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Abstract

The growing number of control models based on combinations of neural networks, fuzzy sys-
tems and evolutionary algorithms shows that they represent a flexible and powerful approach.
However, most of these models assume that there is enough CPU power for the evolutionary and
learning algorithms, which in a large number of cases is an unrealistic assumption. It is usual
that the control tasks are performed by small microcontrollers, which are very near to orembed-
ded in the plant, with low power, low cost and dedicated to a single task. This work proposes
an architecture for evolution and learning in adaptive control, specifically designed to operate in
microcontrollers based environments. An evaluation on a simulated temperature control environ-
ment is provided, together with details on the current hardware implementation.

Keywords: Neural Networks, Evolutionary Algorithms, Fuzzy Systems, Control.

1 Introduction

It is widely recognized the need to complement the conventional control theory with elements like
logic, heuristic and reasoning in order to deal with complex, nonlinear and imprecisely defined pro-
cesses [7, 12]. In particular, fuzzy logic (FL), neural networks (NN), evolutionary algorithms (EA)
and their combinations have been proven effective in this context [5, 6].

Fuzzy logic in control applications can be considered as a generalization of conventional rule
based expert systems, where the input and output variables are defined in terms of linguistic values.
Usually, the number of rules that are necessary for control applications are reduced by orders of
magnitude [12], when compared with the standard approach based on expert systems. However, two
problems remain: (1) the definition of the rule base is still a complicated process that depends on the
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expert knowledge, and (2) there is no formal procedure to determine the parameters of the resulting
fuzzy system.

Neural networks consist of a set of interconnected processing elements that can learn an input-
output mapping by modifying its parameters. They can be trained in order to learn the mapping
between the plant state and the actuating commands, producing a working controller [14, 5, 3, 2].
However, obtaining training data for a controller is very difficult and expensive in most real environ-
ments [7].

The approaches followed by fuzzy logic and neural networks to solve a control problem are clearly
different: fuzzy logic can be used when expert knowledge about the problem is available [11, 13], and
neural networks are appropriate when there is enough process data. However, both models are used
to build non linear systems, with neural networks representing the variables numerically and fuzzy
systems representing them symbolically. Models based on a combination of fuzzy logic and neu-
ral networks have been proposed, trying to get together the advantages of both approaches: neural
networks provide learning capacity and fuzzy systems an explicit representation scheme for knowl-
edge [12].

It is well known the neural network ability to represent the dynamic behavior of physical pro-
cesses, but learning and structure definition can be very complicated. Evolutionary algorithms are a
search technique inspired by natural evolution, which perform a population based search strategy [6].
The possible solutions are codified as individuals in the population that compete and exchange infor-
mation with others. Evolutionary algorithms are very robust, since they do not depend on gradient
information and can deal with problems where input-output mappings are not provided or even ex-
plicit objective functions are not available [15]. Evolutionary algorithms have been used successfully
to obtain parameters for fuzzy controllers [9, 8] and for neural networks [7, 5, 15].

The growing number of control models based on combinations of neural networks, fuzzy systems
and evolutionary algorithms shows that they represent a flexible and powerful approach [1]. However,
most of these models assume that there is enough CPU power for the evolutionary and learning
algorithms, which in a large number of cases is an unrealistic assumption. It is usual that the control
tasks are performed by small microcontrollers, which are very near to orembedded in the plant,
with low power, low cost and dedicated to a single task. Today, the industry sells ten times as many
microcontrollers as microprocessors, making a proper solution based on these new techniques (NN,
EA, FL) very appealing. The last generation of microcontrollers introduces a full fledge Ethernet
controller as a main component, providing the possibility to design a network based control algorithm.

This work proposes an architecture for evolution and learning in adaptive control, specifically
designed to operate in microcontrollers based environments. The two main objectives of this archi-
tecture are: (1) the development of a fuzzy logic controller to be executed on a microcontroller in
order to control a process (plant), and (2) the automatic detection of changes in the control task and
the corresponding adaptation of the fuzzy logic controller in the main computer system to meet the
new requirements. Section 2 presents the proposed adaptive control architecture. Section 3 explains
the dynamic process modeling using neural networks, section 4 shows details on the fuzzy controller,
section 5 gives details on the evolutionary algorithm used and section 6 introduces the quality moni-
toring system. An example of this architecture is presented in section 7 and the details on the current
hardware implementation in section 8.
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2 Adaptive Control Architecture

The proposed adaptive control architecture is shown in figure 1. The microcontroller performs the
control task by using a fuzzy controller obtained from an evolutionary neural network (ENN). The
evolutionary algorithm runs on a computer system that is connected through the network and not on
the microcontroller itself. The microcontroller requests evolutionary update of the fuzzy controller
when it detects that it is necessary to adjust the parameters of the current controller.

COMMUNICATION

NNM

COMMUNICATION

PBTA

PROCESS

COMPUTER SYSTEM

FLC

Evolutionary Algorithm Model Definition Model Update

AM

MICROCONTROLLER

PATTERN SELECTION

ERROR DETECTION

QMS

NNM NNM

Figure 1: The proposed Adaptive Control Architecture (NNM: neural network model, AM: analytical
model, PBTA: pattern based training algorithm, FLC: fuzzy logic controller, QMS: quality monitoring
system).

The architecture consists of two main components: the set of modules that run on the main com-
puter system, and the modules that are executed on the microcontroller. The main computer system
executes the following modules:

Model Definition : This module builds a neural network that will act as a model of the plant, based
on its best analytical representation. The neural network model (NNM) is trained to learn a
direct mapping between the plant state and the actuating commands. Details on the operation
of this module are presented in section 3.
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Evolutionary Algorithm : This module builds a fuzzy logic controller by using evolutionary tech-
niques. Each individual in the population is a controller that is evaluated by considering its
performance in the control of the neural network model. The best evolutionary fuzzy logic
controller is selected for the control task. Section 5 gives details on this module.

Model Update : This module updates the parameters of the direct neural network model (NNM) by
using a pattern based training algorithm (PBTA). This module is executed only when the current
fuzzy logic controller exhibits poor performance, due to changes in the non linear properties of
the plant. Details on the operation of this module are presented in section 3.

Communication : This module is responsible of the data transfer between the modules in the main
computer system, and the modules in the microcontroller.

The microcontroller executes the following modules:

Fuzzy Logic Controller : It is a fuzzy logic controller that performs the actual control task by using
the parameters provided by the evolutionary algorithm. Section 4 gives details on it.

Error Detection : This module detects the differences between the expected and the actual behavior
of the controller. When the difference goes beyond a certain limit, it triggers the pattern selec-
tion mechanism, the update of the direct model and the evolutionary step in order to update the
fuzzy logic controller. More details are presented in section 6. This module and the next one
together belong to the so called Quality Monitoring System (QMS).

Pattern Selection : This module is responsible for selecting adequate patterns for the retraining of
the direct model when the characteristics of the plant have changed in time. Details on the
operation of this module are presented in section 3.

Communication : This module is responsible of the data transfer between the modules in the micro-
controller, and the modules in the main computer system.

3 The Direct Model

Evolutionary algorithms have been seldom used for real time adaptation of fuzzy logic controllers,
since they require a large number of evaluations of the target system. Usually, an accurate simulation
model for evaluations is used. This is also the case in our architecture. The model is represented with
a neural network that has to learn the mapping between the plant state and the actuating commands, or
in other words, it has to become a model of the plant. Since this information is not usually available
as a set of input-output patterns, the network is built by performing training with an (approximate)
analytical model of the plant developed by a human expert (differential equations, etc.). This task is
performed by the Model Definition module in the proposed architecture (see figure 1). The neural
network is a standard feed forward network trained with the resilient back propagation algorithm (see
figure 2). The input patternx(t) = (xt; xt�1; : : : ; xt�p) in time t corresponds to the regression vector
of the p past input valuesxt; xt�1; : : : ; xt�p, and the output pattern corresponds to the plant output
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y(t) = (yt) at time t. Note that eachx andy can be vectors depending on the number of status
variables and plant outputs. This regression model is necessary since usually the plant behavior is not
a direct function of its inputs. The selection ofp is problem dependent.

delay

delay

x

y

...

−

+

Analitical Model

Figure 2: The direct model of the plant represented with a neural network trained with an analytical
representation of the target system.

The neural network model can be not enough accurate due to: (1) incorrect definition of the analyt-
ical model or (2) changes in the behavior of the plant. In both cases, the situation will be signaled by
the Error Detection module, causing a set of patterns to be selected by the Pattern Selection module.
The direct neural network model will then be updated with standard learning on this set of patterns
by the Model Update module.

4 The Fuzzy Controller

A number of different models of fuzzy systems have been proposed in the literature [1]. The main
component in all of them is a rule base, where the main differences are in the definition of the fuzzy
reasoning method used. The fuzzy reasoning method corresponds to the inference operations that are
performed on the fuzzy rules. In our work, we have selected one of the most successful fuzzy system
on control applications: the Takagi-Sugeno fuzzy system [17, 16, 13].

A Takagi-Sugeno fuzzy system hasn input variablesx1; x2; : : : ; xn and one output variablev.
Each input variablexi is fuzzified bypi fuzzy setsAij (pi � 1,1 � i � n,1 � j � pi) whose
membership functions�iki (ki = 1; 2; : : : ; pi) are arbitrarily defined. There must be a rule for each
combination of fuzzy sets, and the output is defined as a linear combination of input variables. As an
example, the definition of the k-th (1 � k � !) rule follows:

if x1 is A1 and : : : and xn is An then vk = a0k + a1kx1 + : : :+ ankxn

where theAi are the input fuzzy sets for each input variable (Ai 2 fAi1; : : : ; Aipig), anda0k andaik
are adjustable real valued parameters.

The first step in the evaluation of the fuzzy system is the computation of the membership functions
�Ai

(xi) for each input valuexi. As an example, symmetric triangular membership functions with
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centermi and widthdi are defined as follows:

�Ai
(xi) =

�
1� jxi�mij

di
if jxi �mij < dj

0 elsewhere
(1)

Then the membership values are combined in a scalar value that corresponds to the rule firing
strengthwk(x) with a standardt-norm operator, with product and minimum as usual selections. As
an example, the product combination is defined as follows:

wk(x) = �A1
(x1)� : : :� �An(xn) (2)

wherex =< x1; : : : ; xn > is the complete input vector.
The firing strength of each rule is computed as the ratio of its firing strength to the sum of all

rules’ firing strengths as follows:

wk =
wkPn

i=1wi

(3)

The output of the fuzzy system is then computed by adding the output value produced by each
rule multiplied by its weighted firing strength:

v(x) =
!X

k=1

wk � vk(x) (4)

5 The Evolutionary Algorithm

The evolutionary algorithm evolves a population of individuals, with each one representing a fuzzy
controller. All of them are evaluated on the simulated plant (the neural network model), and the best
one is selected for the control task.

The fuzzy system is represented by using the Fuzzy Voronoi Representation (FVR), which is an
extension of the representation proposed in [10], now used to model the joint fuzzy set defined by the
antecedents of the fuzzy rules by using Voronoi diagrams. The advantages of this approach are the
simplicity involved in its definition, the possibility it offers to use geometric properties for fuzzy rule
manipulation and, since it represents only one fuzzy set for each rule, the reduced computation time.
The last one is particulary interesting in a microcontroller based environment.

A Voronoi diagram induces a subdivision of the space based on a set of points calledsites. An
important property is that a number of operations can be executed on its topological structure just by
operating with the sites. Formally [4], a Voronoi diagram of a set ofn pointsP is the subdivision
of the plane inton cells, with the property that a pointq lies in the cell corresponding to a sitep i
if and only if the distance betweenq andpi is smaller than the distance betweenq andpj for each
pj 2 P with j 6= i. Figure 3 shows an example of a Voronoi diagram in 2D. A related concept is
the Delaunay triangulation. A triangulation [4] of a set of pointsP is defined as the maximal planar
subdivision whose vertex set isP . A maximal planar subdivisionS is a subdivision such that no
edge connecting two vertices can be added toS without destroying its planarity. In other words, any
edge that is not inS intersects one of the existing edges. A triangulationT of a set of pointsP is a
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Delaunay triangulation if and only if the circumcircle of any triangle inT does not contain a point
of P in its interior. A circumcircle of a triangle is defined as the circle that goes through its three
summit. Figure 3 shows an example of a Delaunay triangulation in 2D

Figure 3: An example of a Voronoi diagram defined by a set of points in 2D (left) and the correspond-
ing Delaunay diagram (right).

By using the FVR representation, each individual contains a variable number of fuzzy rules, where
each rule is defined in terms of its joint fuzzy set. As an example, the k-th (1 � k � !) rule using the
FVR in a Takagi-Sugeno fuzzy system can be defined as follows:

if x is Ak then vk = a0k + a1kx1 + : : :+ ankxn

whereAk is a joint fuzzy set,x =< x1; x2; : : : ; xn > the input vector defined as the concatenation of
all input variablesxi (1 � k � n) , anda0k andaik (1 � i � n) are adjustable real valued parameters.

Each rule defines the joint fuzzy set by just specifying a point in the input domain. This point
corresponds to the center of the Voronoi region. A set of fuzzy rules defines a complete Voronoi
diagram. Note that with a one dimensional input space, the joint fuzzy set corresponds to a single
fuzzy set. In two dimensions, the input space is partitioned as shown in figure 3.

The Voronoi diagram defines just the partition of the input space. The membership value of the
input vectorx to the joint fuzzy setsAk can be defined in different ways, depending on the overlapping
criteria and the shape of the joint fuzzy set. A useful joint fuzzy set can be defined as follows:

�Ak
(x) = l1(x)

where l1(x) is the first barycentric coordinate ofx in the simplex T defined by the Delaunay
triangulation to whichx belongs. This coordinate will get the value1 whenx is the center of the
region, and it will go down linearly to 0 in the centers of the neighbor joint fuzzy sets. In order to
allow this function to be defined everywhere, a very large triangle containing all points in the domain
is defined. An example of this joint fuzzy set in FVR is shown in figure 4.

The crossover and mutation operators are defined in terms of geometric operators, as detailed
in [10].
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Figure 4: An example of a joint fuzzy set. Membership is maximum at the center of the Voronoi
region and it goes down linearly to 0 in the centers of the neighbor Voronoi regions.

6 The Quality Monitoring System

The Quality Monitoring System is composed of two submodules: the Error Detection and the Pattern
Generation modules. The function of the Error Detection module is to detect failures in the perfor-
mance of the fuzzy controller, based on the changes in the status variables in time. It is defined by
the human operator and it is clearly dependent on the characteristics of the plant. If it is possible to
associate an scalar errore(t) for each state of the plant at timet, then the Error Detecting module
triggers when:

1

N

�=tX
�=t�N

e(�)2 > �

computed for the lastN time steps and for a given� value. In other situations, the error for each
step can be defined in terms of differences between thek normalized state variablesxi(t) and specific
target valuesx0

i(t). In this case, the Error Detecting module triggers when:

1

N

�=tX
�=t�N

kX
j=1

(xi(�)� x0
i(�))

2 > �

The error can be defined also with other methods, like for example a fuzzy system properly designed,
as for example in the GARIC model [3].

The Pattern Generation module selects a set of patterns[x(t); y(t)], from the time interval in which
the fuzzy controller cannot control the plant with the expected performance. They will be used by the
Update Model module to enhance the neural network to be adapted to the new plant reality. Then the
evolutionary algorithm will obtain a new controller for it.

7 Simulation Experiment

The proposed architecture was evaluated in a temperature control simulated environment, as shown in
figure 5. The Fuzzy Logic Controller can control the temperature of the physical medium by actuating
on a heater. The temperature of the medium is measured by a thermometer.

The analytical equation that defines the simulated environment is:

T (t) = Ws+ exp(�
�t
c�

)(�s+ T0)
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where� is the heat transfer coefficient,� is the medium density,c is the specific heat,T0 is the initial
temperature,s is the control signal andW is the heater power.

heater termomether

e

de
FLC

Medium

s t

ref

Figure 5: The simulation environment of the temperature control system.

The objective of the control task is to keep the medium at a desired temperatureref , called the
reference value. The controller has two inputs: the errore computed as the difference between the
reference and the current temperature value, andde which is the derivative of the error, or in other
words, the change of the error in time.

An example of the plant behavior is shown on the left plot in figure 6. Thex axis corresponds to the
time and they axis to the temperature. The reference value is 50 degrees and the initial temperature
T0 is 20 degrees. The other parameters are� = 30, � = 2200, c = 170 andW = 1. A neural
network is trained with the resilient back propagation algorithm to emulate the behavior of the plant.
The second graph displays the NNM behavior when applied to the same input, showing that it is an
approximate model of the plant.
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Figure 6: The plant behavior (left) and the neural network model behavior (right) with the same
inputs.

The Evolutionary Algorithm is then used to get a fuzzy logic controller. The graph on the left
of figure 7 shows the signal the best controller sends to the heater in order to reach the reference
temperature. Note that initially this value is high, and then it is lowered in order not to overpass the
reference value. The graph on the right of the same figure shows the changes in temperature in the
plant.

In order to simulate a physical change in the characteristics of the system, the value ofW is re-
duced by 20%, simulating a reduction of the power of the heater. The graph on the left of figure 8
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Figure 7: The signal produced by the best fuzzy controller (left) and its corresponding temperature
change in the physical medium.

shows that now the controller cannot reach the reference temperature. After a number of time steps,
the quality monitoring system discovers the situation and starts the pattern selection. The NNM is re-
trained with this new pattern set reflecting the new behavior of the physical system. The evolutionary
algorithm is then executed in order to build a new controller. The graph on the right of the figure 8
displays the behavior of the new controller, showing that now it can control the system.
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Figure 8: The behavior of the original controller (left) and the new controller (right) on the modified
physical system

.

8 Current Hardware Implementation

A temperature control system is currently under implementation in order to evaluate the proposed
architecture in a real hardware environment. The microcontroller is a DS80C390 from Maxim semi-
conductors, with 512K flash and 1MB static RAM, Ethernet connection and a proprietary real time
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operating system. A set of digital thermometers and digital potentiometers, together with a heating
system based on resistors is being used to build the evaluation system.

9 Conclusions

An architecture for fuzzy logic controllers evolution and learning in microcontroller based environ-
ments was proposed. Neural network learning is used to build accurate models of the plant. Evo-
lutionary algorithms are used to build the fuzzy logic controller. A special representation for the
individuals was proposed in order to take advantage of geometric properties that showed to be useful
in other contexts. In this way, it is possible to generate more efficient fuzzy controllers, making them
more adequate to be executed on microcontrollers. The architecture was evaluated in a simulated
temperature control environment, showing that it is responsive to changes in the controlled process.
Currently a hardware implementation is under study, in order to evaluate the proposed architecture in
a real environment.
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