
Query Expansion and Noise Treatment for
Information Retrieval

Emerson L. dos Santos Bráulio C. Ávila
Fabiano M. Hasegawa Celso A. A. Kaestner

Pontifical Catholic University of Paraná — PUCPR
R. Imaculada Conceição, 1155 — 80.215-901 — Curitiba — PR — Brazil

{fmitsuo, emerson, avila, kaestner}@ppgia.pucpr.br

Abstract
Most of the search engines available over the Web are based on mathematical approaches
— classical techniques in the Information Retrieval area. Thereby, they are suitable for
the retrieval of documents containing some or all the terms of a query, though not to re-
trieve the documents containing the meaning those terms were intended to express. This
paper presents some advantages obtained from query expansion with WordNet and noise
treatment with knowledge on top of Paraconsistent Logic. Both methods are semantically
driven, allowing the retrieval of documents which do not contain any term of the original
query. Noise treatment results from the combination of a smooth term comparison with
knowledge about term authentication based on behaviors of features in the collection.
Although query expansion recurs for every query, noise treatment is part of the index-
ing mechanism, causing no overhead in queries. The domain is retrieval of ontologies
represented in Resource Description Framework.

1 Introduction

Search engines are usually built according to three paradigms well defined in the Information
Retrieval (IR) field: boolean, vector and probabilistic models. Those techniques were developed
under assumptions concerning mathematical and statistical issues. The main problem with
those techniques concerns the inability to deal with semantic issues, thus usually failing to
retrieve some relevant documents and retrieving lots of irrelevant ones.

The collection chosen for this work was a set of documents represented in Resource Descrip-
tion Framework (RDF) — a framework designed for processing data describing Web resources
[6]—, available at the site http://www.daml.org/ontologies. Documents from a domain are
usually represented according to a vocabulary defined for that specific domain. In this collec-
tion, there are user-defined vocabularies covering some domains. Unfortunately, it is not clear
which ontology should be used for an arbitrary domain. That requires one to search manually
for a suitable ontology. This work presents a tool for ontology retrieval from an RDF ontology
database, which implements the techniques described along the paper.

In this domain, each ontology is a document — because there is only one ontology a file.
The program uses the same classical vector model acting upon a tf-idf index, such as other

CACIC 2003 - RedUNCI 717

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

engines but with some important differences. Firstly, an absolute frequency index is constructed
capturing the values of both properties which contain natural language in this domain: label
and comment [6]. Secondly, the query is augmented using WordNet in order to generate more
terms related to the original ones. Next, a smooth comparison of terms — based on semantic
knowledge instead of lexical string approximation — is used to tolerate spelling mistakes in the
documents. Afterwards, expert knowledge on top of Paraconsistent Logic along with automatic
acquisition of features behaviors applies as an extension to the previous module in order not to
allow unifications which are not supposed to occur — two different terms t1 and t2 which are
the same from the point of view of the smooth unification cannot be unified if they are both
authentic. Authentic terms are those ones which were really intended to be spelled the way
they are; they are not spelling mistakes. Next, a new absolute frequency index is generated.
In this index, only authentic terms are allowed; non-authentic terms are excluded and their
frequencies are proportionally distributed among their possible intended forms. Finally, the
tf-idf index required for the search engine is built.

There are two toplevel goals in this work which must be emphasized. Firstly, it is important
to recall that semantic knowledge can be used to deal with natural language as a form to bring
IR methods closer to cognitive processes. As people only understand natural language because
of semantic knowledge stored in their memory structures, programs cannot be expected to deal
properly with natural language without enough semantic knowledge. The motivation is that a
bulk of AI research is concerned with domains that require semantic knowledge but only lexical,
syntactical, mathematical, statistical and related approaches have been applied. Secondly, it
must be asserted Paraconsistency is a suitable formalism to represent knowledge from multiple
sources. Since contradictions can be identified easily, several opinions can be collected and
amalgamated into one single set of rules and facts. In this case, the motivation is that more
than one expert might contribute with their own opinions. Those opinions might fall onto
contradictions.

In Section 2, WordNet is evaluated as a source of semantic relationships for query aug-
mentation. Section 3 shows how näıve string approximation methods for misspelling noise
tolerance can be replaced by rules conveying semantic knowledge. Next, knowledge from ex-
perts is expressed in the form of paraconsistent rules in order to avoid inadequate unifications,
reducing the impact of erroneous actions. The system architecture is presented in the fifth
section. Arguments about some trouble in the implementation are exposed next. Finally, a
conclusion is presented along with suggestions for future work. Examples concerning the work
are supplied in the Appendices.

2 Improving Recall of Queries

WordNet is a lexical database which provides several sorts of relationships among concepts
and their respective signs [4]. However, IR deals only with signs rather than concepts. Thus,
although WordNet provides relationships among concepts, without the meaning of a term what
one gets is just relationships among signs.

Anyway, WordNet can still increases the recall of a given query. By acting as an auxiliary
tool for query expansion [5], WordNet makes the query able to retrieve documents where
the terms of the original query did no occur related ones did. There is a significative chance
relevant documents may contain those related words instead of the original words. Nonetheless,
the amount of documents retrieved may grow out of control, jeopardising precision.

Two WordNet relationships were chosen: synonym — two words w1 and w2 are synonyms

CACIC 2003 - RedUNCI 718

Query Regular Expanded

Precision Recall Precision Recall

q1 0.66 1 0.5 1
q2 0.41 0.24 0.4 0.31
q3 0.44 0.11 0.46 0.17
q4 0.25 0.08 0.14 0.16
q5 0 0 0 0
q6 0.27 0.1 0.23 0.1
q7 0 0 0.04 0.33
q8 0.18 0.5 0.06 0.75
q9 0.14 0.25 0.1 0.25
q10 0 0 0 0
q11 0.1 0.31 0.16 0.75
qi 0.22 0.24 0.19 0.35

Table 1: Comparison between regular and expanded search.

if and only if w1 and w2 can express the same concept — and hyponym — a word w1 is an
hyponym of another word w2 if and only if w1 expresses a more specific type of the concept
that w2 expresses.

Thereby, the query is augmented by collecting the whole set of synonyms and hyponyms
of each term of the query and adding them to the original terms. The search is then initiated
with all those terms.

In Table 1, it is remarkable the improvement on recall . Four out of eleven queries had
its recall increased; on average, a increase of 33% on recall and a decrease of less than 9% on
precision.

Although recall was indeed increased, Table 1 also shows precision was decreased: as
the search engine do not know the meanings of the terms, it cannot be supposed to notice
inadequate meanings in an arbitrary document and those might be lots due to the amount of
new terms which were added; however, this occurs even for the original words of the query and
is a known trade-off in the IR community. Anyway, the gain with recall seems to enough to
compensate what was lost in precision.

3 Noise Tolerance with Smooth Unification

As it is common in real world data, the RDF collection contained several typing errors. If no
tolerance were applied, the search engine would not be able to identify approximmation was, in
fact, intended to be approximation, for instance. There are some algorithms for approximate
string unification [2]. Yet, those algorithms do not take into account knowledge about which
kinds of mistakes can be allowed; they care about letters rather than types of mistakes. Human
beings tend to analyse two terms as a whole when judging whether one of them is, actually,
just the other one misspelled. They use to allow certain sorts of mistakes in some cases and
not in others. They care about the size of a string as well as the relapse of mistakes. In other
words, people decide whether two almost equal strings should be, indeed, totally equal taking
into account knowledge about rules derived from cases they have already seen instead of a rigid
and nonsense letter-oriented algorithm.

CACIC 2003 - RedUNCI 719

Query Regular Smooth

Precision Recall Precision Recall

q1 0.66 1 0.16 1
q2 0.41 0.24 0.38 0.24
q3 0.44 0.11 0.45 0.14
q4 0.25 0.08 0.25 0.08
q5 0 0 0 0
q6 0.27 0.1 0.25 0.1
q7 0 0 0 0
q8 0.18 0.5 0.12 0.5
q9 0.14 0.25 0.14 0.25
q10 0 0 0 0
q11 0.1 0.31 0.1 0.31
qi 0.22 0.24 0.17 0.24

Table 2: Comparison between regular and smooth search.

The tolerant unification was implemented according to some heuristics which try to represent
the way human beings reason when they must decide whether two strings should or should not
be equal. The heuristics were expressed as rules and concern the following ideas:

• Two strings are equal if a mistake does not occur more than once before it is forgotten;

• A mistake is forgotten if it was not repeated within the word in the last θ characters 1;

• There are three kinds of mistakes: transposition mistake — which is the reversal of two
letters —, typing mistake — when a different letter is found instead of the expected one
— and missing mistake — when a letter is missing2.

It can be noticed in Table 2 recall was not affected by the smooth unification. Proba-
bly, there was not a significative number of mistakes on the documents. So allowing smooth
matching was useless for recall. Nonetheless, its effects for precision were extremely bad: lots
of inadequate unifications were allowed.

In principle, this approach would be used in the search. Every term in the index which
matched the terms on the query would be used to retrieve the related documents. However,
this technique proved not to be suitable because of inadequate unifications, according to the
results provided in Table 2. Actually, the way it was being dealt with was completely incorrect.
Consequently, a new strategy turned out to be required: it is not the possible matchings that
should be recognized in the search; search must look for exact words. Instead, the index must
be properly constructed in order to incorporate misspelling issues. That is explained in the
next section.

Briefly, the trouble with using a smooth search process is that it is not taken into account
knowledge about authenticity of a word: is a word really “that” word? If it is an authentic
word, it must not match with other authentic words; if it is not authentic, it should not exist
in the index: it is a misspelling. A smooth unification would recognize similar words. This is
not the point: only the intended word and its misspellings should be recognized.

1In this work, the value of θ was 3.
2Additional letters are treated as missed letters, as none of the terms is considered to be right a priori.

CACIC 2003 - RedUNCI 720

4 Paraconsistent Logic as a Foundation for Term Au-

thentication

Although noise tolerance allowed the search engine to recognize misspelled words, the results
were quite bad, as shown in Section 3. The trouble arises when an arbitrary term is compared
with similar authentic terms3. The tolerant unification was designed not to care about some
differences when comparing two terms in order to allow partial matchings. Unfortunately, the
tolerant unification also matches two authentic terms which are alike spelled but have distinct
meanings. The tolerant unification cannot realize when two similar terms are both authentic
because it does not have any knowledge concerning this issue.

Checking whether a term exists in a thesaurus is not enough. Normally, a misspelled term
is not found in a dictionary; however, the mistake term might have been spelled in such a way
that it still exists in a thesaurus. Plainly, authenticity of a term is not just the same as its
existence in a dictionary. Since there is no contextual aid due to defficiencies of the paradigm,
the terms of the indices and their respective frequencies in the documents are all the available
information to decide whether a term t2 is either just the authentic term t1 misspelled or,
indeed, another authentic term. If it is a misspelling, its frequency should be added to t1’s and
its entry removed from the index.

By analogy, it is possible to raise some craw issues about what would make someone recog-
nize misspellings and authentic words properly. Simple heuristics like term frequency, document
frequency and knowledge concerning the existence of that word can evolve to more complex
heuristics. Alternatively, different views might be collected and the whole bag of heuristics used
together. A crucial point must be observed here: how to eliminate the inconsistency from the
knowledge base? An elegant and light strategy is, certainly, not to worry about the inconsistent
cases and to query the knowledge base through an intermediate module in such a way that an
answer could recognize inconsistencies. Thus, the problem of inconsistency would be postponed
and the decision making process could predict actions for each case directly in the application.
ParaLog [1] is supposed to be such a module.

4.1 Notes on Paraconsistent Logics

ParaLog is a reasoner based on Paraconsistent Logics [3] implemented on Prolog. Thus, Par-
aLog is able to represent explicitly a negation, instead of just supressing it4 — like Prolog
does — and to identify inconsistencies. There are several Paraconsistent Logics; the interesting
one here, which is the basis for ParaLog , is the Infinitely Valued Paraconsistent Logics, whose
lattice is showed in Equation 1.

|τ | = [0, 1] × [0, 1] (1)

The elements situated on the corners of the lattice τ defined in Equation 1 are particularly
interesting for the context of this work because together the meanings of their annotations
constitute the set {indeterminate, false, true, inconsistent}, which is also represented
by {⊥, f, t, >}. The infimum [0, 0] and the supremum [1, 1] of the lattice τ denote the
values indeterminate and inconsistent, respectively. Likewise, the elements [0, 1] and

3A term is considered authentic if it is not a spelling mistake.
4Actually, a supressed information in ParaLog is an unknown information — nothing was declared about it.

This is native from Paraconsistent Logic: no one has said it is true, as well as no one has said it is not. Thus,
at least for a while, it is neither true nor false: it is indeterminate.

CACIC 2003 - RedUNCI 721

Certainty Degree Confidence

G1 ≥ 0.5 The confidence of
p1 is assumed to be
true.

G1 ≤ − 0.5 The confidence of
p1 is assumed to be
false.

−0.5 < G1 < 0.5 p1 cannot be stood
on safely.

Table 3: Conversion of certainty degree into confidence.

[1, 0] correspond to the values false and true. Each proposition in ParaLog is qualified with
an annotation of the lattice τ . The values which compose an annotation are called evidences.
The first evidence favours the proposition and is named belief ; the other, named disbelief , is
contrary to the proposition. Both evidences may be used to determine a single discrete value
of confidence on a proposition, from the set {false, uncertain, true}, using the certainty
degree G, as defined in [3], showed in Equation 2.

G = µ− ρ (2)

Let p1 be a proposition whose annotation [µ1, ρ1] yields a certainty degree G1. So with a
certainty degree threshold φ = 0.5, for example, the assertions in Table 3 hold. According to
Table 3, if the confidence of a proposition p is uncertain, it is unwise to assume either true
or false as a default value. An alternative would be to try to find more information about p
and reevaluate it until its confidence become either true or false.

Thus far, the basis for knowledge representation of term authenticity in this paper has been
defined. The process which determines whether a term either is or is not authentic is described
next.

4.2 Heuristics for Term Authentication

Firstly, some craw heuristics related to term, based on the supposed relations between confidence
on the authenticity of an arbitrary term and behaviour of some features noticed in collections,
were defined. the higher the value of a certain feature is, the more the confidence on the
authenticity of the referred term increases or decreases, except for the feature Existence in
WordNet which indicates that if a term exists in the WordNet , then the confidence on the
authenticity of it increases.

However, continuous values seem to be at least a little bit harder to be dealt with than
discrete values — such as the value of the feature Existence in WordNet. So the behaviours of
the features were converted from continuous to discrete for simplicity. That allowed the use of
facts with annotations corresponding only to values in the subset {false, true} of the lattice
τ . The resulting heuristics are presented in Table 4. Opponents of a term t are all the terms
in the collection which are similar to t according to the smooth term unification. An arbitrary
tf is always discriminated by a term and a document, while document frequency (df) is only

CACIC 2003 - RedUNCI 722

Existence of Present Authenticity

At least one
high tf

+ �

High df + �
High frequency
of high-tfs

+ �

High frequency
of opponents

+ �

Referred term
in WordNet

+ �

High frequency
of high-tf op-
ponents

+ �

At least one
high-tf oppo-
nent

+ �

Table 4: Discrete heuristics to determine the authenticity of a word.

discriminated by a term. Thereby, an index of absolute frequency representing term frequency
(tf) is required.

The developer must define the thresholds for a decision between which of the elements
of the set {false, true} — that, actually, denote {¬ high, high} — should be attributed
to a term in order to represent the corresponding fact with that information along with the
proper annotation. In the tests presented in this paper, dynamic thresholds λk were obtained
as indicated in Equation 3 for each of the k features evaluated.

λk = fk (3)

In Equation 3, fk means the global average of the values of the feature k5. In this approach,
each term t is evaluated according to each of the features k. Thereby, the result of the procedure
applied in this section is a vector V = {v1

1, v
2
1, · · · , vk1 , v1

2, v
2
2, · · · , vk2 , . . . , v1

n, v
2
n, · · · , vkn}, where

vki is internally represented as a fact:

(a) either feature k(ti)
[0, 1] if f ik < λk;

(b) or feature k(ti)
[1, 0] otherwise (f ik ≥ λk).

4.3 The Process of Term Authentication

Thus far, every term was represented by a set of facts concerning the presence of features
observed in the collection, as defined in the previous subsection. In other words, there is more
explicit information about terms of the collection than before. Moreover, the different sorts of
information somehow relate to each other.

The specific kinds of information about terms allow the construction of rules based on
domain knowledge representing particular opinions about authenticity of a term, as there are

5Notice there is exactly one value of each feature for each term.

CACIC 2003 - RedUNCI 723

Real Class

+ −
Predicted + 4165 25

Class − 27 59

Table 5: Predicted Results × Manual Reference.

relationships among types of information. These opinions were implemented as clauses named
authenticity and annotated with any element of the lattice τ and are formed by conjunctions
of queries concerning the information in Table 4 annotated only with elements of the subset
{false, true} of the lattice τ . The high number of possible combinations permits inconsistent
results. Therefore, ParaLog is used as a query module to retrieve the evidences related to the
authenticity of a given term.

Finally, both evidences — belief and disbelief — are used to get the certainty degree of
authenticity of that term as showed in Equation 2. Consequently, the confidence of a term
can be obtained as in Table 3.

With knowledge of authenticity of terms available, it is possible to create a new index of
absolute frequency corrected. Let I be the index of absolute frequency of all terms in the
collection, where rows are terms and columns are documents. Each element ei, j contains the
frequency of the term ti in the document dj. The confidence of each term ti is evaluated: if the
term ti is authentic, then its entry in the index I is conserved; otherwise, each of its frequencies
F j
i is equally divided among all their authentic opponents Oi, increasing the frequencies F j

Oi
,

and its entry is removed from the index I.
The argument of this paper about the process adopted here is that a term which is not be-

lieved to be authentic should not exist in the index; so its entry should be removed. Nonetheless,
it might be a misspelling of a term similar to it. As it is not clear which of their authentic
opponents it could be, dividing the frequency of the fake term among their authentic opponents
is a valid heuristic because if the entry were just removed, the frequency of the fake term would
be lost. In Subsection 4.4, the accuracy of the authentication process is measured, taking as
reference a manual authentication.

4.4 Evaluation of the Authentication Process

The results obtained with the automatic authentication of terms were compared with the results
expected according to a human-made reference. Table 5 contrasts those results.

The high value of real positives mistakenly predicted as negatives are due to the high number
of acronyms. Acronyms are difficult to be identified without context. Thus, they are likely to
be wrongly classified as not authentic if they have a low frequency.

Words misspelled frequently may be motivated to be considered authentic. On the other
hand, if a term is misspelled and there are not enough ocurrences of its correct form to allow
the identification of the authentic form, it is almost impossible to figure out the right form if
it does not appear in WordNet .

More than one mistake inside the interval delimited by the smooth unification threshold
forbids the identification of misspellings. To cope with that, a more robust method is needed.

Table 6 makes a comparison of the accuracy discriminated by class. The remarkable
difference between the positive and the negative classes enhances the ease to identify authentic
words with the use of tf , df and WordNet . The main exceptions are the acronyms. Whereas

CACIC 2003 - RedUNCI 724

Class Accuracy Percentages

Positive 0.9935
Negative 0.7023
Balanced General 0.8353

Table 6: Automatic Authentication Accuracy Percentages Discriminated by Class.

Wordnet

Engine

Index

tf−idf

Wordnet

Stemming

C
ollection

User
Interface

Word
Authentication

Frequency

Figure 1: The system architecture.

the noise is small, the classes are not balanced — so the total accuracy rate needs to take into
account that information.

The result of the process described in this subsection is a new absolute frequency index
derived from the original one, where not all the terms encountered in the collection are present,
because some of them were detected as misspellings and their correspondent frequencies were
distributed among the possible intended terms.

5 The System Architecture

This section presents the architecture of the program which implements the issues discussed
along the paper. The architecture is depicted in Figure 1 and the system is explained step by
step.

5.1 Indices Generation

The collection utilized in the whole set of experiments was obtained from the DAML ontologies
repository at http://www.daml.org/ontologies. This repository is composed of ontologies

CACIC 2003 - RedUNCI 725

constructed to serve as vocabularies for exchanging of information in several domains. Each
ontology is stored in a file, so an ontology is a document. The ontologies are represented in the
XML syntax but following RDF and DAML+OIL vocabularies. DAM+OIL is an expansion
of RDF, adding several knowledge representation functionalities [9]. Although RDF has a lot
of tags representing properties, only two are interesting for this work: label, which conveys
the name of a resource in natural language, and comment, which provides a description of a
resource. Thus, only the values of those two properties are used to index a document. Ideally,
each resource should contain those properties; unfortunately, the real world does not use to
collaborate in this case; some documents do not even qualify one resource with a label or
comment property, becoming useless.

Once the collection had been downloaded — not the whole collection, because some links
did not work —, the first step was to generate indices. A list of stop words helped to select the
words to include in the indices. Next, and index of absolute frequency was generated.

Secondly, using the paraconsistent knowledge rules about authenticity of words presented
in the Appendix A, a new index was obtained according to the procedures described in
Subsection 4.3, reducing noise due to misspelled words. Example facts concerning the extra
information automatically acquired about terms are provided in the Appendix B.

Morphological WordNet operations were then used to reduce this new index to a normalized
form, where only primitive words exist. Two terms which have the same stem are counted onto
the same entry of the index, regarding the documents which they belong to. That was the only
kind of stemming applied on the terms along the whole process. Words which did not have a
normal form in WordNet entered the index under the form encountered.

Finally, that last index generated so far is used to create the ultimate index: a tf-idf index.
This is the ideal index upon which the search will be carried out. Recall that this index is
normalized — only primitive forms — and noise due to misspelling errors is inhibited. The
use of a classical measure was also a primary goal of this work, because it permits comparative
analysis, facilitating, hence, comprehension.

5.2 The Search Mechanism

Once the desired keys are provided, they are passed to the WordNet module. The set of keys is
then normalized according to the stemming described in Subsection 5.1 — each not primitive
key is substituted by its primitive form — and query expansion is executed, as described in
Section 2. The result is an augmented query in a normalized form.

This resulting query is then passed to the vector model search engine. This engine uses the
tf-idf index to retrieve the supposed relevant documents. Documents with similarity δ ≥ 0.3
are retrieved in a ranked fashion6.

6 Related Work and Remarks on this Work

The Agent Semantic Communication Service (ASCS) [7] is a search engine where agents perform
search based on DAML annotated documents. The developers argue their tool is very accurate
since the search is semantic oriented — based on DAML tags.

Relationships among words are discovered in [8] through WordNet. It finds related words
by looking for candidate words in the definition of a concept. If the candidate word exists in

6The similarity measure is defined as the classical one for vector model search.

CACIC 2003 - RedUNCI 726

the definition of the referred concept, then it is assumed to be a related word.
A lot of work on IR can be found in [2]. Nonetheless, all the approaches are strict knowledge-

free IR techniques with some customizations.
Several documents of the collection did not have label and comment properties. Also, some

of the links in the ontologies repository were no longer active, making it impossible to fetch the
correspondent ontologies. All those problems were harmful for the search.

7 Conclusion and Suggestions for Future Work

It seems fairly clear knowledge is required in IR. The targets of this community are too much
related to cognitive processes because, in essence, they want to do something people use knowl-
edge to do — memory is the basis for every cognitive process in human beings.

New issues about authenticity of terms are as well important. As the Internet is filled of
mistakes, they cannot be left out.

AA important point to discuss is the use of Data Mining techniques in the IR field. In Data
Mining, there is usually no or little knowledge about the database. The aim is to mine the
database in order to discover that knowledge. It seems weird to use Data Mining techniques in
IR: the goal is not to discover knowledge; the goal is to understand texts. Experts have that
knowledge. Thereby, expert knowledge should be used to understand text. In short, there is
no need to look for knowledge because it is already known.

All the extra processing time is spent in indices generation. Thus, there is almost no extra
time for search but the query expansion.

It was not taken advantage of knowledge concerning the documents in which the terms
appear, except by the df measure. More specific paraconsistent rules might have been build as
well as improvements in the process of word authentication as a whole might have been added.

References

[1] Bráulio Coelho Ávila. Uma Abordagem Paraconsistente Baseada em Lógica Evidencial
para Tratar Exceções em Sistemas de Frames com Múltipla Herança. PhD thesis, Escola
Politécnica da Universidade de São Paulo, São Paulo, 1996.

[2] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM
Press, New York, 1999.

[3] Newton C. A. da Costa et al. Lógica Paraconsistente Aplicada. Atlas, São Paulo, 1999.

[4] G. A. Miller et al. Five Papers on WordNet. CLS Report 43, Cognitive Science Laboratory,
Princeton University, 1990.

[5] Christiane Fellbaum, editor. WordNet: an electronic lexical database. The MIT Press,
Cambridge, Massachusetts, 1998.

[6] Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model and Syntax.
W3C World Wide Web Consortium, February 1999. W3C Recommendation.

[7] John Li, Adam Pease, and Christopher Barbee. Experimenting with ASCS Seman-
tic Search. Teknowledge Corporation, Palo Alto, CA. Available on the Internet at
http://reliant.teknowledge.com/DAML/DAML.ps on Feb 19th 2002.

CACIC 2003 - RedUNCI 727

[8] Nitish Manocha, Diane J. Cook, and Lawrence B. Holder. Structural Web Search Using a
Graph-Based Discovery System. intelligence: New Visions of AI in Practice, 12(1):20–29,
2001.

[9] Frank van Harmelen, Peter F. Patel-Schneider, and Ian Horrocks. Reference Description of
the DAML+OIL (March 2001) — Ontology Markup Language. Available on the Internet at
http://www.daml.org/2001/03/reference.html on Feb 19th 2002, March 2001. Work in progress.

A Paraconsistent Rules used in Word Validation

Here are some of the rules upon which a ParaLog query is triggered. The predicate authentic is
used to query the knowledge base. Values between square brackets are the evidences attributed
to the respective clause. The predicates which constitute the body of each clause express the
features involved. The names of the predicates are significative for each feature, so there is no
need for captions.

...
authentic(T):[0.8, 0] <--

high_tf(T):[1,0] &
high_freq_opponents(T):[1,0].

authentic(T):[1, 0] <--
high_freq_high_tf(T):[1, 0].

authentic(T):[0.7, 0] <--
high_tf(T):[1, 0] &
high_df(T):[1, 0].

authentic(T):[0, 0.7] <--
high_tf_opponent(T):[1, 0] &
high_tf(T):[0, 1] &
high_df(T):[0, 1].

...

B A Piece of the Information Automatically Acquired

Some facts representing the information automatically acquired about terms of the collection
are supplied below as examples. There is a clause for each pair termfeature.

...
high_tf(person):[0, 1].
high_df(person):[1, 0].
high_freq_high_tf(person):[0, 1].
high_tf_opponent(person):[0, 1].
high_freq_opponents(person):[1, 0].
high_freq_high_tf_opponents(person):[0, 1].
wordnet(person):[1, 0].
...

CACIC 2003 - RedUNCI 728

