
 

 

Cyclic Evolution 
A new strategy for improving controllers obtained by layered evolution 

 
 

A.C. Javier Olivera 
javier@sol.info.unlp.edu.ar 

Lic. Laura Lanzarini 
laural@lidi.info.unlp.edu.ar 

III-LIDI (Institute of Research in Computer Sciences LIDI) 

 

Facultad de Informática. Universidad Nacional de La Plata. 

La Plata, Argentina, 1900 
 
 

Abstract 
 
Complex control tasks may be solved by dividing them into a more specific and more easily 
handled subtasks hierarchy. Several authors have demonstrated that the incremental layered 
evolution paradigm allows obtaining controllers capable of solving this type of tasks.  

In this direction, different solutions combining Incremental Evolution with Evolving Neural 
Networks have been developed in order to provide an adaptive mechanism minimizing the previous 
knowledge necessary to obtain a good performance giving place to controllers made up of several 
networks.   

This paper is focused on the presentation of a new mechanism, called Cyclic Evolution, which 
allows improving controllers based on neural networks obtained through layered evolution. Its 
performance is based on continuing the cyclic improvement of each of the networks making up the 
controller within the whole domain of the problem.  

The proposed method of this paper has been used to solve the Keepaway game with successful 
results compared to other solutions recently proposed.  

Finally, some conclusions are included together with some future lines of work.  
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1. Introduction 
Several researches have demonstrated that certain tasks may be solved using layered evolution. 

By complex task we understand that whose solution is not direct but involves the learning of a 
strategy in order to achieve the expected objective. Problems such as prey capture and target 
reaching belong to this category [3].  

In addition, there exist situations which cannot be solved by a single agent. Such is the case of prey 
capture, in which the predator is slower than the prey, or the robot football. In both cases, beyond 
the differences among the agents, the team is the one which should carry out the strategy [5]. 

When the situation to solve is complex, it is hard to establish a priori the controller to be used, and 
here is where layered evolution becomes important. This process consists in dividing the original 
problem into simpler parts, called subtasks, thus allowing a gradual learning of the expected 
response.  

On the other hand, unless we count with the initial information necessary to solve each subtask, it is 
ideal to count with some mechanism allowing carrying out the adaptation as automatically as 
possible. In this direction, different solutions combining techniques of Incremental Evolution with 
Evolving Neural Networks have been developed with the aim of providing an adaptive mechanism 
minimizing the previous knowledge necessary to obtain an acceptable performance giving place to 
controllers made up of several networks [1]. Another aspect to take into account is the way of 
determining which neural network should be run at each time instant [9][10]; in this direction, there 
exist several alternatives ranging from the use of an ad-hoc design decision tree [4] to mechanisms 
automatically organizing the structure [2].  

 
2. Objective 
This research is based on the works previously carried out in the fields of layered evolution [6][8] 
through neuroevolving algorithms and proposes an alternative which allows obtaining 
improvements in the proposed solutions. 

The objective of this paper is to present a new adaptation strategy, called Cyclic Evolution, through 
which the collective behavior of the controllers obtained by traditional layered evolving methods 
can be improved. 

In particular, the results of the adaptation of this method for solving the KeepAway game will be 
shown. 

Section 3 describes the KeepAway game together with the way of obtaining an initial controller 
capable of solving it. Section 4 presents the algorithm used to implement the cyclic learning. 
Section 5 details some of the implementation aspects. Section 6 describes the results obtained and 
Section 7 presents the conclusions as well as some future lines of work.  
 

3. KeepAway 
Keepaway is a subtask of Robot Soccer game in which one team of agents, the keepers, attempts to 
maintain possession of the ball while the other, the takers, tries to get it. The game is carried out in a 
fixed, circular region and ends when the ball exits the bounding circle or when the taker grabs it [7].  

Keepaway is a challenging machine learning task for several reasons: 

• The state space is far too large to explore exhaustively; 
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• Each agent has only partial state information; 

• The action space is continuous; 

• Multiple teammates need to learn simultaneously; 

• The keepers are relatively large when compared to the playing area, which makes moving 
and positioning difficult around the ball; 

• The ball does not move much faster than the players, which prevents the keepers from 
being able to quickly make passes around the taker; 

• The keepers do not possess any abilities for handling the ball. They are modeled as simple 
cylinders, and lack any way to “grab” the ball and move with it. If they run into the ball, the 
ball will bounce away. 

 

For these reasons, the keepaway game requires complex behavior, ranging from the input data 
processing about each keeper, the teammate – the taker – and the ball, to the decision-making as to 
the best course of action decided upon at each moment of the game, and the acquisition of the 
ability needed to carry it out.  

In our implementation of keepaway, each robot receives noise-free sensory input describing  
the current state of the game. All these inputs are scaled to [-1, 1] and presented to each player in 
relative coordinates. 

Each robot is round, like the ball. A really simple physics engine is used to allow the ball to bounce 
in the players once it makes contact with them. As a result, the only way in which the players can 
“kick” the ball is to approach it in the precise direction and at the proper speed so that the ball 
bounces or is thrown in the right direction.  

Figure 1 shows the region in which the game is carried out. Here are three keepers, one of them has 
the ball and the taker is placed in the center of the field.  

 

 

 

 

 

 

 

 

 

 
Figure 1.  A game of keepaway 

 

3.1. Decomposition of the problem in simpler subtasks 

This game can be decomposed in four subtasks, each of which will be commanded by a 
feedforward neural network obtained by evolution and made up of three layers: input, hidden, and 
output. In all the cases, the hidden layer consists of two neurons: 



 

 

• Intercept: The goal of this network is to get the agent to the ball as quickly as possible. The 
network has four inputs: two for the ball’s current position and two for the ball’s current 
velocity. Two output neurons are used, which control the keeper’s heading and speed. 

• Pass: The pass network is designed to kick the ball away from the agent at a specified angle. 
The difficulty of the learning lies in that the angle with which the player kicks the ball 
depends on its relative position to it. Hence, in order to learn the proper behavior, the keeper 
should approach the ball in the proper way. The network has three inputs: two for the ball’s 
current position and one for the target angle. It makes use of two output neurons with the 
keeper’s direction and speed.  

• Pass Evaluate: This network allows the keeper deciding to which teammate to pass. It has 
six inputs: two for the position of the ball, two for the taker’s position, and two for the 
teammate whose potential as a receiver it is evaluating. It has an only output neuron which 
allows obtaining a real value between 0 and 1, indicating its confidence that a pass to the 
given teammate would succeed. 

• Get open: The objective of this network is that the agent should get to a good position 
where it can receive a pass. It has three inputs: two for the ball’s current position, two for the 
taker’s current position, and one indicating how close the agent is to the field’s bounding 
circle. It has two output neurons which control the agent’s heading and speed�

3.2. Layered Learning    

Once the subdivision of tasks is carried out, a dependence order is established among them, which 
indicates the training sequence. Figure 2 shows these dependencies for the KeepAway game. 

Each rectangle represents a subtask and the arrows indicate the dependencies among them. A 
subtask could be learnt once the rest of the subtasks on which it depends have been learnt as well.  

 

 

 

 

 

 

 

 

 
Figure 2.  A layered learning hierarchy for the keepaway task. Each  
box represents a layer and the arrows indicate dependencies between layers. 

 

This is called layered learning based on the dependence existing in the order of the learning of 
different subtasks. From another point of view, it could be regarded as a structure having an initial 
layer made up of those subtasks which do not need others to be learnt. Then, in the following layer, 
those subtasks that can be learnt from previous are placed, and so on.  

Notice that this learning does not show how to solve the complete problem, but the way of learning 
to carry out each of the expected subtasks.  
 
 

Get Open 

Pass Evaluate 

Pass 

Intercept 



 

 

Near Ball? 

Teammate #1 Safer? Passed To? 

3.3. Resolution of KeepAway 

Once the networks are obtained, a decision tree is in charge of selecting the network that should be 
used at each instant. In this way, a controller for a KeepAway player is obtained based on specific 
controllers for each subtask. Figure 3 shows the decision tree used by the keepers to solve the 
KeepAway game. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  A decision tree for controlling  keepers in the keepaway task. 
 

The behaviors specified in the tree-leaves are carried out by the neural networks proposed by this 
paper, as well as the node “Teammate #1 Safer?”. The remaining nodes have fixed behavior.  

In each turn, keepers make use of the decision tree to select the proper subcontroller for that 
moment. If a keeper is less far from a certain length of the ball, it tests which is the teammate that is 
more likely to successfully receive the pass, and attempts to kick in such direction. If it is beyond a 
certain distance, the keeper tries to get the ball if it is directed to it, or otherwise it tries to get open 
to a proper area for future receptions.   

It is worth to mention that the behavior of every node could be controlled by neural networks, 
instead of having a fixed, manually programmed behavior. The decision tree could also be replaced 
by a neural network capable of carrying out the same function, i.e. selecting the most adequate 
subcontroller at each instant. These options were not taken into account for time reasons, since the 
additional, required trainings for each new network would take much more time.  

Next, a new learning method – called cyclic evolution – is presented, whose implementation makes 
great use of the concepts previously mentioned and grounds this paper. The method has been 
created in order to improve the behavior of controllers obtained by other learning methods, layered 
learning, in particular.   
 
4. Cyclic Evolution 
 
This training mechanism proposes a strategy to improve the performance of neural networks 
controlling each subtask. These networks are initially obtained conventionally using layer 
evolution, each allowing the resolution of a part of the problem [4]. For this, they are trained in the 
resolution of simpler and more specific tasks. This allows them to be part of the resolution of other 
similar problems by just modifying the way they interact. 

The method is cyclic since it establishes an order in the adaptation of each subtask, allowing –after 
the last one is trained – the evolution of the first one to start once again, thus generating a 
continuing cycle. During subtask learning, the networks controlling the rest of the activities remain 
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still. This allows each network to improve its behavior and integration with a set of already trained 
networks.  
Let T = {t1,t2,t3,...,tn} be a set  of subtasks, C = {c1,c2,c3,...,cn} be a set of subcontrollers solving 
each subtask ti, and E() be a  function representing a ci subcontroller training; then, figure 4 
graphically represents the proposed strategy in this paper.  

 

 
 
 
 
 
 

Figure 4.  A brief graphic representation of cyclic evolution. Each oval represents 
the training of a subcontroller and the arrows making up the circle represent the 
order in which the trainings are carried out. 

 
It is important to highlight that all the trainings are carried out in the final domain, not existing an 
environment specially prepared for each task, as it is usually the case in the conventional methods. 
This allows the networks to keep their training within the domain in which they are finally solved. 
 
 
Cyclic-Evolution Method Algorithm  
    Begin { main program} 

Let C={c1,c2,c3,..,cn} be the initial subcontrollers set. 

Let O be the final objective. 

Let Z be the maximum cycle quantity to carry out. 

Let G be the maximum number of generations per cycle. 

Cycles = 0  {until now no cycle has been carried out } 

While (objective O is not accomplished) and (Cycles < Z) 

For each subcontroller ci, with i of 1 a n. 

         Evolve(C, i) 

End For 

Cycles = Cycles + 1; 

End While 

    End {main program} 

 

The Evolve Process is in charge of improving the performance of the i-th subcontroller. It has two 
parameters: C representing the controller made up of a set of neural networks, and i indicating the 
number of subcontroller to be evolved. This process returns the modified C controller since the i-th 
subcontroller has been replaced by an improved version.  

It is worth mentioning that in order to implement this process, any type of evolving algorithm can 
be used. In particular, this paper has made use of ESP (Enforced Subpopulations). For a clear 
description of this method, see [3]. 

Next, details of the algorithm used in this paper to implement this process are presented. 
 

 

 



 

 

    Process Evolve(C,i) 

    {Evolves the i-th C subcontroller using ESP} 
    begin 

       repeat  

    repeat 

� Build ci’ selecting at random a c/subpopulation hidden neuron. 

� Evaluate the fitness of the controller composed by  

{c1, c2, ...,ci’, ...,cn} in the domain of the complete problem. 

� Accumulate the fitness obtained in the ci hidden neurons  

     until (each neuron of each subpopulation has taken part in  

          a 10 KeepAway test average)  

Obtain the following neurochromosomes generation for each population 
through genetic operators. 

 until(reaching a number of generations) or  

       (until obtaining a ci’ optimum) 

      {replace ci by the best ci’ found up to the moment } 
       C = {c1, c2, ..., ci’,…, cn} 
    End { evolve process } 
 
 
5. Implementation Aspects 
In order to obtain each of the neural networks controlling the subtasks mentioned in section 2, the 
following considerations have been taken into account:  

��In all the cases, feedforward networks with a single hidden layer made up of two neurons 
have been used. The decision of using two neurons in the hidden layer is made by other 
authors [4]. They have tested other configurations, though the best results were obtained 
with just two neurons.  

��The training algorithm used in all the cases is ESP [3] with two subpopulations of 100 
individuals each, where the used stagnation factor for delta coding is 20.  

��For each of the networks, the training was carried out in 100 generations.  

For a detailed description of how the initial neural networks controlling each subtask were obtained, 
see [4]. 

Each of these networks builds a controller according to the tree shown in Figure 3, which will be 
replicated in each keeper. For its application, we have considered that:  

a) The ball is close to the keeper if it is located not farther than a D distance equivalent to the 
sum of 3 player’s diameters.  

b) The decision whether a keeper is receiver or not depends on the result of the pass network of 
the player keeping the ball. At the moment in which a keeper decides to pass the ball to a 
teammate, this last one “knows” he is the receiver. 

As regards the taker’s behavior, even though it is possible to use the neural network controlling the 
Intercept subtask, it was awarded with the capacity of getting to the ball at a determined speed. This 
allows effectively measuring the improvement in the keepers’ behavior.  

Independently of the method used to improve this initial method, all the measurements carried out 
have taken into account the following aspects: 



 

 

��They begin with the taker moving at some percentage of the keepers’ speed. As the 
evolution goes on, each time keepers complete 20 passes in an average of 3 KeepAway 
games, the taker’s speed is increased in 5%. This increase makes the controller, replicated in 
each keeper, adapt itself in order to overcome this difficulty.  

��The fitness of each controller made up by the neural network set is computed as the average 
number of completed passes during 3 runs of the KeepAway game.  

 
 
6. Results 
 
In order to determine the efficiency and efficacy of the Cyclic Evolution method, the following 
comparisons have been carried out during N generations:  
 

a) Layered Evolution 

This method has been used in [4] and allows obtain the four initial subnetworks trained 
independently in specific environments according to the dependency order indicated in 
figure 2. Only the last subtask is trained in the complete domain of the problem and evolved 
during the successive generations while the three first networks remain still.  

 

b) Concurrent layered evolution of the different networks making up the controller 

This is the method proposed by [4][8]. Here, all the networks composing the controller are 
allowed to evolve simultaneously. In order to keep the uniformity of the measuring process, 
ESP has been employed in the evolution of each network.  

The sole difference found in the paper presented in [4] lies in that the taker is not directly 
controlled by the intercept neural network, but has the capacity of getting directly to the ball. 
This is justified in several observations in which the keepers’ controller receives a high 
fitness, not due to its good performance but for the lack of the taker’s controller training. 
This is what causes the difference in the results obtained in this paper and those presented in 
[4] 

c) Cyclic Evolution with different quantity of cycles carried out in N generations 

The Cyclic Evolution method has been measured for different quantities of cycles. Given a 
number K of cycles to be applied in the N generations, each of the four neural networks 
controlling a subtask has been trained during N/(4*K) generations respecting the 
dependency order indicated in figure 2. 

Figure 5 shows the average of the results obtained for 100 generations (N=100) and K=1,3 and 5 
during 10 runs of the KeepAway game. It is important to mention that 100 generations for each 
method have been used for the coherence of the comparisons. In the case of cyclic evolution, apart 
from the fact that cycles increase, generations remain constant; all of which means that there exist 
less generations per cycle as the cycles increase.  

This allows clearly showing that when using the same quantity of generations, differences come to 
light as the cycles are varied.  

As can be observed in figure 5, the layered evolution method, described in a) and used for obtaining 
the initial controller of the remaining methods, is not capable of improving itself from generation 
40. Even though this result is influenced by the behavior of the first three networks, it does not 



 

 

count with the capacity of the remaining methods to properly evolve in the solution of the general 
problem.  

From figure 5 we can also see that the Cyclic Evolution method provides better results than the 
Concurrent Layered Evolution method. Notice that this relation is independent of the quantity of 
used cycles. Moreover, the efficiency of the controller improves as the quantity of cycles increases.  

 

 

 
Figure 5. The graphic shows the improvements obtained in the behavior of the taker’s controllers through the 
different evolving methods. As generations advances, these improvements allow overcoming certain levels of 
difficulty. 
 

Tests carried out with 150 and 200 generations show that this relation is kept. Only from the 250 
generations, the differences between the Cyclic Evolution and the Concurrent Layered Evolution 
start to be considerably reduced.  

 
 
7. Conclusions and Future Work 
  

A new strategy, called Cyclic Evolution, has been presented. It allows improving the behavior of 
the controllers obtained through Layered Evolution with really successful results in the resolution of 
the KeepAway game.  

As it can be drawn from the previously mentioned differences, the improvements in the controller 
efficiency introduced by the Cyclic Evolution – even though they vary with the size and quantity of 
cycles used- outperform those provided by Concurrent Layered Evolution allowing obtaining good 
controllers in fewer generations.  



 

 

At present, works are being developed on the definition of a mechanism allowing identifying the 
efficiency degree of each network in the solution of a subtask. This would allow emphasizing the 
training of the most inefficient networks, reducing the running time of the cyclic training.  

At a further stage, we expect to apply the results of this research into more complex domains, such 
as the robot football game, an environment into which a great part of what has been learnt as 
regards the obtaining of KeepAway controllers could be applied.  
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