

An Algorithm to deal with due date violation

in a Multi-objective Scheduling problem

Francisco Ibáñez, Daniel Díaz Araya, Germán Zavalla, Raymundo Forradellas
LISI – Laboratorio Integrado de Sistemas Inteligentes

IdeI - Instituto de Informática - Universidad Nacional de San Juan
Cereseto y Meglioli – 5400 San Juan – Argentina

Tel: +54 264 426 47 21 - Fax: +54 264 426 51 01
{fibanez, ddiaz, kike}@iinfo.unsj.edu.ar

Abstract

This paper includes part of the strategies used to solve a scheduling problem developed for
a company that produces flexible packaging, presented in quite a general form though. In
this problem it is necessary to schedule several jobs that involve four process and for each
one of them there is a group of machines available (of similar characteristics). Each activity
is performed on just one machine. Besides, for our application, the scheduling must try to
verify certain conditions. For each process (and consequently for all the activities that
performs this process) there is a list of attributes.

The problem is not only to assign each activity to a starting time and to a specific machine,
but also to try to verify conditions that depend on the values of the attributes of the
activities. Moreover, there are criteria to choose a particular machine.

An approach to solve this problem was presented first in (Ibañez et al., 2001). As
mentioned there, some jobs could not be fulfilled to meet their due dates. An approach to
decrease the quantity of due dates violations was presented in (Ibañez et al., 2002). The
algorithm presented in (Ibañez et al., 2001) is entirely dedicated to verify as many
conditions as possible disregarding due date violations. The algorithm shown in (Ibañez et
al., 2002) was focussed to reduce the number of due date violations by paying the price of
decreasing the fulfilment of conditions. Roughly speaking, the first approach favours the
company whereas the second one is more convenient for the customers.

The present work includes an algorithm, which allows us to assign weights to set an
appropriate trade of between due date violation reduction and fulfillment of conditions.

Key words: Scheduling, Multi-objective Combinatorial Problems, Constraints Satisfaction

CACIC 2003 - RedUNCI 518

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction
This paper includes part of the strategies used to solve a scheduling problem developed for
a company that produces flexible packaging. The application has been implemented in C++,
employing routines of Ilog (Ilog, 1999). In this problem it is necessary to schedule several
jobs. These jobs involve four process: Printing, Laminating, Cutting and Packing and for
each one of them there is a group of machines available (of similar characteristics).

Each job is described by a list of four activities of given processing times, that perform the
mentioned processes in that order. Each activity is performed on just one machine. For
example, if a represents a printing activity and {M1, ...,Mk} represent the set of machines
capable of executing the printing process, a will be performed by a member of the set {M1,
...,Mk}. For our application the scheduling must also try to verify certain conditions.

For each process (and for all the activities that perform this process) there is a list of
attributes. For the printing process, the attributes are: ink line, duration of the (printing)
process, etc. These attributes are also associated to the machines but their values depend on
the time. For each printing machine M1, ...,Mk, the values of the attributes at time t are
defined as equal to the values of the attributes of the activity that is being performed at time
t. If no activity is being performed at t, these values are set to those of the last activity
performed before t. For each attribute, there is a condition that must try to satisfy the
schedules of the machines M1, ...,Mk.

Given a machine M and an activity a, each condition associated to M is evaluated at time t,
as a function of the value of the corresponding attribute of M at time t, and the value of the
same attribute of a. For example, for the attribute ink line, (corresponding to the printing
process) the condition is to preserve the ink line. If the activity a uses machine M and is
scheduled at starting time t, the condition to preserve the ink line holds at time t, if the
value of the attribute ink line for M at time t is equal to the value of the attribute ink line of
activity a. In the practical application, the verification of this condition represents the fact
that activity a and the previous one use the same ink line.

The problem is to assign each activity to a starting time and to a specific machine trying to
verify the conditions. This problem can be considered as a multi-objective combinatorial
(MOCO) problems where the objectives are determined by the conditions. In the
bibliography which we have found referring to MOCO problems, the multi-objective
functions are evaluated after finding a solution. See for entries (Teghem et al. 2000, 2001)
specifically.

In our problem, the objectives to be fulfilled have a very peculiar characteristic: The
conditions (i.e. to preserve ink line, etc.) that must be verified, are associated with pairs of
activities scheduled consecutively in one machine; whereas (Teghem et al. 2000, 2001)
need all the activities to be scheduled in order to evaluate the objective functions.

CACIC 2003 - RedUNCI 519

As a result, our algorithm can evaluate the objectives in each step that leads to a solution, as
opposed to evaluating the multi-objective function after the whole solution was found, as it
is done in (Teghem et al. 2000, 2001).

Several schedules could be built, in such a way that activities are scheduled without using
the conservation functions and then, a posteriori, a schedule that maximize the objective
function could be found. In other words, the conditions can be evaluated a posteriori once
the schedule is already built, but an unnecessarily large number of schedules with a low
number of conservations that do not lead to a good solution will be generated.

If the criterion to choose an activity depend on conditions that are associated with pairs of
activities scheduled consecutively in one machine, it is more convenient to choose an
activity evaluating the conditions during the building of the schedule.

Furthermore, if several activities verify different conditions, the algorithm uses the weights
to choose the activity to be scheduled. It could be done once the scheduling was already
built, at the cost of building an unnecessarily large number of schedules generated without
evaluating the conditions during the building of the schedules. Due to this fact, the problem
presented here is not a classical MOCO problem.

A comparison of these approaches would be deceptive since we take advantage of particular
features of our problem that allows us to guide our search for solutions, whereas the other
approaches are much more general. The problem has been initially modeled in (Ibañez et
al., 2001), using alternative resource sets (Ilog, 1999).

From now on alternative resource sets will be referred to as AltResSets. An AltResSet is a
compound resource that contains two or more equivalent resources, called alternative
resources, to which activities can be assigned. An AltResSet is defined for each process.
Each AltResSet represents a set of machines such as {M1, ...,Mk} and contains k alternative
resources that represent the machines M1, ...,Mk.

An important requirement of the company is to try to avoid due date violations. An
approach to decrease the quantity of due date violations was presented in (Ibañez et al.,
2002).

In this context, it is not always easy to determine the criterion to choose the best schedule.
For instance, consider the following assumptions:

The activities a1 and a2 have ink line il1, activities a3, a4, a5 and a6 have ink line il2. A
Set Up time is needed whenever ink lines are changed. Furthermore, the activities a3 and a4
are urgent, and the activities a5 and a6 have an overdue ready time (an overdue delivery of
raw material which imposes a lower bound to start).

Consider the following schedules:

CACIC 2003 - RedUNCI 520

Which schedule is the best?

Normally, it depends on many factors like for example cost associated to penalties for due
date violations, cost involved in changing ink lines, repercussion of the Set Up operations
in the use of the resources and also on the current situation of the company. For instance, if
we know that there will be a low demand in the near future, it could be better to chose the
second schedule in order to avoid due date violations. On the contrary, if a high demand is
foreseen in the near future, the second schedule will avoid due date violations for the time
being, but the resource is forced to be available later (since two Set Ups were included) and
therefore it is quite likely that new due date violations will arise. As a result, the first
schedule can be more satisfactory.

This example is not a classical machine scheduling problems with set-up time and objective
defined as a function of Makespan and Lateness. The cost associated to changing ink lines
has to be taken into account too. In the problem presented in this paper many, conditions
can be associated to each AltResSet and the conditions are different for each AltResSet. In
some printing machines, changes do not generate set up time but they do involve additional
costs.

Besides, an AltResSet can be formed by many alternative resources with associated
functions that express the convenience of assigning a particular alternative resource to the
activity.

If we generalize these concepts, we face essentially two competitive criteria. One is to
minimize the number of due date violations and the other is to verify as many conditions as
possible.

CACIC 2003 - RedUNCI 521

The first criterion is basically customer satisfaction oriented, whereas the second one is
usually more convenient for the company. So, there has to be a trade-of f between them in
order to adapt the algorithm to the particular situation.

2. Solving the Problem
We will use classical notations of scheduling theory to denote the usual concepts and the
notation used in (Ilog, 1999) for more specific concepts. The number of jobs is denoted by
n. The number of AltResSets is 4. oij refers to the operation, of job j on AltResSet i and pi j
denotes the duration of oij (1 ≤ i ≤ 4 and 1 ≤ j ≤ n). In order to take into account the due
dates, we define two attributes associated to the activities: PriorityWeight and MaxEnd.
Each job j has a due date, referred as dj. The values of the attribute MaxEnd are set by
executing the following pre-processing:

For each job j (1 ≤ j ≤ n)

{Let o1j, o2j, o3j and o4j be the activities (referred to as operations in many books)
belonging to the job j (Printing, Laminating, Cutting and Packing, respectively)
 o4j.MaxEnd = dj
 for i = 3 down to 1 { oij.MaxEnd = oi+1 j.MaxEnd – pi+1 j}
 }

For each activity oij (1 ≤ i ≤ 4 and 1 ≤ j ≤ n), oij.MaxEnd represent the maximum time in
which the activity oij can finish. This value does not change during the execution of the
algorithm, whereas oij.PriorityWeight is initially set to 0 and it increases its value every
time that oij.End > oij.MaxEnd during the execution of the algorithm (oij.End represents the
end of the activity oij). It has been assumed that each activity requires only one AltResSet.

Let AltResSets, AltResources, and Conditions represent: all the AltResSets, all the
alternative resources, and all the conditions, respectively. Below we included the functions
involved in the algorithms.
StartMin: uses one not scheduled activity as its parameter, and returns the minimal possible
start time.
AltResSet: uses an activity as its parameter, and returns the AltResSet required by this
activity.
Verify: use an activity act, an alternative resource altRes, and a condition cond, as its
parameters, and returns 1 if act verifies the condition cond at the time StartMin(act) with
respect to the alternative resource altRes. Otherwise the function returns 0.
Conds: uses an AltResSet as its parameter, and returns the set of conditions associated with
the argument.
Possible: takes as arguments, an activity act, and an alternative resource altRes, and returns
1 if it is possible to assign altRes to act at the time StartMin(act). Otherwise it returns 0.
Weight: Takes a condition and returns a value that represents the degree of importance of
that condition.
AltRes: takes an AltResSet and returns the set of alternative resources that are part of the
AltResSet.

CACIC 2003 - RedUNCI 522

AltResPreference: uses an activity and an alternative resource as its parameters, and returns
a non negative integer number, whose value is set according to the convenience of
assigning the alternative resource to the activity.

Given, an activity oij (1 ≤ i ≤ 4 and 1 ≤ j ≤ n), an AltResSet altResSet, an Alternative
Resource altRes∈AltRes(altResSet), and conds = Conds(AltResSet), the functions
AltConvenience, AltResSetConvenience and ActivityConvenience are defined as follows:

AltConvenience(oij, altRes , conds) =

 Possible(oij, altRes) * (AltResPreference(oij, altRes) + ∑c∈conds Verify(oij,
altRes,c)*Weight(c) + oij.PriorityWeight)

AltResSetConvenience(oij, altResSet) =
 Max recAlt∈AltRes(altResSet) AltConvenience(oij, altRes, Conds(altResSet))

ActivityConvenience(oij) = AltResSetConvenience(oij, AltResSet(oij))

2.1. Obtaining a Solution
The next algorithm produces a solution in which the number of due date violations depends
on the value of the attribute PriorityWeight assigned to each activity. Activities represent
the set of all the activities that have to be scheduled.

repeat
 Min = Min 1 ≤ i ≤ 4, 1 ≤ j ≤ n StartMin(oij)
 (Get the minimum time in which it is possible to schedule an activity).
 MinSet = { oij (1 ≤ i ≤ 4 and 1 ≤ j ≤ n): StartMin(oij) = Min}
 (Get the set of activities with minimum start time Min)
 MaxConvenience = Max act∈MinSet ActivityConvenience(act)
 Pairs = {(a, altRes) : a∈MinSet, r = AltResSet(a), altRes∈AltRes(r),
 conds = Conds(r), AltConvenience(a, altRes, conds) = MaxConvenience }
 (Get the set of pairs Activity-AlternativeResource that maximize the function

AltConvenience).
 Select an element of the set Pairs. Let’s say (a, altRes).
 Schedule the activity a at time Min assigning the alternative resource altRes.
until All the activities oij (1 ≤ i ≤ 4 and 1 ≤ j ≤ n) are scheduled
 Algorithm 1. Algorithm to obtain a solution

2.2 Reducing Due Date Violations

The algorithm is based on repeatedly solving the scheduling while trying to verify as many
conditions as possible (initially completely disregarding due dates) and calculating the
lateness of the activities with respect to the maximum times in which the activities can
finish. This information is used in the algorithm in the following iterations so that the
delayed activities tend to be scheduled earlier. k represents the maximum quantity of
iterations.

CACIC 2003 - RedUNCI 523

It is necessary to formalize the objective functions that represent both, the verification of
conditions and the fulfillment of due dates. The former represents the convenience of the
Company and the latter represent the degree of the customer satisfaction.

In order to calculate the fulfillment of conditions, we need to define the following
functions:

ActsAltRes(altRes) : takes as argument an alternative resource, and returns the set of the
activities that were scheduled on this alternative resource after the Algorithm 1 is executed.

#ActsAltRes(altRes): takes as argument an alternative resource, and returns the cardinality
of the set
ActsAltRes(altRes) (the number of the activities that were scheduled on this alternative
resource after the Algorithm 1 was executed).

The number of activities that were scheduled on an alternative resource set altResSet is
calculated adding up the number of activities scheduled on the alternative resources which
belong to altResSet.

Formally:

#ActsAltResSet (altResSet) = ∑altRes∈AltRes(altResSet) #ActsAltRes(altRes)

VerifyAltRes(altRes, c): takes as arguments an alternative resource altRes and a condition c
and returns the number of activities that were scheduled on altRes that verify the condition
c. Formally:
VerifyAltRes(altRes, c) = ∑a∈ActsAltRes(altRes) verify(a, altRes, c)

VerifyAltResSet (altResSet, c): takes as arguments an alternative resource set altResSet and
a condition c and returns the number of activities that were scheduled on altResSet that
verify the condition c.

Formally:

VerifyAltResSet(altResSet, c) = ∑altRes∈AltRes(altResSet) VerifyAltRes(altRes, c)

MaxFulfillments(altResSet, c): takes as arguments an alternative resource set altResSet and
a condition c and returns the maximum number of activities that can be scheduled on
altResSet verifying the condition c.

To understand how the values of these functions are obtained, assume that altResSet is
formed by only one alternative resource altRes, and condition c represent ink line.
Furthermore, assume that activities a1, a2, a3, a4 and a5 with ink lines il1, il1, il2, il2 and
il1 respectively, turned out to be scheduled on altRes after the Algorithm 1 was executed.

For the previous assumptions, we have:

#ActsAltResSet (altResSet) = #ActsAltRes(altRes) = 5,
VerifyAltResSet(altResSet, c) = VerifyAltRes(altRes, c) = 2 and

CACIC 2003 - RedUNCI 524

MaxFulfillments(altResSet, c) = 3.

MinFulfillments(altResSet, c): takes as arguments an alternative resource set altResSet and
a condition c and returns the minimum number of activities that can be scheduled on
altResSet verifying the condition c.

FulfillmentPercentage(altResSet, c): takes as arguments an alternative resource set
altResSet and a condition c and returns the percentage of activities that were scheduled on
altResSet verifying the condition c. Formally:

FulfillmentPercentage(altResSet, c) = 1 if MaxFulfillments(altResSet, c) ≠
MinFulfillments(altResSet, c)

Otherwise
FulfillmentPercentage(altResSet, c) =

(VerifyAltResSet(altResSet, c) - MinFulfillments(altResSet, c)) /
 (MaxFulfillments(altResSet, c) - MinFulfillments(altResSet, c))

So, FulfillmentPercentage(altResSet, c) varies from 0 to 1 (0 if VerifyAltResSet(altResSet,
c) = MinFulfillments(altResSet, c) and 1 if VerifyAltResSet(altResSet, c) =
MaxFulfillments(altResSet, c)).

FulfillmentPercentageAltResSet(altResSet) =

∑c∈Conds(altResSet) FulfillmentPercentage(altResSet, c) * Weight(c) / ∑c∈Conds(altResSet)
Weight(c)

Now we can define the percentage of fulfillment of conditions considering all of the
alternative resource sets.

ConditionFulfillmentPercentage =
 ∑altResSet∈AltResSets FulfillmentPercentageAltResSet(altResSet, c) * Weight(c) / 4

So, ConditionFulfillmentPercentage varies from 0 to 1 since
FulfillmentPercentage(altResSet, c) does.

Now, let’s include some definitions to calculate the quantities of orders delivered-on-time.
Let Jobs be the set of jobs which represent all of the orders of the customers, #Jobs the
total number of jobs and Cj the time in which the job j finishes after the Algorithm1 is
executed.

Lj represents the lateness of the job j and #DueDatesViolations the quantity of due date
violations. Formally:

Lj = Cj – dj and
 #DueDatesViolations is defined to be the cardinality of the set {j∈Jobs : Lj > 0}

Now we can define the percentage of orders delivered-on-time as follows:
OnTimeOrdersPercentage = (#Jobs - #DueDatesViolations) / #Jobs

CACIC 2003 - RedUNCI 525

So, OnTimeOrdersPercentage varies from 0 to 1 depending on the quantities of due date
violations.

Finally, if ConditionFulfillmentWeight represents the weight assigned to fulfillment of the
conditions and OnTimeOrdersWeight the weight assigned to orders delivered-on-time, the
objective function that will be used in the algorithm is defined as follows:

ObjectiveFunction = OnTimeOrdersPercentage* OnTimeOrdersWeight +
 ConditionFulfillmentPercentage *ConditionFulfillmentWeight
(with OnTimeOrdersWeight + ConditionFulfillmentWeight = 1)

iter = 0;
bestObjectiveFunction = 0;
for each i
 for each j
 { oij.PriorityWeight = 0} (initially due dates will be disregarded)
repeat
 execute Algorithm 1
 if ObjectiveFunction > bestObjectiveFunction
 then
 {bestObjectiveFunction = ObjectiveFunction;
 store:
 the schedule produced by Algorithm 1,
 OnTimeOrdersPercentage,
 ConditionFulfillmentPercentage
 }
 for each i
 for each j
 {
 Lij = oij.End – oij.MaxEnd
 (note that Lij is a concept different from Lj, associated to an activity)
 if Lij > 0 then oij.PriorityWeight = oij.PriorityWeight + Lij *Step
 }
 iter = iter + 1
until (Lij ≤ 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n) or (iter > k)
 Algorithm 2. Algorithm to obtain a solution minimizing due dates violation

The greater the lateness is for an activity the greater its priority to be chosen will be in the
next iteration. Step determines how fast the delayed activities will increase their priorities

The value of Step has to be carefully chosen. An inadequate value for Step can produce bad
results. There are two cases.

a.- In each iteration, the weights and the preferences of the alternative resources
compete with the lateness of activities. If we choose too high a value for Step,
we take the risk that the weights and the preferences of the alternative resources

CACIC 2003 - RedUNCI 526

have no influence whatsoever. In this case, the algorithm will first schedule all
the activities with lateness, however in a blind manner.

b.- Conversely, if the value of Step is too low, the lateness will exert insignificant
influence and the scheduling will mainly be driven by the weights and the
preferences of the alternative resources.

So the performance of the algorithm is strongly dependent on the value chosen for Step.

3. Results

The current implementation provides a very detailed output which includes the percentage
of fulfillment of the conditions associated to all of the alternative resource sets, the quantity
of due date violations, as well as the sum and the average of the due date violations in terms
of time.

We will include a very small set of results that will suffice to show the main issues. In the
following table we include the output obtained from 3 different sources of data (Batch 1,
Batch 2 and Batch 3).

As the data are taken from the real application, they include many conditions to be fulfilled
and involve several resources. As a result, the data include too many details that would
complicate the overall understanding, so we include and explain only the output produced
by the program.

On Time Orders
Weight

ConditionFulfillmen
Weight

OnTime Orders
Percentage

Condition
Fulfillment
Percentage

Objective Function

0 1 0.32 0.82 0.82
0.7 0.3 0.62 0.69 0.669
1 0 0.91 0.63 0.91

Table1: Percentage of On-Time Orders & Fulfillment of conditions and Objective Function for Batch 1

OnTime Orders
Weight

ConditionFulfillmen
Weight

OnTime Orders
Percentage

Condition
Fulfillment
Percentage

Objective Function

0 1 0.27 0.79 0.79
0.7 0.3 0.58 0.67 0.607
1 0 0.60 0.56 0.60

Table2: Percentage of On-Time Orders & Fulfillment of conditions and Objective Function for Batch 2

OnTime Orders
Weight

ConditionFulfillmen
Weight

OnTime Orders
Percentage

Condition
Fulfillment
Percentage

Objective Function

0 1 0.21 0.76 0.76
0.7 0.3 0.54 0.59 0.555
1 0 0.78 0.54 0.78

CACIC 2003 - RedUNCI 527

Table3: Percentage of On-Time Orders & Fulfillment of conditions and Objective Function
for Batch 3

It can be seen that as we increase the weight for orders delivered-on-time, the On-Time
Orders Percentage increases and the Condition Fulfillment Percentage diminishes, which is
normally the desired result. Given the values for OnTime OrdersWeight and
ConditionFulfillmentWeight, the program finds a schedule that maximizes the Objective
Function, established as a function of these weights. The objective function is used by the
algorithm to find a scheduling that is suitable for the given weights and it must not be used
to choose the weights. The election of the adequate weight must be done as a function of
the necessities of the company. Depending on many variables mentioned earlier (costs,
situation of the company, etc.) the company must choose appropriate weights to produce the
desired schedule.

In spite of the current factors that could lead to the company to choose one particular set of
Weights, there are also some practical issues that should be taken into account. If the
company needs to give priority to the orders delivered-on-time, it could make sense to
choose OnTimeOrdersWeight = 1.

However, if we are dealing with Batch 2, we can see that there is just a slight difference
between the OnTimeOrdersPercentage for the last two rows (0.58 if OnTimeOrdersWeight
= 0.7 and 0.60 if OnTimeOrdersWeight = 1) but the difference between
ConditionFulfillmentPercentage is significant (0.67 for the 2nd row and 0.56 for the 3rd
row). As a result, if you choose the 2nd row, you get a significant advantage in terms of
fulfillment of conditions, paying a small price in terms of due date violations.

4. Conclusion

In this work, an algorithm for solving a Scheduling for Flexible Package Production which
allows assignment weights to set an appropriate trade-off between due date violation reduction and
fulfillment of conditions was analyzed.

The setting of these weights has to be carefully chosen according to the desired output, considering
costs, situation of the company, and so on. The performance of the algorithm is strongly
dependent on the value chosen for Step.

Although the algorithm presented in (Ibañez et al., 2001) solves the problem of fulfillment
of conditions and (Ibañez et al., 2002) reduces the number of due date violations, the
situation of some companies requires reaching a solution in which a trade-off between these
requirements is desired. The present work also allows to try with different weights to
analyze the output and to select the adequate values according to the desired wanted
schedule, driven by the current condition of the company.

Even though the results obtained up to now with the algorithm presented here are acceptable
for the companies which we are working with, an exhaustive evaluation has to be done on a
large variety of data and this is the task that is being carried out at the present moment.

CACIC 2003 - RedUNCI 528

References

Ibañez F., D. Diaz and R. Forradellas (2001). Scheduling for flexible package production.
Proceedings IEPM’2001. Quebec, Canada.
Ibañez F., D. Diaz and R. Forradellas (2002). Scheduling for Flexible Package Production
Minimizing Due Times Violations. Proceedings Eighth International Workshop on Project
Management and Scheduling - PMS2002. Valencia, Spain.
Ilog (1999). Ilog Schedule Reference Manual Version 4.4. Ilog, France.
Teghem J., D. Tuyttens and E. L. Ulungu (2000). An interactive heuristic method for
multiobjective combinatorial optimization. Computers and Operations Research , Vol. 27.
621-634.
Teghem J., P. Fortemps, D. Tuyttens and T. Loukil (2001). Solving multi-objective
production scheduling problems using metaheuristics. Proceedings IEPM’2001. Quebec,
Canada.

CACIC 2003 - RedUNCI 529

