
About the Use of Time on Argumentative Systems∗

Mar ı́a Laura Cobo Guillermo R. Simari

Department of Computer Science and Engineering – Universidad Nacional del Sur
Laboratory of investigation and Development on Artificial Intelligence (L.I.D.I.A)

Institute of Computer Science and Engineering
Av. Alem 1253 – B8000CPB Bahı́a Blanca,ARGENTINA

Email: [mlc,grs]@cs.uns.edu.ar

Key Words: Knowledge representation, defeasible reasoning, argumentative systems, temporal rea-
soning

Abstract

There are many areas in Computer Science where time plays an important role. Artificial In-
telligence is one of them. In this particular areaDefeasible Logic Programming(DeLP) was devel-
oped to cope with incomplete and potentially inconsistent information. This formalism combines
results from Logic Programming and Defeasible Argumentation. DeLP in particular provides the
possibility of representing defeasible information in a declarative way and a defeasible argumen-
tation inference mechanism to warrant conclusions. Although this formalism and Defeasible logic
programming in general are very useful has left apart an issue that is crucial on several kind of
problems, namelytime. There are also many developments that face temporal reasoning, in par-
ticular Event Calculus, but non of them consider defeasible information or what to do if we have
incomplete or not completely reliable information. In this work we try to attempt an exploration
of a possible combination of these two reasoning areas, temporal and defeasible.

1 Introduction

Time plays a fundamental role in computer science, it is critical in real-time systems, useful in distrib-
uted systems and assignment of resources, very helpful in databases, and also in specifying properties
of programs and proof of correctness. Temporal references are needed on artificial intelligence par-
ticularly in any complex deductive process. In the last decades a lot of formalisms has been proposed
to provide temporal reasoning capabilities, some of them are developed for particular issues, such as
dealing with events and their consequences, planning activities for agents, etc.

Argumentation systems [CML00] provide a way to formalize and implement defeasible reasoning,
allowing reasoning about a changing world where available information is usually incomplete or not
completely reliable. They also give us abilities to change conclusions according with the information
we count on. Thus the conclusions obtained by the system arejustifiedby argumentssupporting their
consideration. Theseargumentscan be seen as a ‘defeasible proofs’ for their respective conclusions.

These two reasoning areas were in general analyzed separately, except for the investigations of
Augusto [AS01]. Although there are several places where both aspects are needed, as for example

∗VI Workshop de Agentes y Sistemas Inteligentes, XI Congreso Argentino de Ciencia de la Computacin, Concordia -
Entre Ŕıos.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


e-commerce [PC01, KB01] and aspects of semantic web [SCZ04, BC02]. In this paper we are going
to set an initial bound between them, in particular through a particular argumentative system, DeLP
[GS04], and a well known temporal logic language, Event Calculus [KS86].

In general, an argumentative system counts with five elements, at least in the abstract layer:

1. Underlying logical language:in this particular case we need a temporal-logic language, we
chooseEvent Calculus.

2. Argument definition

3. Conflict and rebuttal among arguments

4. Argument evaluation

5. Notion of defeasible logic consequence:again in this case it must bedefeasible temporal-logic
consequence

In many cases, the five above mentioned elements are not explicitly defined because they are clearly
not independent. In fact dependencies among them allow the identification of four fundamental layers
[PV98] in argumentative systems.

• Logical Layer: It comprises language definition, inference rules and argument construction.

• Dialectic Layer: This layer both involves the definition of conflict between arguments and
formalizes the way of solving those possible conflicts.

• Procedural Layer:Defines arguments interchange.

• Strategic Layer:Present heuristics for argument selection during a debate based on maximizing
success possibilities.

In this work we deal with logical and dialectic layers in order to obtain the basis for a temporal
argumentative system. Besides we deal with the first three elements, i.e. underlying logical language,
argument definition and conflict-rebuttal among arguments.

The rest of the paper is structured as follows. Section 2 summarizesEvent Calculuslanguage.
Next, section 3 reviews the main aspects of DeLP. Section 4 introduces an analysis of the aspects to
reach a temporal defeasible system. Finally section 5 concludes the paper.

2 Event Calculus: a new underlying logical language

The selection of representation language is very important because there is a close relationship be-
tween arguments and representation language. In this paper we need to count with a language that
can express and deal with time and change notions. In this first approximation, we are going to use
Event Calculus. Although there are a wide set of dialects of this calculus [Sha90, Mue02, MS04], in
this case we are going to use a simplified version of it.

Event Calculuswas introduced in the eighties by Kowalski and Sergot as a logic programming for-
malism to represent events and their effects [KS86]. Many dialects have been developed since then,
e.g. [Sha90, Mue02, MS04]. In the original language events initiate time periods during which prop-
erties hold. Since a property or “fluent” is initiated it holds, unless it is terminated by the occurrence
of an event. In Kowalski and Sergot version, a discrete time ontology was chosen to indicate changes.



LOGICAL

MACHINERY

Initially, Happens and

temporal ordering formulae

(What happens when)

Initiates and Terminates formulae

(What actions do)

HoldsAt formulae

(What is true when)

HHHHHj

©©©©©*
-

Figure 1: How Event Calculus functions

A particular extension of the language is required in order to represent continuous characteristics.
Most known extensions of this calculus were developed by Shanahan [Sha90].

Event Calculus(EC) functions as shown in figure 1. In general it is a logical mechanism capable
of making inferences to determinewhat is true whenfrom what happens when(knowledge about the
state of the world) andwhat actions do(effect of an action on the world). The logical machinery
includes arithmetic to set a relation between time references. The kind of arithmetic involved depends
on the selected temporal ontology. The basic ontology of the calculus areactionsor events, fluent
and time points. A fluent is anything whose value is subject to change over time. It could be a
quantity such as “temperature in a room” or “amount of liquid in a bottle” whose numerical value is
subject to variation, or a proposition such as “it is sunny” whose truth value change from time to time.
The predicate deals basically with propositional fluents although the other ones are allowed in some
dialects. Another important issue in the choice of the ontology is the choice of the predicates. The
main predicates used on a simple version ofEvent Calculus, SEC, are:

happens(E, T ): EventE takes place on time momentT .
holdsAt(F, T ): FluentF holds at time momentT .

initiates(E,F, T ): FluentF starts to hold after actionE at time momentT ,
and is not freed onT + 1.

terminates(E,F, T ): FluentF ceases to hold after actionE at time momentT .
releases(E,F, T ): FluentF is not subject to inertia after actionE at

time momentT
trajectory(F1, T1, F2, T2): If fluent F1 is initiated by an even that takes place on

T1, andT2 is greater than zero, then fluent
F2 holds atT1 + T2.

antiTrajectory(F1, T1, F2, T2): If F1 is finished by an event that takes place on
T1, andT2 is greater than zero, thenF2 holds onT1 + T2.

clipped(T1, F, T2): FluentF is terminated between timesT1 andT2.
initiallyP (F ): FluentF holds from time zero.

Calculus complete axiomatization depends on time ontology. For example if we consider a discrete
ontology, we can use ontology presented by Mueller [Mue02] or more completely from Miller and
Shanahan research [MS04]. The idea of using a discrete version came along to make easy reasoning
problems resolution through satisfaction. Axioms make a bound between predicates, which is ex-
tremely important at reasoning time. For the sake of example we can consider the following axioms



that are part of SEC axiomatization.

initially(F ) ← initiallyP (F ),
¬clipped(0, F, T )

holdsAt(F, T2) ← happens(A, T1),
initiates(A,F, T1), T1 < T2,
¬clipped(T1, F, T2)

clipped(T1, F, T2) ← ∃A, T [Happens(A, T ), T1 < T < T2, terminates(A,F, T2)]

In section 4.1 we present some formulas ofEvent Calculusto make an illustration of its expressive
power.

3 Reviewing aspects of DeLP

DeLP [GS04] is a language developed in term of three disjoint sets: a set offacts, a set ofstrict rules
and finally one ofdefeasible rules, where

• A fact is a literal, i.e. a ground atom, o a negated ground atom.

• A strict rule is an order pair, denoted as “Head ← Body”, whose first member is a literal and
the second one,Body, es finite set of literals. A strict rule can also be written as:

L0 ← L1, . . . , Ln(n > 0

whereL0 is rule’sHead and eachLi, i ≥ 0 is a literal.

• A defeasible ruleis also an order pair, noted asL0 –≺L1, . . . , Ln. AgainLi is a literal andi ≥ 0

Notice that strict negation may affect any literal, in particular may affectL0, i.e. any rulesHead.
At simple sight the only difference between strict and defeasible rules is the way they are denoted,
although their meaning is clearly different. In the first kind there are no doubts about the conclusion
expressed on the rule, while in the other ones we only assure that we have a “good feeling” about the
conclusion but we can not be completely sure about it.

DEFINITION 1 from [GS04]
A Defeasible Logic Program,P, is a possible infinite set of facts, strict rules and defeasible rules.

In a programP, we will distinguish the subsetΠ of facts and rules, and the subset∆ of defeasible
rules.

2

Strict and defeasible rules are ground. However we are going to use “schematic rules”, i.e. rules with
variables. This rules can be grounded through predicateGround(R) that represents the set of all
ground instances of rules in setR. In DeLP there are four possible answers for a query:YES , NO,
UNDECIDEDandUNKNOWN. We refer the interested reader to [GS04].

To keep going on with the basis of DeLP system we still require some definitions asDefeasible
derivationand of courseArgument Structure.

DEFINITION 2 Defeasible Derivation
A defeasible derivation for a ground literal,l, is a finite sequence of ground literals, each literal is

in the sequence because:



1. Literal l is a fact in setΠ of the program.

2. There is a rule (strict or defeasible) in the program, whose head is literall and all the literals in
theBodyappears in the sequence before.

2

Now we can define argument’s notion:

DEFINITION 3 Argument Structure
Let l be a literal andP = (Π, ∆) a DeLP program. We say that〈A, l〉 is an argument structure for

l, if A is a set of defeasible rules for∆, such that:

1. there is a defeasible derivation forl from Π ∪ A,

2. the setΠ ∪ A is non-contradictory, and

3. A is minimal (there is not a subset ofA such that satisfies the previous conditions).

2

EXAMPLE 1 extracted from [GS04]
Consider the following DeLP programP = (Π, ∆) where

Π =





bird(X) ← chicken(X)
bird(X) ← penguin(X)
¬flies(X) ← penguin(X)
chicken(tina)
penguin(tweety)
scared(tina)





∆ =





flies(X) –≺bird(X)
¬flies(X) –≺chicken(X)
flies(X) –≺chicken(X), scared(X)
nest in trees –≺flies(X)





The sequence
{chicken(tina), bird(tina), f lies(tina)}

is a defeasible derivation forflies(tina), obtained for the following set of rules:

{bird(tina) ← chicken(tina), f lies(tina) –≺bird(tina)}
Note that there is also a derivation for¬flies(tina) from the sequence

chicken(tina),¬flies(tina) obtained from this other set of rules:

¬flies(tina) –≺chicken(tina)

Then there is an argument〈A1, f lies(tina)〉 and there is an argument〈A2,¬flies(tina)〉 where:

A1 = {flies(tina) –≺bird(tina)}
A1 = {¬flies(tina) –≺chicken(tina)}

•



4 Towards a temporal version of DeLP

To add time we need to change the basic language ofDeLP that implies a change in the three sets
previously presented. On the temporal version, literals are going to be predicates from SEC. The
others definitions presented are analogous. For that purpose we extend argument notion like this:

DEFINITION 4 Temporal Argument Structure
Let lit = (l, T ) be a temporal literal andP = (Π, ∆) a DeLP program. We say thatAT = 〈A, lit〉

is an argument structure forlit, if A is a set of defeasible rules for∆, such that verifies definition 3
2

Now lets see some application examples.

4.1 Yale Shooting Problemexample

TheYale Shooting Problem, YSPwas introduced by Steve Hanks and Drew McDermott [HD87]. It
was presented to illustrate theframe problem, i.e., the problem of knowing what remains unchanged
after an event occurrence, and is largely known in temporal literature. It is about a person who at any
point in time is either alive or dead, and about a gun that can be either loaded or unloaded. The gun
becomes loaded any time a load action is executed. The person becomes dead any time he is shot with
a loaded gun. Assume that the person is initially alive. The gun is loaded, then he waits for a while,
and then he is shot with the gun. What can we say, given these assumptions, about the values of fluent
involved – alive and loaded – at various points in time?

The description of the domain above does not say whether the load action is considered executable
when the gun is already loaded. Let’s decide that the answer is yes: when the gun is loaded, that action
can be executed but will have no effect.

Note that the assumptions of the Yale Shooting Problem do not determine the initial state com-
pletely: the fluent loaded can be either true or false in the initial state. But once the initial value of
this fluent is selected, all future changes in the values of fluent are uniquely defined.

The problem then has the following aspects involved:
constants:

• loaded, alive: inertial fluent;

• load, shoot: exogenous actions.

behavior:
• load causes loaded. • shoot causes not alive.
• shoot causes not loaded and • shoot is nonexecutable if not loaded.
• load-shoot are nonexecutable together

In the original problem the after sequenceload − shoot the person involved in the scenario will
be dead. InEvent Calculuspart of available knowledge can be described like this:

inititates(load, loaded, T )
teminates(shoot, loaded, T )
initiates(shoot, dead.T ) ← holdsAt(loaded, T )

terminates(shoot, alive, T ) ← holdsAt(loaded, T )

initiallyP (alive)
happens(load, 0)

happens(shoot, 2)



On the other hand, legend has it that assassins have been known to use ice instead of lead in their
bullets – it’s claimed that after a successful hit, the ice bullet melts without a trace. Are ice bullets
possible? If we believe it is possible then we need to rearrange our knowledge. This knowledge must
deal with the fact that a person may be alive after a shooting because the ice bullet was melted before
shooting, or not in case the bullet was still frozen at shooting time. This kind of knowledge seems to
be defeasible, because at simple sight its impossible to determine if a person, let us call herJoe, is
alive o not after shooting.

In this new scenario another fluents are needed

• frozen: determines if ice-bullet is still frozen or not. Is an inertial fluent except something in the
environment changes its condition.

• lowTemperature: shows if environment temperature is low enough to keep the bullet frozen. In
a way is the fluent that may change the inertial condition, o not, offrozenfluent.

and off course now a shoot not always causes a change in alive fluent. We are going to present a
formalization of this new scenario, extension of originalYSPin SEC enriched with defeasible rules.

Let consider the following programP2 = (Π, ∆), where:

Π =





initiallyP (alive)
happens(load, 0)
happens(shoot, 2)

initiates(load, loaded, T )
terminates(shoot, loaded, T )

¬holdsAt(lowTemperature, 0)
holdsAt(lowTemperature, 1)
holdsAt(frozen, 0)
holdsAt(alive, T ) ← holdsAt(alive, T1),¬happens(shoot, T1), T = T1 + 1





∆ =





holdsAt(alive, T ) –≺ happens(load, T1),¬holdsAt(lowTemperature, T1),
T > T1

¬holdsAt(alive, T ) –≺ holdsAt(alive, T1), holdsAt(loaded, T1),
holdsAt(frozen, T ), happens(shoot, T1), T = T1 + 1

holdsAt(alive, T ) –≺ holdsAt(alive, T1), holdsAt(loaded, T1),
¬holdsAt(frozen, T ), happens(shoot, T1), T = T1 + 1

holdsAt(frozen, T ) –≺ holdsAt(lowTemperature, T1),
holdsAt(frozen, T1),
T = T1 + 1

¬holdsAt(frozen, T ) –≺ ¬holdsAt(lowTemperature, T1), T = T1 + 1
holdsAt(frozen, T ) –≺ holdsAt(frozen, T1),

T = T1 + 1
¬holdsAt(frozen, T ) –≺ ¬holdsAt(frozen, T1),

T = T1 + 1





Consider the following sequence

holdsAt(frozen, 0), holdsAt(frozen, 1)



it is a defeasible derivation for the literalholdsAt(frozen, 1), obtained from the set of rules

P1 =
{

holdsAt(frozen, 1) –≺holdsAt(frozen, 0), 1 = 0 + 1
}

1

At the same time, from program above we have the sequence

holdsAt(frozen, 0),¬holdsAt(lowTemperature, 0),¬holdsAt(frozen, 1)

This sequence is obtained from this set of rules:

P2 =
{ ¬holdsAt(frozen, 1) –≺¬holdsAt(lowTemperature, 0), 1 = 0 + 1

}

So we have the following argument:

〈{holdsAt(frozen, 1) –≺holdsAt(frozen, 0), 1 = 0 + 1} , holdsAt(frozen, 1)〉
〈{¬holdsAt(frozen, 1) –≺¬holdsAt(lowTempreature, 0), 1 = 0 + 1} ,¬holdsAt(frozen, 1)〉

So we have set of rules that assure opposite values for the same fluent in the same moment of time.
The preference of one of them changes the value of another important fluent, the one that sets ifJoe
is alive or not after a shooting in, let say, moment 2.

Then if we consider fluent holdsAt(alive, 2) it may be considered argument
A2

1 = 〈Arg1, holdsAt(alive, 2)〉 whereArg1 is the following set of defeasible rules:

Arg1 =





holdsAt(alive, 2) –≺ holdsAt(alive, 1),
holdsAt(loaded, 1),
¬holdsAt(frozen, 2),
happens(shoot, 1), 2 = 1 + 1

¬holdsAt(frozen, 2) –≺ ¬holdsAt(frozen, 1), 2 = 1 + 1
¬holdsAt(frozen, 1) –≺ ¬holdsAt(frozen, 0), 1 = 0 + 1
¬holdsAt(frozen, 0) –≺ ¬holdsAt(lowTemperature, 0), 1 = 0 + 1





andA2
2 = 〈Arg2,¬holdsAt(alive, 2)〉 supporting for¬holdsAt(alive, 2) o against the previous one:

Arg2 =





¬holdsAt(alive, 2) –≺ holdsAt(alive, 1),
holdsAt(loaded, 1),
holdsAt(frozen, 2),
happens(shoot, 1), 2 = 1 + 1

holdsAt(frozen, 2) –≺ holdsAt(lowTemperature, 1),
holdsAt(frozen, 1), 2 = 1 + 1

¬holdsAt(frozen, 1) –≺ holdsAt(frozen, 0), 1 = 0 + 1





4.2 Amphibians Breathing example

We have an scenario with incomplete information and we can not determine with accuracy what kind
of breathing an amphibian has at certain moment. In particular if we are trying to infer this from the
fact that the animal is amphibian and growing conditions, for example we may know when birth took
place, or behavioral stuff such as if they swim only or if they also jump. Other aspects that can be
considered is if metamorphosis of the animal has taken place or not. A good reason to believe that
metamorphosis has happened is when an animal has lost its tail unless, we are speaking about some
particular amphibian species. In the examplematt is an amphibian that never loses his tail because,
for example, he could be an iguana.

We consider the following fluent and actions:

1Note that this is a grounded version of the ruleholdsAt(frozen, T ) –≺holdsAt(frozen, T1), T = T1 + 1



• frog(X), amphibian(X), hastail(X): inertial fluent.

• branchial(X), pulmonary(X): inertial fluent.

• swim(X), jump(X): exogenous actions.

• metamorphosis(X): action.

The programm is represented through the usual sets, so this is the available information:

Π =





initiatesP (¬transformed(X))
initiates(metamorphosis(X), transformed(X), T )

terminates(metamorphosis(X),¬transformed(X), T )

holdsAt(frog(renee), T )
holdsAt(amphibian(matt), T )

holdsAt(has tail(matt), T )

happens(swim(renee), 0)
happens(jump(renee), 2)
happens(swim(renee), 1)

happens(born(matt), 0)

holdsAt(amphibian(X), T ) ← holdsAt(frog(X), T )





∆ =





holdsAt(branquial(X), T ) –≺ holdsAt(amphibian(X), T ),
¬happens(metamorphosis(X), T1), T1 < T

holdsAt(pulmonar(X), T ) –≺ holdsAt(amphibian(X), T )
holdsAt(pulmonar(X), T ) –≺ holdsAt(amphibian(X), T ),

happens(jump(X), T )
holdsAt(branquial(X), T ) –≺ holdsAt(amphibian(X), T ),

happens(swim(X), T ),
¬happens(jump(X), T1), T1 < T

happens(metamorphosis(X), T ) –≺ ¬happens(metamorphosis(X), T1), T1 < T,
happens(swim(X), T1),
happens(jump(X), T2),
T1 < T2, T = T2 − 1

happens(metamorphosis(X), T ) –≺ ¬happens(metamorphosis(X), T1),
T1 < T,¬holdsAt(has tail(X), T )

happens(metamorphosis(X), T ) –≺ holdsAt(born(X), T1), T1 = T + 3
¬happens(metamorphosis(X), T ) –≺ holdsAt(has tail(X), T )





Let consider what kind of breathing hasmatt at time point 3. Lets find the argument for fluent
holdsAt(pulmonar(matt), 3) and one forholdsAt(branquial(renee), 1). ArgumentA3

3 is formed
like this:

〈{holdsAt(pulmonar(matt), 3) –≺holdsAt(amphibian(matt), 3)} , holdsAt(pulmonar(matt), 3)〉



A1
4 = 〈Arg4, holdsAt(branquial(renee), 1)〉

where

Arg4 =





holdsAt(branquial(renee), 1) –≺ holdsAt(amphibian(renee), 1),
happens(swim(renee), 1),
¬happens(jump(renee), 0),
0 < 1





At the same time if we consider ifmatt suffers metamorphosis or not we can reach to a situation
like this one:

• we know thatmatt born on moment0 so by defeasible rule

happens(metamorphosis(matt), 3) –≺holdsAt(born(matt), 0), 3 = 0 + 3

we can conclude thatmatt suffers metamorphosis at time 3.

• we also know thatmatt has a tail always, so by defeasible rule

¬happens(metamorphosis(matt), 4) –≺holdsAt(has tail(matt), 4)

Then, we have the arguments shown on table 4.2.

A3
5 = 〈Arg5, holdsAt(transformed(matt), 3)〉

A4
6 = 〈Arg6,¬holdsAt(transformed(matt), 4)〉

Arg5 =

{
happens(metamorphosis(matt), 3) –≺ holdsAt(born(matt), 0),

3 = 0 + 3

}

Arg6 = {¬happens(metamorphosis(matt), 4) –≺holdsAt(has tail(matt), 4)}

4.3 Arguments Disagreement

In DeLP answers to queries are supported by arguments. Since arguments are built over defeasible
information it may have different arguments some supportive for our query and some not. So we need
a way of comparing arguments. Basically this comparing process is based ondisagreementnotion.

DEFINITION 5 (Disagreement)
Two literalsa andb disagreein a programP = (Π, ∆) if and only if Π ∪ {a, b} is contradictory.

2
In general in a non temporal environmentdisagreementis enough to determine if there is a conflict

between arguments, there will be arguments or sub-arguments that are indisagreement. Recall〈B, q〉
is a sub-argument of argument〈A, p〉 such asB is a subset ofA.

When we consider adding temporal information to the abovedisagreementdefinition another kind
of conflicts may appear. For example if we consider the problem presented on section 4.1, a conflict
exists between an argument supporting¬holdsAt(alive, 2) and one supportingholdsAt(alive, 3).
There is no disagreement in terms of definition 6 although there is a conflict at knowledge level that
must be taken in consideration. The main problem here is that this is not a generalizable situation,
because there are other scenarios or fluents where this change do not generate conflicts. In the other



example a similar situation takes place. Specially if we take a look to argumentsA3
5 andA4

6 in ex-
ample 4.2 whereA3

5 says thatmatt suffers metamorphosis at time point 3 whileA4
6 expresses that he

still do not suffer it at time 4. Here there is a clear disagreement between arguments, but the disagree-
ment is temporal because it is due to temporal information involved. In this kind of disagreement,
although is not explicitly stated, on some moment of time we have conventional disagreement. In the
example presented, in one line of reasoning metamorphosis took place andmatt is transformed. This
transformation is a permanent change. In the other one metamorphosis did not happen so at moment
3 matt was not transformed. Looking closer to both argument a conflict or disagreement take place
at moment 4.

Formalizing this idea we reach to the following definition:

DEFINITION 6 (Temporal Disagreement)
Two argumentsAt1

1 = 〈A1, (l1, t1))〉, At2
2 = 〈A1, (l2, t2))〉 are intemporal disagreementof there

are time pointst1, t2 such thatAt1
1 ,At2

2 are in disagreement. Meaning that

Π ∪ {(l1, t1), (l2, t2)} `⊥

2

Considering again the program presented inamphibians breathing example, see section 4.2, and ar-
guments presented on table 4.2 we have that:

¬holdsAt(trasnformed(matt), 4) ∈ Π ∪
{

holdsAt(trasnformed(matt), 3),
¬holdsAt(trasnformed(matt), 4)

}

but we also have that

holdsAt(trasnformed(matt), 4) ∈ Π ∪
{

holdsAt(trasnformed(matt), 3),
¬holdsAt(trasnformed(matt), 4)

}

5 Conclusions and Future Work

We presented a temporal argument notion through a combination ofEvent Calculusand DeLP, as a
way to gain temporal defeasibility systems. The idea is to complement DeLP with other interesting
abilities such as temporal capabilities. We presented a proposal for temporal defeasibility through
two examples, one widely boarded on temporal literature and a new one. They show situations where
defeasibility is involved and also the argument’s notion. At the same time we provide a definition
for temporal disagreementsince there are circumstances where traditional definition of disagreement
is not expressive enough to find any conflicting situation. As a matter of fact if we only add the
conclusion of the argument, as DeLP definition does, the conflict can be disregarded.

This is a first approximation that still requires work, we need to improve some definitions, and
determine with accuracy when one temporal argument counter-argues another one, and how to make
a choice between arguments. We also need to complete definition of the other layers in order to have
a complete temporal argumentation system.

Another interesting way of following this line of investigation might be the consideration of other
temporal languages, such assituation calculus, a underlying logical language. Research in these
directions is currently being pursued.



References

[AS01] Juan Carlos Augusto and Guillermo R. Simari. Temporal defeasible reasoning.Knowledge
and Information Systems, 3:287–318, 2001.

[BC02] Sabin C. Buraga and Gabriel Ciobanu. A rdf-based model for expressing spatio-temporal
relations between web sites. InWISE ’02: Proceedings of the 3rd International Conference
on Web Information Systems Engineering, pages 355–361, Washington, DC, USA, 2002.
IEEE Computer Society.

[CML00] Carlos I. Ches̃nevar, Ana G. Maguitman, and Ron Loui. Logical models of argument.ACM
Computing Surveys, 4(32):337–383, 2000.

[GS04] Alejandro J. Garcia and Guillermo R. Simari. Defeasible logic programming: an argumen-
tative approach.TPL, 4:95–138, 2004.

[HD87] Steve Hanks and Drew Mc Dermott. Nonmonotonic logic and temporal projection.Artifi-
cial Intelligence, 33:379–412, 1987.

[KB01] Ryszard Kowalczyk and Van Bui. On constraint-based reasoning in e-negotiation agents.
In Agent-Mediated Electronic Commerce III, Current Issues in Agent-Based Electronic
Commerce Systems (includes revised papers from AMEC 2000 Workshop), pages 31–46,
London, UK, 2001. Springer-Verlag.

[KS86] Robert Kowalski and Marek Sergot. A logic-based calulus of events.New Generation
Computing, 4(1):67–895, 1986.

[MS04] R. Miller and Murray Shannahan. Some alternative formulations of the event calculus.
Computational Logic: Logic Programming and Beyond, 14:703–730, 2004.

[Mue02] Erik T. Mueller. Event calculus reasoning through satisfiability.Journal of Logic and
Computation, pages 452–490, 2002.

[PC01] Matteo Pradella and Marco Colombetti. A formal description of a practical agent for e-
commerce. InAgent-Mediated Electronic Commerce III, Current Issues in Agent-Based
Electronic Commerce Systems (includes revised papers from AMEC 2000 Workshop),
pages 84–95, London, UK, 2001. Springer-Verlag.

[PV98] Henry Prakken and Gerard Vreeswijk. Logics for defeasible argumentation. Kluwer Aca-
demic Publishers, 1998.

[SCZ04] Monika Solanki, Antonio Cau, and Hussein Zedan. Augmenting semantic web service
descriptions with compositional specification. InWWW ’04: Proceedings of the 13th in-
ternational conference on World Wide Web, pages 544–552, New York, NY, USA, 2004.
ACM Press.

[Sha90] Murray Shanahan. Representing continuous change in the event calculus. InProceedings
ECAI 90, pages 598–603, 1990.


