
SOLUTIONS TO THE DYNAMIC AVERAGE TARDINESS PROBLEM
IN SINGLE MACHINE ENVIRONMENTS

De San Pedro M., Lasso M., Villagra A., Pandolfi D.
Proyecto UNPA-29/B0321

División Tecnología
Unidad Académica Caleta Olivia

Universidad Nacional de La Patagonia Austral
Ruta 3 Acceso Norte s/n

(9011) Caleta Olivia – Santa Cruz - Argentina
e-mail: {mlasso,dpandolfi,edesanpedro,avillagra}@uaco.unpa.edu.ar

 Phone/Fax : +54 0297 4854888

Gallard R.
Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)2

Departamento de Informática
Universidad Nacional de San Luis

Ejército de los Andes 950 - Local 106
(5700) - San Luis -Argentina
e-mail: rgallard@unsl.edu.ar

Phone: +54 2652 420823
Fax : +54 2652 430224

Abstract

In dynamic scheduling arrival times as well, as some or all job attributes are unknown in advance.
Dynamism can be classified as partial or total. In simplest partially dynamic problems the only
unknown attribute of a job is its arrival time rj. A job arrival can be given at any instant in the time
interval between zero and a limit established by its processing time, in order to ensure finishing it
before the due date deadline. In the cases where the arrivals are near to zero the problem becomes
closer to the static problem, otherwise the problem becomes more restrictive. In totally dynamics
problems, other job attributes such as processing time pj, due date dj, and tardiness penalty wj, are
also unknown.

This paper proposes different approaches for resolution of (partial and total) Dynamic Average
Tardiness problems in a single machine environment. The first approach uses, as a list of
dispatching priorities a final (total) schedule, found as the best by another method for a similar
static problem: same job features, processing time, and due dates. The second approach uses as a
dispatching priority the order imposed by a partial schedule created by another heuristic, at each
decision point. The details of implementation of the proposed algorithms and results for a group of
selected instances are discussed in this work.

Keywords: Evolutionary Scheduling, Average Tardiness, Dynamic scheduling, conventional
heuristics.

1 The Research Group is supported by the Universidad Nacional de La Patagonia Austral.
2 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote
Science and Technology).

CACIC 2003 - RedUNCI 729

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301043163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

Manufacturing organizations are frequently subject to several sort of changes, such as new job
releases, machine breakdowns, job cancellation and due date or time processing changes. Due to
their dynamic nature, real scheduling problems are computationally complex and the time required
to compute an optimal solution increases exponentially with the size of the problem [15].
Particularly in Single Machine Scheduling Problems (SMSP) a set of jobs should be planned on a
single machine, each job is processed one at a time, conflicting objectives should be accomplished
and frequently, a number of restrictions should be satisfied. The study of these problems is very
important because good solutions provide a support to manage and model the behaviour of more
complex systems. In these systems it is important to understand the working of their components,
and quite often the single-machine problem appears as an elementary component in a larger
scheduling problem [3]. SMSP can be classified as static or dynamic. In static problems, all job
attributes are known before scheduling starts, while dynamic problems, ranges from partially
dynamic where job release times are unknown to totally dynamic where all job properties are
unknown.

Evolutionary algorithms have been successfully applied to solve scheduling problems [9, 13, 16].
Current trends in evolutionary algorithms make use of multiparent [4, 5] and multirecombined
approaches [6, 7, 8]. The latter, known as MCMP (Multiple-Crossovers-on-Multiple-Parents),
allows a better balance between exploration and exploitation of the search space. A new variant of
this approach applied to static scheduling problems [10,11, 12] is known as MCMP-SRI. Here, an
individual selected from the old population and designated as the stud (S), provides to the
multirecombination process good features of the evolved population while a set of random
immigrants (RI) provides genetic diversity to avoid premature convergence. Dispatching rules are
techniques that provide a reasonably good solution in relatively short time. An elementary rule is a
function of attributes of jobs and machines. An attribute can be any property associated with a job
or a machine and can also be constant or variable, depending on time [15]. A composition of a
dispatching rule is a ranking expression that combines a number of elementary dispatching rules.

In this paper we propose two approaches to lead with partial and total dynamism. For partial
dynamism, to decide which job to process Dyna-S make use of schedules previously found for the
static case as a clue to build good schedules for the dynamic problem, where changes are related
only to the unpredictable job arrival times. For total dynamism Dyna-H establishes the priority of
jobs in the waiting queue, each time the resource becomes available, resorting to different
heuristics.

2. Dynamic scheduling for Single Machine Problems

We consider an environment where n jobs should be planned without interruption on a single
machine that can handle no more than one job at a time. For each job j (j = 1,...,n) it is associated
an arrival time rj, a processing time pj and a due date dj. Our problem is to find a processing order of
the jobs with minimum average tardiness, defined as follows.

∑
=

n

j
jT

n
1

1

CACIC 2003 - RedUNCI 730

}]/)()[exp{/(avjjjj kpSpw +−=π

The problem has received considerable attention by different researchers. For many years its
computational complexity remained open until established as NP-Hard in 1989 [16]. In the static
case all jobs and their properties are simultaneously available for processing in time zero, which
represents in most cases a not very common situation. In scheduling problems involved with real
production, the environments are dynamic, at least in the sense that jobs arrivals can occur at
unpredictable times. However, once the jobs arrive to the system generating a waiting queue, this
can be considered as a static case for the determination of the next task to be allocated to the
machine. Due to this characteristic, the study of the static case is important since the method that
provide good solutions can be a suitable surrogate for the cases of dynamism. We can consider the
static weighted tardiness problem, where all arrival times are equal to zero, that is rj =0 for all j, as
a relaxation of the dynamic problem.

3. Typical approaches to the static average tardiness problem

Dispatching heuristics are methods that allow deciding which job should be processed next. To do
this, a rule assigns a priority index to every job and the one with the highest priority is selected.
There are different heuristics [9] for the Static Average Tardiness problem whose principal property
is not only the quality of the results, but also to provide a job ordering (schedule) close to the
optimal sequence. The following dispatching rules and heuristics were selected to determine
priorities, build schedules and contrast their outcomes with those obtained by the evolutionary
algorithms [14].

SPT (Shortest Processing Time first) the job with the shortest processing time is selected first and in
the final schedule jobs are ordered satisfying: p1 ≤ p2 ≤ … ≤ pn .

EDD (Earliest Due Date first) the job with earliest due date is selected first and in the final schedule
jobs are ordered satisfying: d1 ≤ d2 ≤ … ≤ dn .

Hodgson Algorithm: This heuristic provides a schedule according to the following procedure,

Step 1: Order the activities in EDD order.
Step 2: If there are no tardy jobs, stop; this is the optimal solution.
Step 3: Find the first tardy job, say k, in the sequence.
Step 4: Move the single job j (1 ≤ j ≤ k) with the longest processing time to the end of
 the sequence.
Step 5: Revise the completion times and return to step 2.

This algorithm is optimal for a related objective (unweighted number of tardy jobs) and can behave
well for some instances of average tardiness.

Rachamadagu and Morton Heuristic (R&M). This heuristic provides a schedule according to the
following expression.

with Sj = [dj – (pj + Ch)] is the slack of job j at time Ch, where Ch is the total processing time of the
jobs already scheduled, k is a parameter of the method (usually k =2.0) and pav is the average
processing time of jobs competing for top priority. In the R&M heuristic, also called the Apparent

CACIC 2003 - RedUNCI 731

Tardiness Cost heuristic, jobs are scheduled one at a time and every time a machine becomes free a
ranking index is computed for each remaining job. The job with the highest-ranking index is then,
selected to be processed next.

4. Algorithms for Average Tardiness Dynamic Scheduling

For the partially dynamic case we propose Dyna-S which is based on the knowledge provided by,
an evolutionary algorithm or by different dispatching heuristics used previously to solve static
cases. The Dyna-S algorithm uses as a dispatching rule the job order provided by a total schedule S
generated by an evolutionary algorithm (MCMP-SRI), or by conventional heuristics (EDD, SPT,
Hodgson and R&M, as shown before). To schedule a job, an arrival queue is created with those jobs
whose rj are earlier or equal than the time t when the machine is available for processing. From that
waiting queue, the job that appears first in the ordering of the total schedule S, is selected to be
allocated next. Once a job is planned, it is removed from the queue. This process is repeated each
time when the resource becomes available and while there are jobs in the waiting queue.

In our experiments we contrasted two versions of the Dyna-S algorithm:

• Dyna-S-Heuristic uses as a dispatching rule the job order provided, in the total static
schedule, by the best performance heuristic.

• Dyna-S-EA uses as a dispatching rule the job order provided, in the total static schedule,
by MCMP-SRI.

For the totally dynamic case we propose Dyna-H, which applies different heuristics to determine
which job to schedule next. Essentially in Dyna-H, jobs in the waiting queue are planned according
to some dispatching rule, which generates a partial schedule. Again, a waiting queue is generated
with those jobs whose rj are smaller or equal than the time t when the machine is available for
processing. Now we produce a partial schedule (reordering the available jobs). The algorithm uses
this partial schedule as a list of dispatching priorities to schedule the next job by choosing the job in
the first position of this list. Once the job is planned, it is removed from the queue. This process is
repeated each time when the resource becomes available and while there are jobs in the waiting
queue.

Dyna-H was conceived in two different versions:

• Dyna-H-Heuristic, using one of the above listed conventional heuristics.
• Dyna-H-EA using a MCMP-SRI hibridized approach which is combined with EDD

(earliest due date) in the case of jobs with zero tardiness or with R&M in the case of tardy
jobs.

The last approach Dyna-H-EA deserves further explanation. To determine a partial schedule, which
minimizes average tardiness for the jobs in the waiting queue Dyna-H-EA, depending on the queue
length, uses an EA (if the queue length is greater than 5) or an enumerative algorithm (if the queue
length is less than or equal to 5). Furthermore problem-specific-knowledge provided by EDD or
R&M, is inserted in the algorithm. For example, in the case that a partial schedule containing only
non-tardy jobs exists, then EDD can provide this schedule. Otherwise, if at the head of the schedule
tardy and non-tardy jobs exists, then R&M determines which of the non-tardy jobs should be
scheduled first.

CACIC 2003 - RedUNCI 732

More in detail Dyna-H-EA, works as follows. Each time a new job arrives, it is inserted in a queue
waiting for the resource availability. When the machine becomes available, the algorithm checks,
by means of EDD, if a partial schedule with average tardiness zero exists. In that case the job at the
head of this partial schedule is assigned to the machine. Otherwise, depending on the waiting-queue
length an enumerative or an evolutionary algorithm is run to produce a partial schedule. Then the
job at the head of this schedule is scheduled first. In this last case, sometimes the partial schedule
produced has the following characteristics: an average tardiness greater than zero and many jobs at
the head with tardiness equal to zero. As a change in the relative order of these jobs does not change
the total average tardiness of this partial schedule, but can alter the objective value of the final
(total) schedule, the question is which of the prospective candidates should be processed first. As
R&M works with a non-lineal slack factor, which measures the time needed for a job to be tardy, it
makes a further discrimination between jobs which helps in building a good final schedule. This is
the heuristic that Dyna-H-EA uses for this special but not infrequent case.

5. Experimental Tests and Results

As it is not usual to find published benchmarks for the Average Tardiness problem we built our own
test suite with data (pj ,dj) extracted from 20 selected instances of the OR-library benchmarks for the
weighted tardiness problem, with 40-jobs problem size, [1,2]. This data was the input for
dispatching rules, conventional heuristics and our proposed EA, (MCMP-SRI). Two types of
random arrivals for each instance were generated: early, that is in the interval [0,(dj-pj)/2], and late
that is in the interval [(dj-pj)/2,(dj-pj)]. Many series of runs were performed for each algorithm on
each instance. By using the static case as a relaxation of the dynamic case, we provided as upper
bounds results from a best performer EA, obtained in previous works [14]. As two algorithms were
designed, to compare their performance we established a percentile difference with the “best of
two” performer defined as follows:

DTbest = ((Best – Best instance)/ Best instance)100
It is the percentile difference between the best individual provided by the considered algorithm and the
best individual provided by the algorithm with best performance (for a particular instance).

The following tables summarize results and are organized as follows. The first column identifies the
instance, the second column indicates the upper bound, the third column indicates the heuristic
“associated” with the heuristic version of the algorithm, fourth and fifth columns indicate mean
values for the best obtained objective values under each version of the algorithm, and the last two
columns indicate the DTbest value for each version. At the bottom of the tables, average, minimun
and maximum DTbest values are indicated.

5.1 Partial dynamism

In partial dynamism the heuristic “associated” with Dyna-S-Heuristic is the heuristic which
provided the best total schedule for the static case. Tables 1 and 2 show the results obtained under
each approach (early and late arrivals) for the selected instances. For each algorithm the minimum
Average Tardiness values (Best) and the corresponding DTbest values are recorded. Boldfaced
values indicate the best performer(s) algorithm(s) for each instance.

CACIC 2003 - RedUNCI 733

Case 1: Partial Dynamism with early arrival of jobs

Best DTbest
Instance

Upper
Bound Dyna-S-Heuristic Dyna-S-EA Dyna-S-

Heuristic
Dyna-S-

EA
1 11.98 EDD 13.05 11.98 8.93 0.00
6 73.15 HDS 83.60 73.15 14.29 0.00
11 191.30 HDS 203.07 196.90 3.13 0.00
19 509.25 SPT 542.85 515.13 5.38 0.00
21 522.50 SPT 525.20 522.50 0.52 0.00
31 71.32 RM 84.95 74.45 14.10 0.00
36 183.18 HDS 199.88 184.38 8.41 0.00
41 374.45 HDS 400.70 374.45 7.01 0.00
46 369.35 SPT 373.58 369.35 1.15 0.00
56 16.17 RM 30.28 21.92 38.14 0.00
61 150.48 HDS 171.57 154.68 10.92 0.00
66 395.90 SPT 453.98 395.90 14.67 0.00
71 449.23 SPT 468.42 449.23 4.27 0.00
81 3.20 EDD 4.85 3.20 51.56 0.00
86 81.88 EDD 127.35 81.88 55.53 0.00
91 329.95 RM 383.67 329.95 16.28 0.00
96 639.65 SPT 657.75 639.65 2.83 0.00
111 210.80 RM 275.02 210.80 30.46 0.00
116 242.90 RM 319.12 242.90 31.38 0.00
121 576.57 SPT 598.03 576.57 3.72 0.00

Avg 16.13 0.00
Min 0.52 0.00
Max 55.53 0.00

For early arrivals, table 1 indicates that Dyna-S-EA is the best performer with a mean average
DTbest of 0.00, meaning that it was the best algorithm for every instance, while Dyna-S-Heuristic
shows mean values of 16.13, 0.52, and 55.53 for average, minimum and maximum DTbest,
respectively. Indicated by boldfaced-italic values, we see that in 15 out of the 20 instances Dyna-S-
EA reaches the upper bound.

Table 1. Partial dynamism. Best and DTbest values for each algorithm
 with early arrival of jobs

CACIC 2003 - RedUNCI 734

Case 2: Partial Dynamism with late arrival of jobs

Best DTbest
Instance

Upper
Bound Dyna-S-Heuristic Dyna-S-EA Dyna-S-

Heuristic
Dyna-S-

EA
1 11.98 EDD 87.35 91.57 0.00 4.83
6 73.15 HDS 287.48 331.42 0.00 15.28
11 191.30 HDS 331.08 385.73 0.00 16.51
19 509.25 SPT 829.50 605.72 36.94 0.00
21 522.50 SPT 796.88 522.50 52.51 0.00
31 71.32 RM 355.37 360.53 0.00 1.45
36 183.18 HDS 383.30 413.52 0.00 7.88
41 374.45 HDS 383.12 378.95 1.10 0.00
46 369.35 SPT 370.50 369.53 0.26 0.00
56 16.17 RM 219.50 249.60 0.00 13.71
61 150.48 HDS 212.23 236.32 0.00 11.35
66 395.90 SPT 921.62 929.58 0.00 0.86
71 449.23 SPT 453.38 449.23 0.92 0.00
81 3.20 EDD 81.70 75.33 8.46 0.00
86 81.88 EDD 127.35 81.88 55.53 0.00
91 329.95 RM 381.55 330.63 15.40 0.00
96 639.65 SPT 647.48 639.65 1.22 0.00
111 210.80 RM 274.77 211.68 29.80 0.00
116 242.90 RM 317.15 242.90 30.57 0.00
121 576.57 SPT 588.65 576.60 2.09 0.00

Avg 11.74 3.59
Min 0.00 0.00
Max 55.53 16.51

For late arrivals, we can see in table 2, that Dyna-S-EA is again the best performer with 3.59, 0.00,
and 16.51 for average, minimum and maximum DTbest mean values, respectively, contrasting with
Dyna-S-Heuristic which shows 11.74, 0.00, and 55.53 for the corresponding values. We also see
that in 5 out of the 20 instances Dyna-S-EA reaches the upper bound, while Dyna-S-Heuristic never
reaches the upper bound.

5.2 Total dynamism

In total dynamism the heuristic “associated” with Dyna-H-Heuristic is the heuristic that, used to
determine which job to schedule next, provided the best final schedule. Tables 3 and 4 show the
results obtained under each arrival situation (early and late). Minimum Average Tardiness values
(Best) and the corresponding DTbest values are recorded. Boldfaced values indicate the best
performer(s) for each instance.

Table 2. Partial dynamism. Best and DTbest values for each algorithm
 with late arrival of jobs

CACIC 2003 - RedUNCI 735

Case 3: Total Dynamism with early arrival of jobs

Best DTbest
Instance

Upper
Bound Dyna-H-Heuristic Dyna-H-EA Dyna-H-

Heuristic
Dyna-H-

EA
1 11.98 EDD 13.05 11.98 8.93 0.00
6 73.15 SPT 93.32 76.27 22.35 0.00
11 191.30 SPT 214.27 195.55 9.57 0.00
19 509.25 SPT 542.85 516.63 5.08 0.00
21 522.50 SPT 525.20 523.44 0.34 0.00
31 71.32 RM 95.80 74.33 28.88 0.00
36 183.18 SPT 231.50 188.64 22.72 0.00
41 374.45 SPT 416.45 377.04 10.45 0.00
46 369.35 SPT 373.58 371.06 0.68 0.00
56 16.17 EDD 31.32 16.77 86.76 0.00
61 150.48 SPT 238.58 156.99 51.97 0.00
66 395.90 SPT 453.08 397.97 13.85 0.00
71 449.23 SPT 466.70 450.51 3.59 0.00
81 3.20 EDD 4.85 3.40 42.65 0.00
86 81.88 EDD 127.35 85.68 48.63 0.00
91 329.95 SPT 399.60 332.65 20.13 0.00
96 639.65 SPT 657.75 640.69 2.66 0.00
111 210.80 RM 331.60 214.61 54.51 0.00
116 242.90 SPT 312.92 244.18 28.15 0.00
121 576.57 SPT 598.03 577.67 3.52 0.00

Avg 23.27 0.00
Min 0.34 0.00
Max 86.76 0.00

For early arrivals, in table 3 it is shown that Dyna-H-EA is the best performer with a mean average
DTbest of 0.0, reaching the upper bound in one occasion and being near of them in the remaining
instances. Dyna-H-Heuristic shows mean values of 23.27, 0.34, and 86.76 for average, minimum
and maximum DTbest, respectively.

Table 3. Total dynamism. Best and DTbest values for each algorithm
 with early arrival of jobs

CACIC 2003 - RedUNCI 736

Case 4: Total Dynamism with late arrival of jobs

Best DTbest
Instance

Upper
Bound Dyna-H-Heuristic Dyna-H-EA Dyna-H-

Heuristic
Dyna-H-

EA
1 11.98 SPT 84.05 59.33 41.67 0.00
6 73.15 SPT 275.52 268.57 2.59 0.00
11 191.30 SPT 331.05 321.08 3.11 0.00
19 509.25 SPT 584.40 575.60 1.53 0.00
21 522.50 SPT 523.25 523.33 0.00 0.02
31 71.32 SPT 315.55 275.98 14.34 0.00
36 183.18 SPT 344.48 315.80 9.08 0.00
41 374.45 SPT 400.70 387.33 3.45 0.00
46 369.35 SPT 370.50 369.96 0.15 0.00
56 16.17 SPT 194.15 140.24 38.44 0.00
61 150.48 SPT 234.43 207.18 13.15 0.00
66 395.90 SPT 922.75 937.31 0.00 1.58
71 449.23 SPT 453.38 449.59 0.84 0.00
81 3.20 EDD 81.70 48.45 68.63 0.00
86 81.88 EDD 127.35 81.88 55.53 0.00
91 329.95 SPT 356.75 331.35 7.67 0.00
96 639.65 SPT 647.47 640.35 1.11 0.00
111 210.80 SPT 268.52 211.70 26.84 0.00
116 242.90 SPT 269.33 242.91 10.88 0.00
121 576.57 SPT 588.65 576.95 2.03 0.00

Avg 15.05 0.08
Min 0.00 0.00
Max 68.63 1.58

For late arrivals, table 4 indicates that Dyna-H-EA is the best performer with mean values of 0.08,
0.00, and 1.58 for average, minimum and maximum DTbest, respectively, reaching the upper bound
in one occasion and being near of them in the eight of the remaining instances. Dyna-H-Heuristic
shows mean values of 15.05, 0.00, and 68.63 for average, minimum and maximum DTbest,
respectively.

6. Conclusions

The static scheduling problem minimizing average tardiness for single machine environments, is by
itself a difficult problem and some conventional and evolutionary heuristics were developed to
provide optimal or quasi-optimal solutions. For this objective we could not find OR-library or other
well-known published benchmarks, to compare experimental results. More difficult is to find them
even in the simplest form of dynamism. Consequently, we built our own test suite with data (pj ,dj)
extracted from 20 selected instances of the OR-library benchmarks for a related objective

Table 4. Total dynamism. Best and DTbest values for each algorithm
 with late arrival of jobs

CACIC 2003 - RedUNCI 737

(weighted tardiness), with 40-jobs problem size. This data was the input for dispatching rules,
conventional heuristics and evolutionary algorithms.

The present work showed different approaches to face partial and total dynamism.

For the partial dynamism case we proposed the Dyna-S algorithm in two different versions. Dyna-S
is based on the knowledge provided by, a conventional (EDD, SPT, Hodgson) or an evolutionary
(MCMP-SRI) heuristic used previously to solve static cases. The job order provided by a total
schedule is used then as a dispatching rule. In other words the algorithm uses the outcome of
evolutionary or conventional heuristics, which provide quasi-optimal solutions to a similar static
case for the whole set of jobs to be scheduled. This outcome, used as a surrogate, is the element to
help decision establishing an static priority of dispatch once for all, which is used each time the
machine is available.

For the total dynamism case Dyna-H was proposed. The algorithm applies different heuristics to
dynamically determine which job to schedule when the machine becomes available. The two
versions shown here differ in the heuristic selected for decision: 1) some of the conventional
heuristics, 2) a hybrid algorithm. Depending on the waiting-queue length and the nature of the
partial schedule each time the machine becomes available, this hybrid algorithm uses an
enumerative approach, EDD, R&M, or an evolutionary approach. Dyna-H schedules at each
decision point, selecting the most suitable waiting job according to an ordering emanated from the
heuristic applied.

The results obtained through this study can be summarized as follows:

• For any case of dynamism and arrival type the versions using the evolutionary approach
(Dyna-S-EA and Dyna-H-EA) globally outperforms that versions using the conventional
heuristics (Dyna-S-Heuristic and Dyna-H-Heuristic).

At the light of these results future work will be devoted to larger problems, different job arrival
distributions and variants of the Dyna-S and Dyna-H approaches.

7. Acknowledgements

We acknowledge the co-operation of the LIDIC for providing new ideas and constructive criticisms.
Also to the Universidad Nacional de San Luis, the Universidad Nacional de La Patagonia Austral, and
the ANPCYT from which we receive continuous support.

8. References

[1] Beasley J.E. “Common Due Date Scheduling”, OR Library, http://mscmga.ms.ic.ac.uk/

[2] Crauwels H.A.J., Potts C.N. and Van Wassenhove L.N. “Local search heuristics for the single
machine total weighted tardiness scheduling problem”, Informs Journal on Computing 10,
341-350. 1998.

[3] Baker K. R., “Introduction to sequencing and scheduling” Willey New York 1974.

CACIC 2003 - RedUNCI 738

[4] Eiben A.E., Raué P.E., and Ruttkay Z., “Genetic algorithms with multi-parent recombination”,
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, Springer-Verlag,
1994, number 866 in LNCS, pp. 78-87.

[5] Eiben A.E., Van Kemenade C.H.M., and Kok J.N., “Orgy in the computer: Multi-parent
reproduction in genetic algorithms”. Proceedings of the 3rd European Conference on Artificial
Life, Springer-Verlag, 1995, number 929 in LNAI, pages 934-945.

[6] Esquivel S., Leiva A., Gallard R., “Multiple Crossover per Couple in Genetic Algorithms”,
Proceedings of the Fourth IEEE Conference on Evolutionary Computation (ICEC'97),
Indianapolis, USA, April 1997, pp 103-106.

[7] Esquivel S., Leiva A., Gallard R., “Couple Fitness Based Selection with Multiple Crossover
per Couple in Genetic Algorithms“. Proceedings of the International Symposium on
Engineering of Intelligent Systems (EIS´98), La Laguna, Tenerife, Spain, February 1998, pp
235-241.

[8] Esquivel S., Leiva H., Gallard R., “Multiple crossovers between multiple parents to improve
search in evolutionary algorithms”, Proceedings of the Congress on Evolutionary Computation
(IEEE). Washington DC, 1999, pp 1589-1594.

[9] Morton T., Pentico D., “Heuristic scheduling systems”, Wiley series in Engineering and
technology management. John Wiley and Sons, INC, 1993.

[10] Pandolfi D., Vilanova G., De San Pedro M., Villagra A., Gallard R., “Adaptability of
Multirecombined Evolutionary Algorithms in the single-machine common due date problem.”
Proceedings of the Multiconference on Systemics, Cybernetics and informatics. Orlando,
Florida July 2001.

[11] Pandolfi D., Vilanova G., De San Pedro M., Villagra A., Gallard R. “Multirecombining studs
and immigrants in evolutionary algorithm to face earliness-tardiness scheduling problems”.
Proceedings of the International Conference in Soft Computing. University of Paisley,
Scotland, U.K., June 2001, pp.138

[12] Pandolfi D., De San Pedro M., Villagra A., Vilanova G., Gallard R.- “Studs mating immigrants
in evolutionary algorithm to solve the earliness-tardiness scheduling problem” . In Cybernetics
and Systems of Taylor and Francis Journal, Vol. 33 Nro. 4, pp 391-400 (U.K.) June 2002.

[13] Pandolfi D., De San Pedro M., Villagra A., Vilanova G., Gallard R. “Multirembining Random
and Seeds with Studs in evolutionary algorithm to solve W-T Scheduling problems” In
proceedings of ACIS International Conference on Computer Science, Software Engineering,
Information Technology, e-Business, and Applications (CSITeA-02), pp 133,138, Foz Iguazú,
Brasil 2002.

[14] Pandolfi D., Lasso M., De San Pedro M., Villagra A., Gallard R. – “Evolutionary algorithms to
solve average tardiness problems in single machine environments”- Proceedings of the
International Conference on Computer Science, Software Engineering Information Technology, e-
bussness and Aplications (CSITeA03), pp 444-449, Rio de Janeiro, June 2003, Brazil.

[15] Pinedo M., “Scheduling: Theory, Algorithms and System.” First edition Prentice Hall, 1995.

[16] Rachamadugu R.V., Morton T.E., “Myopic heuristics for the single machine weighted
tardiness problem”. GSIA, Carnigie Mellon University, Pittsburgh, PA. 1982., Working paper
30-82-83.

CACIC 2003 - RedUNCI 739

