +lp13 +lp12 +lp9 +lp8 +lp7 +lp6 +lp5

1

2

3

4

5

6

7

8
Opt

OverMsg(UDP)
SeqMsg(UDP)

overlapping communication with computing in at least a fraction of the processing time.
The proposed parallel matrix multiplication algorithms (SeqMsg and OvrMsg) are specially

designed to avoid performancepenalties in heterogeneous LAN used for parallel processing. While
SeqMsg can be used to have an accurate measure of data communication weight in the total task to
be solved, OvrMsg tends to take advantage of communication overlapped with local processing
facilit y in the computers where it is available.

Matrix multiplication is representative but it is not the only linear algebra operation that should
be parallelized. The initial extension of this wok is addressed to the other operations included in L3
BLAS. The next step is oriented towards the complete LAPACK library, in particular those having
the highest requirements in computing power. The next step is even broader, including numerical
computing not included in the linear algebra area.

Further work is necessary in the line of using more than one local areanetwork or more than
one cluster in order to solve one or more operations in parallel. It is clear that having two or more
LAN implies many new and not measured characteristics, such as the different transmission times
depending on the location (i.e. LAN) of the machines being communicated. Also, the UDP-based
broadcast should be intensively and extensively evaluated in the presence of multiple inter-LAN
(IP) routers, each with its own communication (possibly different) performance.

Acknowledgments

Prof. Alicia Jubert and Prof. Reinaldo Pis Diez, from the Laboratorio de Química Teórica,
CEQUINOR, Departamento deQuímica, Facultad de Ciencias Exactas, Universidad Nacional de La
Plata, provided the LQT LAN. Prof. Armando De Giusti, from the Laboratorio de Investigación y
Desarrollo en Informática, Facultad de Informática, Universidad Nacional de La Plata provided the
LIDI LAN as well as numerous suggestions. Prof. Antonio A. Quijano has also offered continuos
support in many ways to this work.

References

[1] Anderson E., Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum, S.
Hammarling, A. McKenney, D. Sorensen, LAPACK: A Portable Linear Algebra Library for High-
Performance Computers, Proceedings of Supercomputing '90, pages 1-10, IEEE Press, 1990.

[2] Bilmes J., K. Asanovic, C. Chin, J. Demmel, Optimizing matrix multiply using phipac: a
portable, high-performance, ansi c coding methodology, Proc. Int. Conf. on Supercomputing,
Vienna, Austria, July 1997, ACM SIGARC.

[3] Dongarra J., A. Geist, R. Manchek, V. Sunderam, Integrated pvm framework supports
heterogeneous network computing, Computers in Physics, (7)2, pp. 166-175, April 1993.

[4] Dongarra J., D. Walker, “Libraries for Linear Algebra”, in Sabot G. W. (Ed.), High Performance
Computing: Problem Solving with Parallel and Vector Architectures, Addison-Wesley Publishing
Company, Inc., pp. 93-134, 1995.

[5] Henning J. L., SPEC CPU2000: Measuring CPU Performance in the New Mill enium, Computer,
IEEE Computer Society, July 2000.

[6] Kågström B., P. Ling, C. Van Loan, “Portable High-Performance GEMM-based Level 3
BLAS”, R. F. Sincovec et al., Editor, Parallel Processing for Scientific Computing, Philadelphia,
1993, SIAM, pp. 339-346.

[7] Message Passing InterfaceForum, MPI: A Message Passing Interfacestandard, International
Journal of Supercomputer Applications, Volume 8 (3/4), 1994.

[8] Postel J., “User Datagram Protocol” , RFC 768, USC/Information Sciences Institute, Aug. 1980.

[9] Fernando Tinetti, Antonio Quijano, Armando De Giusti, Emilio Luque, “Heterogeneous
Networks of Workstations and the Parallel Matrix Multiplication” , Euro PVM/MPI 2001,Santorini
(Thera) Island, Greece, Apr 15-18, 2002.

[10] Zhang X., Y. Yan, “Modeling and characterizing parallel computing performance on
heterogeneous NOW”, Proceedings of the Seventh IEEE Symposium on Parallel and Distributed
Processing, (SPDP'95), IEEE Computer Society Press, San Antonio, Texas, October 1995,pp. 25-
34.

