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Abstract

The main objective of this work is to establish a basis for comparing BDI agents with

the optimality of decision theory models such as POMDPs. It is argued that a direct

comparison is not possible due to the intractability of the algorithms used for solving

POMDPs, and therefore an approximation must be used. We propose the reduction of

the state space, and the combination of sub-solutions as the main approaches towards this

goal. Throughout this work, the tileworld testbed is used as a frame of reference for

the discussion of the various concepts.
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1 Problem Description and Background

The problem of making decisions in the best possible way is a difficult one. There exists a variety

of models that have been proposed to build agents, each of which yields a different strategy for

the solution of this problem [BIP91, WJ94, Woo99, FG97]. Few, however, can prove that their

strategy in fact produces an optimal way of choosing actions in order to reach the specified

goals. One such family of models of optimality are called Markov Decision Processes (MDPs);

however, these models suffer from the intractability of the algorithms that are used to obtain

optimal strategies.

This paper’s main objective is to establish a basis for comparing the performance of BDI

model of agency (a heuristic approach to decision making) against the optimality of MDPs. This

basis is necessary because such comparison cannot be carried out directly; the intractability
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of the process of obtaining a solution for an MDP prescribes a meaningful comparison, as we

argue below.

This work is organized as follows: in this section, we present an introduction to the tile-

world, a testbed which is widely used to evaluate the performance of agent architectures.

Sections 1.2 and 1.3 describe both models and a possible implementation for them in the tile-

world. Sections 2 and 3 introduce two approaches for using solutions to MDPs in larger

worlds. Finally, section 4 summarizes the results obtained and discusses future work.

1.1 The tileworld Domain

The tileworld testbed, introduced by Pollack and Ringuette [PR90] is a grid environment

occupied by agents, tiles, holes, and obstacles. The agent’s objective is to score as many points

as possible by filling up holes, which can be done by pushing the tiles into them. The agent

can move in any direction (even diagonally); the only restriction is that the obstacles must

be avoided. This environment is dynamic, i.e., holes may appear and disappear randomly in

accordance to a series of world parameters, which can be varied by the experimenter.

Because this environment is too complex for the desired experiments, the simplified testbed

described in [SW00] was adopted. The simplifications to the model are: tiles are omitted, i.e.,

an agent can score points simply by moving to a hole; agents have perfect, zero-cost knowledge

of the state of the world; and agents build correct and complete plans for visiting a single hole

(they do not plan tours for visiting more than one hole). This domain, although simplistic, is

useful in the evaluation of the effectiveness of situated agents. One of its main advantages is

that it can be easily scaled up to provide with difficult and unsolvable problems.

1.2 Sequential Decision Making

Here, we describe the problem of choosing optimal actions in complex stochastic environments.

In this sort of environments, actions are not considered to have a unique guaranteed effect; now,

actions have a set of possible effects, each of which has a probability of occurrence associated

with it.

Markov Decision Processes are useful in modeling sequential decision making. We will

assume that agents using this type of model have perfect sensorial capability, i.e., that they

always know exactly what state they are in, even though there is uncertainty about the effect

of their actions. However, in this model, the agent need not retain any information about the

history of its past actions in order to make optimal decisions.

The problem is, then, to find the best way to behave given a complete and correct model

of the environment (and of course, a goal). The same problem has been addressed in AI as

planning problems, but the consideration of stochastic domains forces us to depart from the

traditional model and compute solutions in the form of policies instead of action sequences

(plans). A policy is a complete mapping from states to actions; once a policy is calculated from
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the transition model and the utility function (see below), it is trivial to decide what to do.

The agent’s function is represented explicitly by the policy: it describes a simple reflex agent.

The problem of calculating an optimal policy in an accessible, stochastic environment with a

known transition model is called a Markov Decision Problem (MDP). In decision problems, the

Markov property holds if the transition probabilities from any given state depend only on the

state and not on the previous history. A Markov Decision Process can be defined [Lit96] as a

tuple M = (S,A, T,R,β), where:

• S is a finite set of states of the environment.
• A is a finite set of actions.
• T : S × A → Π(S) is the state transition function. It gives, for each state and action

performed by the agent, a probability distribution over states (T (s, a, s ) is the probability

of ending in state s , given that the agent started in state s and performed action a).

• R : S×A→ RI is the reward function, which gives the expected immediate reward gained

by the agent for taking each action in each state.

• 0 < β < 1 is a discount factor. This factor is used to represent that a reward obtained

in the future is less valuable than an immediate one. Its use ensures that the reward

obtained by a policy is not unbounded, and that the algorithm used to calculate the

utilities converges.

One of the most popular algorithms that can be used to obtain an optimal policy is Value

Iteration, which basically calculates the utility of each state using dynamic programming tech-

niques, and then uses these values in the selection of an optimal action for each state. Because

actions have no guaranteed effect, the calculation of utilities is not straightforward, but can be

done to any degree of accuracy by using an iterative procedure.

The main drawback of algorithms for directly solving MDPs, is their intractability for even

moderatately large problems. A näıve approach for finding an optimal policy (one which tries

every possible combination) would be O(|A|n), where n is the number of steps in the decision
problem. This would preclude exhaustive search even for small values of |A| and n.
In the dynamic programming approach, the cost of calculating the utility of one state is

O(|A|), and therefore the whole computation is O(n|A||S|), or O(|A||S|) if discounting is used.
So, in general, each iteration of the Value Iteration Algorithm takes O(|A||S|)2 steps. The
number of iterations required to reach an optimal policy can be proved to be bounded above by

a polynomial in |S|, |A|, B, and 1/(1−β), where B is used to designate the maximum number
of bits needed to represent any numerator or denominator of β, or one of the components of

T or R. As a lower bound, Value Iteration has a worst case run time that grows faster than

1/(1− β) [Lit96, Tse90].

As was described above, the MDP models the world by taking into account every possible

action in every possible state. For the simplified tileworld, this means that for a world of
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size n (that is, an n × n grid) there is a set of 8 actions, n2 possible positions for the agent,
and 2n

2
possible configurations of holes. This last number is obtained by considering that every

position in the grid may contain a hole or not. A state in this world consists of a pair (P,H),

where P = (i, j), 0 ≤ i, j ≤ n − 1, and H represents a given configuration of holes on the

grid. Therefore, the total number of states in this case is n22n
2
; the following table presents

the number of states for some values of n:

n Number of states

3 4,608

4 1,048,576

5 838,860,800

6 2,473,901,162,496

7 ≈ 1016
8 ≈ 1021
9 ≈ 1026
10 ≈ 1032

These values show that even for a very small tileworld, the MDP model requires an

intractable amount of resources (both time and space) in order to compute an optimal policy.

The limit for the tractability of direct calculation seems to be at n = 4, or n = 5 for a computer

with sufficient resources.

This doesn’t mean that the MDP model cannot be used at all. The “explosion” in the

number of states, as we have seen, depends largely on the amount of holes that can be present

at a given moment. This insight led to the consideration of ways in which the intractability

can be addressed, which will be discussed in sections 2 and 3.

1.3 The BDI Architecture

the Belief-Desire-Intention architecture, commonly abbreviated “BDI”, has its roots in the

philosophical tradition of understanding practical reasoning [BIP91]. This type of reasoning

can be described as the process of deciding what actions to perform in order to reach a goal.

Practical reasoning involves two important processes: decide what goals to try and reach, and

how to reach them. The first process is known as deliberation, and the second as means-ends

reasoning.

One of the classic problems in the design of practical reasoners is how to obtain a good

balance among the different aspects involved in the dynamics of intentions. Specifically, it

seams clear that an agent must, at some point, drop some of its intentions (because they have

been reached, they cannot be reached, or the reasons for adopting them are no longer valid).

It follows, then, that it is worthwhile for the agent to stop and reconsider its intentions; but

reconsideration has its costs, both in time and computational resources. This situation presents

an interesting tradeoff:

• An agent that doesn’t stop to reconsider often enough will continue trying to reach out-
dated goals.
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• An agent that constantly reconsiders its intentions might spend too much time deliberating
and will therefore not get anything done. In this case, it is possible that the agent will

never reach its goals.

This is essentially the dilemma of balancing proactive (goal directed) and reactive (event

directed) behavior. The situation described above was examined by David Kinny and Michael

Georgeff, in a number of experiments performed with a BDI architecture called dMARS. They

investigated how bold agents (those that never stop to reconsider) and cautious agents (those

that constantly reconsider) behave in a variety of different environments. The most important

parameter in these experiments was the rate of change of the world, γ. Kinny and Georgeff’s

key results were [KG91]:

• If γ is low (i.e., the environment doesn’t change rapidly), then bold agents work well with
respect to cautious ones. This is because cautious agents waste their time reconsidering

their commitments while bold agents work to reach their goals.

• If γ is high (i.e., the environment changes frequently), then cautious agents tend to
perform better than bold ones, because they can recognize when their intentions are no

longer valid, and they can take advantage of new opportunities when they arise.

The result is that different types of environments require different types of decision strate-

gies. In static environments, proactive behavior is adequate. In more dynamic environments,

the ability to react to changes by modifying intentions becomes more important. Therefore,

there is no “best way” to resolve the balance mentioned. Each application must be tuned to its

environment, and therefore the best balance depends on the application. The best way to re-

solve this conflict may be to implement an adaptation mechanism, with which agents recognize

how often they must stop to reconsider their intentions.

The practical reasoning process can be broken down into a number of basic components;

the following are in general part of a BDI model [Woo99]:

• A set of current beliefs, which represents the information the agent currently has about
its environment.

• A belief revision function, which takes a perceptual input and the agent’s current beliefs
and, based on this, determines the new set of beliefs.

• An option generation function, which determines the options available to the agent based
on the current beliefs about the environment and its current intentions. This function

represents the agent’s means-ends reasoning—the process of deciding how to achieve in-

tentions. It maps a set of beliefs and a set of intentions into a set of desires.

• A set of current options, which represents the agent’s possible courses of action.
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• A filter function, which represents the agent’s deliberation process, and which determines
the agent’s intentions based on its current beliefs, desires, and intentions.

• A set of current intentions, which represents the agent’s current focus, i.e., those states
to which it is committed to arrive.

• An action selection function, which determines an action to perform based on the current
intentions.

The desired behavior will have an impact on how each of these components is implemented.

Such variety in possible implementations causes this architecture to be considered a family of

models, rather than a rigid design method.

A BDI agent for the tileworld can be easily implemented. The agent’s beliefs consist of

its perceptions of the locations of holes in the world. Various parameters dictate how accurate

these beliefs are: accessibility (how many positions the agent can see from where it is standing),

dynamism (how many steps the world takes for each step of the agent), planning cost (how many

steps the agent must spend in order to build a plan), and the agent’s intention reconsideration

strategy. This last parameter is one of the most important because it has a great influence on

how efficient the agent will be; if intentions are reconsidered too often or too soon, this will

lead to a waste of effort [WP99].

The next component, desires, can be seen under this model as possible plans leading to a

selected goal. In our case, any series of actions leading from the agent’s current position to a

hole constitutes a desire. On the other hand, an intention is a desire selected in order to reach

a goal. The agent will select one such intention, and will use it to fill holes in the best possible

way. Intention reconsideration in this domain corresponds to the frequency in which the agent

revises its plans: bold agents reconsider after each action taken, while cautious ones wait until

the current plan is completed to build a new one.

The computational costs associated to this model are low: plans can be built in time linear

in the size of the world, and there is no off-line cost because all of the processing is done during

execution time (unlike the implementation discussed below). However, this does not mean that

BDI agents are always efective: the burden lies at the agent’s reconsideration strategy, which

can lead the agent to wasted efforts if it is sub-optimal.

2 Reducing State Information

One possible way of keeping the computation of policies within acceptable bounds is to consider

a reduced state space. This means that the agent will no longer have complete information

regarding the current state of the world, i.e., the current state will be hashed into one of the

states in the reduced space. Of course, this will generally mean that the agent will no longer

be able to select the optimal action in each step. Nevertheless, if the hashing is a good one,
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the action taken by the agent will be optimal with respect to the reduced state space, albeit

sub-optimal in general.

This hashing can be done in a variety of ways. Each proposal is a tradeoff between number

of states (i.e., complexity) and optimality. The following sections describe these proposals.

2.1 The Closest Hole

In this proposal, the agent is only aware of the closest hole. Even though it is simple (and

therefore uses few resources), this strategy cannot ensure good results because an agent will

not be able, for example, to decide between two closest holes as in the following case (n = 7):

1 2 3 4 5 6 7

1 • •
2 • •
3

4 A

5

6 •
7

Here, even though (2,2) and (6,6) are both the closest to the agent, (2,2) is the best option

because it is close to a group of holes. This behavior is captured by Value Iteration (position

(2,2) will have a greater utility than (6,6)), but will be ignored by this approach. In this case,

the advantage is that the number of states is only n4, which is much smaller than the full state

space.

2.2 The k Closest Holes

This approach, a generalization of the previous one, keeps track of the k closest holes. The

parameter k can be varied in order to trade efficiency against cost: k = 1 yields the previous

approach, while k = n2 is the general case discussed above. This generalization is meant to deal

with the difficulties that arise in the last section; even though it does smooth out the amount of

cases where the agent simply does not have enough information to select a good action, cases

like the following (n = 7, k = 4):
1 2 3 4 5 6 7

1 • • •
2 • • •
3

4 A

5

6 • • •
7 •

still leave the agent in a ‘blind spot’ with respect to the best hole. The agent will regard the

four closest holes as equal and will have to make a random choice among them, even though

they all have different utilities. Here, the number of states grows to n2 k
i=1 C

n2

i ≤ n22n2, where
Cnk represents the number of combinations of size k taken from a set of size n.
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2.3 Local Density

This proposal is an extension of the previous one; as before, the agent keeps track of the k

closest holes. The difference is that, with every hole, additional information is kept regarding

the local density of the area in which the hole lies. The local density of a given position is

a value that indicates how “dense” (with holes) the area around that position is. The agent

now has the possibility of taking this information into account in order to avoid cases like the

counter-example presented above.

The local density for a given position (i, j) that contains a hole can be calculated as the

sum of the influence of every other hole in the world, where the influence is a value obtained as

the product of the hole’s reward and the inverse of the distance that lies between it and (i, j).

More formally,

Di,j =
(s,t)∈H, (s,t)=(i,j)

Rs,t
1

Dist(i,j),(s,t)

where Di,j is the density of position (i, j), H is a set of ordered pairs containing the location

of every hole in the grid, R is the reward function on states, and Dist(i,j),(s,t) represents the

distance between positions (i, j) and (s, t); because the agent is capable of moving diagonally,

this distance is not equivalent to Manhattan distance (it is smaller in the general case). The

following example illustrates this concept:

1 2 3 4 5

1 •
2 • •
3 •
4 •
5 •

If we assume a reward of 1 for each hole, then we have D1,5 = 1 +
1
3
+ 1

2
+ 1

3
+ 1

4
≈ 2, 416.

On the other hand, D5,1 =
1
3
+ 1

3
+ 1

4
+ 1

4
+ 1

4
≈ 1, 416, which represents that the area around

hole (1, 5) is more dense with holes than the area around hole (5, 1).

How can this added information be used? One possibility is that the agent can use it to

break ties among closest holes (as presented in the counter-examples above). If the information

is only used in this way, the following is an example of a case where the approach will suggest

a sub-optimal action (n = 7, k = 4):

1 2 3 4 5 6 7

1 • •
2 • •
3 •
4

5 A

6

7 • •
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Even though (7, 3), (7, 7), and (3, 7) are closest to the agent, the tie-breaking information

will decide only among these holes. However, the optimal action would be to head NW towards

the concentration of four holes. Another possible use of the additional information is to take

the k most locally dense holes. This, in turn, also has disadvantages; for example (n = 7,

k = 4):

1 2 3 4 5 6 7

1 • •
2 • •
3

4

5 A •
6

7

The four holes in the NW corner are the k most dense; nevertheless, (6, 5) would be the

best option. In this approach, the number of states is the same as in the previous section

because the size of the hashed state space has not changed, only the way the hashing is done.

The calculation of the density information yields the additional cost. The distance between

holes and the reward function on states can be calculated in O(1), so the complete density

information for one state can be obtained in O(n2).

3 Using Optimal Sub-solutions

Another way of addressing the problem of the intractability of policy calculation is by obtaining

an optimal policy for the greatest world size that can be solved within a given limit of expended

resources, and then using this solution to build policies for greater world sizes. In this section

we will describe two approaches for obtaining a policy for a 7 × 7 tileworld by combining
optimal policies for 4 × 4 worlds, which is the greatest world size for which a solution can be
found with acceptable costs.

3.1 The Moving Window

This approach proposes the combination of four 4× 4 grids to make up a new 7× 7 grid, which
will be referred to as the moving window. This can be done by putting the four grids together

so they overlap one row; we will call these sub-grids A, B, C, and D (see figure below). This

7 × 7 grid is called a “moving window” because it follows the agent’s moves, representing the
limit of its perception. The agent occupies the center (i.e., the SE corner of A, the SW corner

of B, the NE corner of C, and the NW corner of D), and it will only be aware of the holes that

fall inside this window. For example, if the agent is in the center of the grid, then it has full

accessibility; now, if it moves North one position, it will not be able to see the holes to the far

South. The figure below (left) illustrates how the sub-grids are combined to form the moving
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window: grids A and D are shaded, while B and C are white. The figure to the right shows

the case in which the agent has moved Northwest from the center of the grid:

The new policy is built using the solved 4× 4 sub-grids. For each state, the agent will have
four possibly different suggestions (one for each 4× 4), given by the policies:

πi(s) = argmax
a

t

Ti(s, a, t)Ui(t)

where i = A, B, C, or D, Ti is the state transition function for grid i, and Ui is the utility

function on states for grid i. The best action is then the one that has the highest expected

utility:

π∗(s) = πi(s)

for some i such that πi(s) = ti, where Ui(ti) = ui and there is no uj such that πj(s) = tj,

Uj(tj) = uj, and uj > ui.

There are cases in which the agent will act sub-optimally under this approach. For example,

in the figure above the agent is not in the center, which means that it will not have full

accessibility. Indeed, the South row and the East column are now invisible (see figure). Here,

grid B will suggest action East, whereas grid C will suggest Southwest. The utilities associated

to both actions equal; the agent is therefore in a situation in which it cannot choose the best

action. Nevertheless, heading East would be the best choice because it brings the agent closer

to the three holes that it cannot see.

The computational cost of this approach is not significantly greater than the cost of solving

an MDP for a tileworld of size 4× 4. Because the policy is built from the policy for a 4× 4,
the only difference lies in execution time, where the hashing and the selection of the best action

among the four suggested take place. The hashing can be done in O(n2) because each position

must be tested to see if it falls inside the moving window; the execution time of both operations

are clearly in O(1).

3.2 Limited Accessibility

In the last section we proposed a way in which solutions for a 4× 4 grid can be used to build
a policy for the 7× 7 world. Here, a reduced version of this proposal is introduced, in which a
single solution is used.
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Using a single 4 × 4 solution, a simpler version of the “moving window” can be defined.
Because the center for a 4 × 4 grid is not defined, the new version of the window will behave
differently. Instead of moving with every step the agent takes, the window will shift position

if the agent is moving in a given direction and the window’s border in that direction is two

positions ahead of the agent, and the border of the window is not being “pushed” beyond the

grid’s limit. For example:

The figure describes the following scenario: the agent is in (2, 2), which is marked with an ‘X’;

the window’s position is framed by heavy lines. If the agent moves Southeast, the window will

shift Southeast along with it, and the agent’s new position will be (3, 3) (marked with a ‘Y’).

The shaded area is the window’s new location. On the other hand, if it should move North,

the window would not shift, and the agent’s new position would be (2, 1). The agent will then

use a single solution to implement a form of limited accessibility. The window’s movement is

designed to provide the agent with the maximum possible accessibility given the reduced size

of the solution being used.

The computational cost of this approach is dominated by the execution time cost of per-

forming the hash and the update of the window’s position according to the rules defined above.

The off-line cost is the same as in the last section, i.e., the cost of solving an MDP for a 4× 4
tileworld.

4 Conclusions

In this work, we established a basis for comparing two models of agency: BDI architectures

and Markov Decision Processes. It was shown that a direct comparison of the behavior of

such models is not possible because of the intractability of finding solutions for MDPs. Using

approximations to solutions for this model is an alternative for such a comparison. We have

proposed a variety of models in which approximations were obtained first by reducing the state

space, and then by using sub-solutions to build policies.

Future work involves the implementation of the proposed models in order to empirically

evaluate their behavior and compare it to the performance of an agent implemented with the

BDI architecture. Such a comparison will be useful for related future work involved in studying

the relationship between these models.
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