Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusién de la Creacion Intelectual

An Algorithm to deal with due date violation
in a Multi-objective Scheduling problem

Francisco |bafez, Daniel Diaz Araya, German Zavalla, Raymundo Forradellas
LISl — Laboratorio Integrado de Sistemas I nteligentes
Idel - Instituto de Informatica - Universidad Nacional de San Juan
Cereseto y Meglioli — 5400 San Juan — Argentina
Tel: +54 264 426 47 21 - Fax: +54 264 426 51 01
{fibanez, ddiaz, kike} @iinfo.ung.edu.ar

Abstract

This paper includes part of the strategies used to solve a scheduling problem devel oped for
acompany that produces flexible packaging, presented in quite a general form though. In
this problem it is necessary to schedule several jobs that involve four process and for each
oneof them thereisagroup of machinesavailable (of similar characteristics). Each activity
is performed on just one machine. Besides, for our application, the scheduling must try to
verify certain conditions. For each process (and consequently for all the activities that
performs this process) thereis alist of attributes.

The problemisnot only to assign each activity to astarting time and to a specific machine,
but also to try to verify conditions that depend on the values of the attributes of the
activities. Moreover, there are criteria to choose a particular machine.

An approach to solve this problem was presented first in (lbafiez et al., 2001). As
mentioned there, some jobs could not be fulfilled to meet their due dates. An approach to
decrease the quantity of due dates violations was presented in (Ibafiez et al., 2002). The
algorithm presented in (Ibafiez et al., 2001) is entirely dedicated to verify as many
conditions as possi bl e disregarding due date viol ations. The algorithm shown in (Ibafiez et
al., 2002) was focussed to reduce the number of due date violations by paying the price of
decreasing the fulfilment of conditions. Roughly speaking, the first approach favours the
company whereas the second one is more convenient for the customers.

The present work includes an algorithm, which allows us to assign weights to set an
appropriate trade of between due date violation reduction and fulfillment of conditions.

Key words: Scheduling, Multi-objective Combinatorial Problems, Constraints Satisfaction

CACIC 2003 - RedUNCI 518

https://core.ac.uk/display/301043292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

This paper includes part of the strategies used to solve a scheduling problem devel oped for
acompany that producesflexible packaging. The application has beenimplemented in C++,
employing routines of 1log (llog, 1999). In thisproblem it is necessary to schedule severa
jobs. These jobsinvolve four process: Printing, Laminating, Cutting and Packing and for
each one of them there is a group of machines available (of similar characteristics).

Eachjobisdescribed by alist of four activitiesof given processing times, that perform the
mentioned processes in that order. Each activity is performed on just one machine. For
example, if a represents a printing activity and { My, ...,M} represent the set of machines
capable of executing the printing process, a will be performed by amember of the set { M,
..M} . For our application the scheduling must also try to verify certain conditions.

For each process (and for all the activities that perform this process) there is a list of
attributes. For the printing process, the attributes are: ink line, duration of the (printing)
process, etc. These attributes are al so associated to the machines but their values depend on
the time. For each printing machine My, ...,My, the values of the attributes at time ¢ are
defined asequal to the values of the attributes of the activity that isbeing performed at time
t. If no activity is being performed at ¢, these values are set to those of the last activity
performed before . For each attribute, there is a condition that must try to satisfy the
schedules of the machines My, ...,My.

Given amachine M and an activity a, each condition associated to M isevaluated at time,
asafunction of the value of the corresponding attribute of M at time¢, and the value of the
same attribute of a. For example, for the attribute ink line, (corresponding to the printing
process) the condition is to preserve the ink line. If the activity a uses machine M and is
scheduled at starting time ¢, the condition to preserve the ink line holds at time ¢, if the
value of the attribute ink line for M at time¢ isequal to the value of the attributeink line of
activity a. Inthe practical application, the verification of this condition represents the fact
that activity a and the previous one use the same ink line.

The problem isto assign each activity to astarting time and to a specific machinetrying to
verify the conditions. This problem can be considered as a multi-objective combinatorial
(MOCO) problems where the objectives are determined by the conditions. In the
bibliography which we have found referring to MOCO problems, the multi-objective
functions are evaluated after finding a solution. See for entries (Teghem ez a/. 2000, 2001)
specifically.

In our problem, the objectives to be fulfilled have a very peculiar characteristic: The
conditions (i.e. to preserve ink line, €tc.) that must be verified, are associated with pairs of
activities scheduled consecutively in one machine; whereas (Teghem et al. 2000, 2001)
need all the activities to be scheduled in order to evaluate the objective functions.

CACIC 2003 - RedUNCI

519

Asaresult, our algorithm can evaluate the objectivesin each step that |eadsto asolution, as
opposed to eval uating the multi-objective function after the whol e solution wasfound, asit
isdonein (Teghem et al. 2000, 2001).

Severa schedules could be built, in such away that activities are scheduled without using
the conservation functions and then, a posteriori, a schedule that maximize the objective
function could be found. In other words, the conditions can be evaluated a posteriori once
the schedule is already built, but an unnecessarily large number of schedules with alow
number of conservations that do not lead to a good solution will be generated.

If the criterion to choose an activity depend on conditions that are associated with pairs of
activities scheduled consecutively in one maching, it is more convenient to choose an
activity evaluating the conditions during the building of the schedule.

Furthermore, if several activitiesverify different conditions, the algorithm usesthe weights
to choose the activity to be scheduled. It could be done once the scheduling was already
built, at the cost of building an unnecessarily large number of schedules generated without
eval uating the conditions during the building of the schedules. Dueto thisfact, the problem
presented here is not a classical MOCO problem.

A comparison of these approacheswould be deceptive since we take advantage of particular
features of our problem that allows usto guide our search for solutions, whereas the other
approaches are much more general. The problem has been initially modeled in (Ibafiez et
al., 2001), using aternative resource sets (1log, 1999).

From now on aternative resource setswill bereferred to as AltResSets. An AltResSet isa
compound resource that contains two or more equivalent resources, caled aternative
resources, to which activities can be assigned. An AltResSet is defined for each process.
Each AltResSet represents aset of machinessuch as{ My, ...,My} and containsk alternative
resources that represent the machines My, ...,My.

An important requirement of the company is to try to avoid due date violations. An
approach to decrease the quantity of due date violations was presented in (Ibafiez et al.,
2002).

In thiscontext, it is not always easy to determine the criterion to choose the best schedule.
For instance, consider the following assumptions:

The activitiesal and a2 haveink line ill, activitiesa3, a4, a5 and a6 haveink lineil2. A
Set Up timeisneeded whenever ink lines are changed. Furthermore, the activitiesa3 and a4
are urgent, and the activities a and a6 have an overdue ready time (an overdue delivery of
raw material which imposes alower bound to start).

Consider the following schedules:

CACIC 2003 - RedUNCI

520

First End

0 of Scheduling
| |
|

1
N | D ot S e

‘

Set-up

Ready time for &ctivity 5 and B

Mew End of
i Scheduling

1
EE o] N o7 | S e]
S R

Set-up Set-up

Ready time for Activity 5 and B

Hote that ad and a6 cannot be scheduled immediately after a3 and ad because of the read

time.
Which schedule is the best?

Normally, it depends on many factorslike for example cost associated to penaltiesfor due
date violations, cost involved in changing ink lines, repercussion of the Set Up operations
in the use of the resources and also on the current situation of the company. For instance, if
we know that there will be alow demand in the near future, it could be better to chose the
second schedulein order to avoid due date violations. On the contrary, if ahigh demandis
foreseen in the near future, the second schedule will avoid due date violations for the time
being, but theresourceisforced to be availablelater (sincetwo Set Upswereincluded) and
therefore it is quite likely that new due date violations will arise. As a result, the first
schedule can be more satisfactory.

Thisexampleisnot aclassical machine scheduling problemswith set-up timeand objective
defined as afunction of Makespan and L ateness. The cost associated to changing ink lines
has to be taken into account too. In the problem presented in this paper many, conditions
can be associated to each AltResSet and the conditions are different for each AltResSet. In
some printing machines, changes do not generate set up time but they do involve additional
costs.

Besides, an AltResSet can be formed by many alternative resources with associated
functionsthat express the convenience of assigning a particular alternative resource to the
activity.

If we generalize these concepts, we face essentially two competitive criteria. One is to

minimizethe number of due date violations and the other isto verify asmany conditionsas
possible.

CACIC 2003 - RedUNCI

521

The first criterion is basically customer satisfaction oriented, whereas the second one is
usually more convenient for the company. So, there hasto be atrade-of f between themin
order to adapt the algorithm to the particular situation.

2. Solving the Problem

We will use classical notations of scheduling theory to denote the usual concepts and the
notation used in (llog, 1999) for more specific concepts. The number of jobsis denoted by
n. Thenumber of AltResSetsis4. o, refersto the operation, of job; on AltResSet i and p; ;
denotes the duration of o; (/ £i £ 4 and 1 £ £ n). In order to take into account the due
dates, we define two attributes associated to the activities: PriorityWeight and MaxEnd.
Each job ;j has a due date, referred as d;. The values of the attribute MaxEnd are set by
executing the following pre-processing:

For eachjob; (1 £/ £ n)
{Let 0, 02, 03 and oy be the activities (referred to as operations in many books)
belonging to the job ; (Printing, Laminating, Cutting and Packing, respectively)
04.MaxEnd = d|
fori=3downtol { o5.MaxEnd = 041 j.MaxEnd — pjs1 j}
}

For each activity o; (1 £i £ 4and I £ £ n), o, MaxEnd represent the maximum time in
which the activity o;; can finish. This value does not change during the execution of the
algorithm, whereas o, PriorityWeight is initially set to O and it increases its value every
timethat o,. End > 0;; MaxEnd during the execution of the algorithm (o;. End represents the
end of the activity o). It has been assumed that each activity requires only one A/tResSet.

Let AltResSets, AltResources, and Conditions represent. all the AltResSets, al the
aternativeresources, and all the conditions, respectively. Below weincluded the functions
involved in the algorithms.

StartMin: uses one not scheduled activity asits parameter, and returnsthe minimal possible
start time.

AltResSet: uses an activity as its parameter, and returns the AltResSet required by this
activity.

Verify: use an activity act, an aternative resource altRes, and a condition cond, as its
parameters, and returns 1 if act verifies the condition cond at the time StartMin(act) with
respect to the alternative resource altRes. Otherwise the function returns O.

Conds: usesan AltResSet asits parameter, and returnsthe set of conditions associated with
the argument.

Possible: takes asarguments, an activity act, and an aternative resource altRes, and returns
1if itispossibleto assign altRes to act at the time StartMin(act). Otherwise it returns O.
Weight: Takes acondition and returns a value that represents the degree of importance of
that condition.

AltRes: takes an AltResSet and returns the set of alternative resources that are part of the
AltResSet.

CACIC 2003 - RedUNCI

522

AltResPreference: usesan activity and an alternative resource asits parameters, and returns
a non negative integer number, whose value is set according to the convenience of
assigning the alternative resource to the activity.

Given, an activity o; (1 £i £ 4 and I £ j £ n), an AltResSet altResSet, an Alternative
Resource altResl AltRes(altResSet), and conds = Conds(AltResSet), the functions
AltConvenience, AltResSetConvenience and ActivityConvenience are defined as follows:

AltConvenience(oy;, altRes , conds) =
Possible(o;, altRes) * (AltResPreference(o;, altRes) + & conas Verify(oy,
altRes,c)*Weight(c) + oy PriorityWeight)

AltResSetConvenience(oy;, altResSet) =
Max yecaiii sitrestaiiressen) AltConvenience(oy;, altRes, Conds(altResSet))

ActivityConvenience(o;) = AltResSetConvenience(o;;, AltResSet(0;))

2.1. Obtaining a Solution

The next a gorithm produces a solution in which the number of due date violations depends
on the value of the attribute PriorityWeight assigned to each activity. Activities represent
the set of al the activities that have to be scheduled.

repeat
Min = Minl£i£4,1£j EnStartMin(oij)
(Get the minimum time in which it is possible to schedule an activity).
MinSet={ 0;({ £i £ 4 and] £; £ n): StartMin(o;) = Min}
(Get the set of activities with minimum start time Min)
MaxConvenience = MaX i minset ActivityConvenience(act)
Pairs={(a, altRes) : d MinSet, r = AltResSet(a), atResl AltRes(r),
conds = Conds(r), AltConvenience(a, altRes, conds) = MaxConvenience }
(Get the set of pairs Activity-AlternativeResource that maximize the function
AltConvenience).
Select an element of the set Pairs. Let’s say (a, altRes).
Schedule the activity a at time Min assigning the alternative resource altRes.
until All the activitieso; (1 £i £ 4 and I £ £ n) are scheduled
Algorithm 1. Algorithm to obtain a solution

2.2 Reducing Due Date Violations

Theagorithmisbased on repeatedly solving the scheduling whiletrying to verify asmany
conditions as possible (initially completely disregarding due dates) and calculating the
lateness of the activities with respect to the maximum times in which the activities can
finish. This information is used in the algorithm in the following iterations so that the
delayed activities tend to be scheduled earlier. k represents the maximum quantity of
iterations.

CACIC 2003 - RedUNCI

523

It is necessary to formalize the objective functions that represent both, the verification of
conditions and the fulfillment of due dates. The former represents the convenience of the
Company and the latter represent the degree of the customer satisfaction.

In order to calculate the fulfillment of conditions, we need to define the following
functions:

ActsAltRes(altRes) . takes as argument an aternative resource, and returns the set of the
activitiesthat were scheduled on this alternative resource after the Algorithm 1 isexecuted.

#ActsAltRes(altRes): takes asargument an alternative resource, and returns the cardinality
of the set

ActsAltRes(altRes) (the number of the activities that were scheduled on this alternative
resource after the Algorithm 1 was executed).

The number of activities that were scheduled on an aternative resource set altResSet 1S
cal culated adding up the number of activities scheduled on the alternative resources which
belong to altResSet.

Formally:
#ActsAltResSet (altResSet) = 8 aipesi aimes(aiiressey #ActsAltRes(altRes)

VerifyAltRes(altRes, c): takes asarguments an alternative resourcealtRes and acondition ¢
and returnsthe number of activitiesthat were scheduled on altRes that verify the condition
c. Formaly:

VerifyAltRes(aliRes, ¢) = 8 41 acisaiRes(aiires) verify(a, altRes, c)

VerifyAltResSet (altResSet, c): takesasargumentsan alternative resource set altResSet and
a condition ¢ and returns the number of activities that were scheduled on altResSet that
verify the condition c.

Formally:
VerifyAltResSet(altResSet, ¢) = & uiresi atResairesser V ETyAltReS(altRes, c)

MaxFulfillments(altResSet, c): takes as arguments an alternative resource set altResSet and
a condition ¢ and returns the maximum number of activities that can be scheduled on
altResSet verifying the condition c.

To understand how the values of these functions are obtained, assume that al/tResSet is
formed by only one alternative resource altRes, and condition ¢ represent ink line.
Furthermore, assumethat activitiesal, a2, a3, a4 and a5 withink linesill, il1, il2, il2 and
il1 respectively, turned out to be scheduled on altRes after the Algorithm 1 was executed.

For the previous assumptions, we have:

#ActsAltResSet (altResSet) = #ActsAltRes(altRes) = 5,
VerifyAltResSet(altResSet, c) = VerifyAltRes(altRes, c¢) = 2 and

CACIC 2003 - RedUNCI

524

MaxFulfillments(altResSet, c) = 3.

MinFulfillments(altResSet, c): takes as arguments an aternative resource set altResSet and
a condition ¢ and returns the minimum number of activities that can be scheduled on
altResSet verifying the condition c.

FulfillmentPercentage(altResSet, c): takes as arguments an aternative resource set
altResSet and a condition ¢ and returns the percentage of activities that were scheduled on
altResSet verifying the condition ¢. Formally:

FulfillmentPercentage(altResSet, ¢) = 1 if MaxFulfillments(a/tResSet, ¢) *
MinFulfillments(al/tResSet, c)
Otherwise
FulfillmentPercentage(altResSet, c) =
(VerifyAltResSet(altResSet, ¢) - MinFulfillments(altResSet, c))
(MaxFulfillments(altResSet, ¢) - MinFulfillments(altResSet, c))

S0, FulfillmentPercentage(altResSet, c) variesfrom 0to 1 (0if VerifyAltResSet(altResSet,
¢) = MinFulfillments(altResSet, ¢) and 1 if VerifyAltResSet(altResSet, ¢) =
MaxFulfillments(altResSet, c)).

FulfillmentPercentageAltResSet(altResSet) =

a. Conds(altResSer) FulfillmentPercentage(altResSet, c) * Weight(c) / ag Conds(altResSet)
Weight(c)

Now we can define the percentage of fulfillment of conditions considering all of the
alternative resource sets.

ConditionFulfillmentPercentage =
A aliressed Aliressess FulfillmentPercentageAItResSet(altResSet, c) * Weight(c) / 4

o, ConditionFulfillmentPercentage varies from 0 to 1 since
FulfillmentPercentage(altResSet, ¢) does.

Now, let’sinclude some definitionsto cal cul ate the quantities of orders delivered-on-time.
Let Jobs be the set of jobs which represent all of the orders of the customers, #J/obs the
total number of jobs and C; the time in which the job ; finishes after the Algorithml is
executed.

L; represents the lateness of the job j and #DueDatesViolations the quantity of due date
violations. Formally:

L; = G;—d;and

#DueDatesViolations is defined to be the cardinality of the set {1 Jobs : L; > 0}

Now we can define the percentage of orders delivered-on-time as follows:
OnTimeOrdersPercentage = (#Jobs - #DueDatesViolations) / #Jobs

CACIC 2003 - RedUNCI

525

S0, OnTimeOrdersPercentage varies from 0 to 1 depending on the quantities of due date
violations.

Finally, if ConditionFulfillmentWeight represents the weight assigned to fulfillment of the
conditions and OnTimeOrders Weight the welght assigned to orders delivered-on-time, the
objective function that will be used in the algorithm is defined as follows:

ObjectiveFunction = OnTimeOrdersPercentage™® OnTimeOrdersWeight +
ConditionFulfillmentPercentage *ConditionFulfillmentWeight
(with OnTimeOrdersWeight + ConditionFulfillmentWeight = 1)
iter = 0;
bestObjectiveFunction = 0;
for each i
for each j
{ o;.PriorityWeight =0} (initially due dates will be disregarded)
repeat
execute Algorithm 1
if ObjectiveFunction > bestObjectiveFunction
then
{bestObjectiveFunction = ObjectiveFunction;
store:
the schedule produced by Algorithm 1,
OnTimeOrdersPercentage,
ConditionFulfillmentPercentage
}
for each i
for each j
{
I—ij = Ol‘j.End - OleaXEnd
(note that L is a concept different from L;, associated to an activity)
if L; > 0then o;.PriorityWeight = o,,.PriorityWeight + L; * Step
}
iter =iter +1
until (L;£Oforal LEi£m,1£] £ n)or (iter > k)
Algorithm 2. Algorithm to obtain a solution minimizing due dates violation

The greater the latenessis for an activity the greater its priority to be chosen will bein the
next iteration. Step determines how fast the delayed activitieswill increase their priorities

Thevalue of Step hasto be carefully chosen. Aninadequate valuefor Step can produce bad
results. There are two cases.

a.- In each iteration, the weights and the preferences of the alternative resources

compete with the lateness of activities. If we choose too high avaluefor Step,
wetaketherisk that the weights and the preferences of the alternative resources

CACIC 2003 - RedUNCI

526

have no influence whatsoever. In this case, the algorithmwill first schedule all
the activities with lateness, however in a blind manner.

b.- Conversely, if the value of Step istoo low, the latenesswill exert insignificant
influence and the scheduling will mainly be driven by the weights and the
preferences of the alternative resources.

So the performance of the algorithm is strongly dependent on the value chosen for Step.

3. Resaults

The current implementation providesavery detailed output which includesthe percentage
of fulfillment of the conditions associated to all of the alternative resource sets, the quantity
of duedateviolations, aswell asthe sum and the average of the due date violationsinterms
of time.

We will include avery small set of results that will suffice to show the main issues. In the
following table we include the output obtained from 3 different sources of data (Batch 1,
Batch 2 and Batch 3).

Asthedataaretaken fromthereal application, they include many conditionsto befulfilled
and involve severa resources. As a result, the data include too many details that would
complicate the overall understanding, so we include and explain only the output produced

by the program.

On Time Orders| ConditionFulfillmen | OnTime Orders Condition Objective Function
Weight Weight Percentage Fulfillment
Percentage
0 1 0.32 0.82 0.82
0.7 0.3 0.62 0.69 0.669
1 0 0.91 0.63 0.91

Tablel: Percentage of On-Time Orders & Fulfillment of conditions and Objective

Function for Batch 1

OnTime Orders| ConditionFulfillmen | OnTime Orders Condition Objective Function
Weight Weight Percentage Fulfillment
Percentage
0 1 0.27 0.79 0.79
0.7 0.3 0.58 0.67 0.607
1 0 0.60 0.56 0.60

Table2: Percentage of On-Time Orders & Fulfillment of conditions and Objective

Function for Batch 2

OnTime Orders| ConditionFulfillmen | OnTime Orders Condition Objective Function
Weight Weight Percentage Fulfillment
Percentage
0 1 0.21 0.76 0.76
0.7 0.3 0.54 0.59 0.555
1 0 0.78 0.54 0.78

CACIC 2003 - RedUNCI

527

Table3: Percentage of On-Time Orders& Fulfillment of conditions and Objective Function
for Batch 3

It can be seen that as we increase the weight for orders delivered-on-time, the On-Time
Orders Percentage increases and the Condition Fulfillment Percentage diminishes, whichis
normally the desired result. Given the values for OnTime OrdersWeight and
ConditionFulfillmentWeight, the program finds a schedule that maximizes the Objective
Function, established as afunction of these weights. The objective function is used by the
algorithm to find a scheduling that is suitable for the given weights and it must not be used
to choose the weights. The election of the adequate weight must be done as a function of
the necessities of the company. Depending on many variables mentioned earlier (costs,
situation of the company, etc.) the company must choose appropriate weightsto producethe
desired schedule.

In spite of the current factorsthat could lead to the company to choose one particular set of
Weights, there are also some practical issues that should be taken into account. If the
company needs to give priority to the orders delivered-on-time, it could make sense to
choose OnTimeOrdersWeight = 1.

However, if we are dealing with Batch 2, we can see that thereis just a dlight difference
between the OnTimeOrdersPercentage for thelast tworows (0.58 if OnTimeOrdersWeight
= (0.7 and 0.60 if OnTimeOrdersWeight = 1) but the difference between
ConditionFulfillmentPercentage is significant (0.67 for the 2™ row and 0.56 for the 3"
row). As aresult, if you choose the 2™ row, you get a significant advantage in terms of
fulfillment of conditions, paying asmall price in terms of due date violations.

4. Conclusion

In thiswork, an algorithm for solving aScheduling for Flexible Package Production which
allows assignment weightsto set an appropriate trade-off between due date violation reduction and
fulfillment of conditions was analyzed.

The setting of these weights hasto be carefully chosen according to the desired output, considering
costs, situation of the company, and so on. The performance of the agorithm is strongly
dependent on the value chosen for Step.

Although the algorithm presented in (Ibafiez et al., 2001) solvesthe problem of fulfillment
of conditions and (Ibafiez et al., 2002) reduces the number of due date violations, the
situation of some companies requires reaching asolution in which atrade-off between these
requirements is desired. The present work also allows to try with different weights to
analyze the output and to select the adequate values according to the desired wanted
schedule, driven by the current condition of the company.

Even though the results obtai ned up to now with the algorithm presented here are acceptable

for the companies which we are working with, an exhaustive eval uation hasto bedoneon a
large variety of data and thisisthe task that isbeing carried out at the present moment.

CACIC 2003 - RedUNCI

528

References

Ibafiez F., D. Diaz and R. Forradellas (2001). Scheduling for flexible package production.
Proceedings |EPM’ 2001. Quebec, Canada.

Ibafiez F., D. Diaz and R. Forradellas (2002). Scheduling for Flexible Package Production
Minimizing Due Times Violations. Proceedings Eighth I nternational Workshop on Project
Management and Scheduling - PM S2002. Vaencia, Spain.

Ilog (1999). Ilog Schedule Reference Manual Version 4.4. 1log, France.

Teghem J., D. Tuyttens and E. L. Ulungu (2000). An interactive heuristic method for
multiobjective combinatorial optimization. Computers and Operations Research, Vol. 27.
621-634.

Teghem J., P. Fortemps, D. Tuyttens and T. Loukil (2001). Solving multi-objective
production scheduling problems using metaheuristics. Proceedings |EPM’ 2001. Quebec,
Canada.

CACIC 2003 - RedUNCI

529

