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Abstract
In this work, we de�ne some non-prioritized merge operators, that is, operators for the consistent union of
belief bases. We de�ne some postulates for several kinds of merge operator and we give different constructions:
trivial merge, partial meet merge and kernel merge. For some constructions we provide representation theorems
linking construction with a set of postulates. Finally, we propose that the formulated operators can be used in
some multi-agent systems.
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1 INTRODUCTION

Belief Revision has as its main objective to model the dynamics of knowledge, that is, the way in
which an agent's knowledge must be updated when it �nds new information. That is, how the agents
modify their beliefs when they receive new information. The main problem arises when that informa-
tion is inconsistent with the beliefs that represent her/his epistemic state.

Revisions are the most commonly used change operators because they allow a sentence α to be
included into a set K, generating a new set K ′, preserving consistency in the new set. The traditional
revision models [1, 13] are prioritized, that is, they give priority to new information over the informa-
tion that is already part of their knowledge. This property does not seem plausible in the real world,
because in many cases it is not reasonable to give priority to information just because it is new. In non
prioritized models, it is possible for new information not to be totally accepted. Such new information
can be rejected, partially accepted, or fully accepted only after a debate process. In this sense, there
exists a variety of different non prioritized belief revision models, among which are screened revision
[23], semirevision operators [18], merge operations [10], credibility limited revisions [20], revisions
by sets of sentences [8], etc.
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We adopt a �xed �nite language L with a complete set of boolean connectives. Formulae in L
will be denoted by lower case Greek characters α, β, δ, . . ., while sets of formulae from L will be
denoted by upper case letters A,B, C, . . .. We identify the underlying logic with its consequence
operator Cn : 2L⇒2L. The underlying logic is assumed to be supraclassical (i.e., include classical
propositional calculus), compact (Cn(A) = Cn(B) for some �nite subset B of A) and satisfy the
deduction theorem (α → β ∈ Cn(A) if and only if β ∈ Cn(A ∪ {α})). Sometimes, we will use the
relation ` as an alternative notation of the consequence operator: A ` α if and only if α ∈ Cn(A).

The paper is organized as follows. Section 2 presents some limitations of the most popular frame-
work for belief dynamics: AGM. We present the difference of representing epistemic states by means
of arbitrary sets of sentences or by means of logically closed sets of sentences. We also compare log-
ical frameworks in which the new information is always accepted with another formalisms in which
the new information could be rejected or partially accepted. Section 3 presents different postulates
for belief base merging, giving different constructions and representation theorems. Section 4 shows
an application of the new operators in multi-agent systems and Section 5 presents the conclusions and
future work.

2 AGM MODEL AND ITS LIMITATIONS

AGM model [1] is the most popular framework for belief change and most others rely on the founda-
tions of AGM. This model represents the epistemic states through belief sets, that is, set of sentences
closed under logical consequence. We will use bold upper case letters to represent belief sets, for
instance, K. Three types of belief change operators are considered: belief expansion (incorporation
of an epistemic input α into K without retraction of existing beliefs); belief contraction (removal of
an existing belief α from K); and belief revision (incorporation of a new belief into K with possible
retraction of existing beliefs in order to preserve consistency).

Belief expansion is trivially de�ned using consequence operator and set operations. Given a belief
set K and a sentence α, the expansion of K with respect to α, noted by K+α, is equal to Cn(K∪{α}).
However, belief contraction and belief revision (noted by �−� and �∗� respectively) can not be de�ned
in that way: they need to use selection functions to determine which beliefs will be erased from the
epistemic state. There are two approach to construct contractions: partial meet contractions [1] based
on a selection among subsets of the original set that do not imply the information to be retracted;
kernel contractions [17] based on a selection among the sentences that imply the information to be
retracted. On the other hand, revision operators can be de�ned through Levi identity; in order to
revise an epistemic state with respect to a sentence α, we contract with respect to ¬α and then expand
the new epistemic state with respect to α.

AGM Model of theory revision has several controversial points. For instance, in AGM belief
revision the input sentence is always accepted. That property in know as success:

α ∈ K∗α

Success speci�es that the new information has primacy over the beliefs without discussion or debate.
Another controversial property is know and consistency:

If 0 ¬α then K∗α 0 ⊥

which establishes that the revised epistemic state is consistent only if the input sentence is consis-
tent. In non-prioritized belief revision, these requirement are relaxed and we will de�ne new revision
operators modifying success and consistency postulates.
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2.1 Belief Bases vs. Belief Sets

When talking about change we have been assuming that there is something that changes. This some-
thing, the object of change, is the belief state [19]. We can develop different constructions to be used
as models of the belief state. Among different alternatives, the basic representation of an epistemic
state is by mean of a belief set (set of sentences closed under logical consequence) or a belief base
(set of sentences not necessarily closed).

Clearly, the representation of belief states with belief sets has many disadvantages from a compu-
tational point of view. A belief set is a very large entity. For any two sentences α, β in a belief set K
then so are α∨β, α∨¬β, α∨β∨δ, . . . because they are logical consequences of K. If the language is
suf�ciently rich, the belief set will contain innumerable sentences that the believer has never thought
of [19].

It is more natural to think of the belief state as represented by a limited number of sentences that
may (roughly speaking) correspond to the explicit beliefs. Changes can operate on this smaller set,
rather than directly on the belief set. Such a model is much closer to computational applications such
as knowledge representation systems, deductive databases, multi-agent systems, etc.

The distinction between belief sets and belief bases is similar to the distinction between the co-
herence approach and the foundational approach to belief revision. The coherence approach focuses
on logical relations among beliefs rather than on inferential relations, that is, no belief is more funda-
mental than another [5]. In the coherentist approach, beliefs provide each other with mutual support;
therefore, a belief set represents the limit case of this approach. On the other hand, the foundational
approach divides beliefs into two classes: explicit beliefs and those beliefs justi�ed by the explicit
beliefs. The explicit beliefs can be seen as �self-justi�ed beliefs� whereas the other beliefs are con-
sidered as derived, justi�ed or supported beliefs. The foundational approach provides explanation of
beliefs by requiring that each belief be supportable by means of non-circular arguments from explicit
or basic beliefs [5]. Another feature of foundational approach is that a belief α may be justi�ed or
derived by several independent beliefs, so that even is some of the justi�cations for α are removed,
the belief α may be retained because it is supported by other beliefs. A belief base is considered a
good example of the foundational approach.

We may found several advantages and disadvantages for these approaches. While a de�nitive
conclusion about whether either of these approaches is better than the other awaits answers, we believe
that the foundational approach by means of belief bases is better in computational environments such
as argumentative systems [12, 25], truth maintenance systems [4], and multi-agent systems [7, 26].

2.2 Prioritized and Non-prioritized Changes

Every belief change framework de�nes an epistemic model (the formalism in which the beliefs will
be represented) and then de�nes different kinds of operators. Each operator may be presented in two
ways: by giving an explicit construction (algorithm) for the operator, or by giving a set of rationality
postulates to be satis�ed. Rationality postulates determine constraints that the operators should sat-
isfy. They treat the operators as black boxes; after receiving certain inputs (of new information) we
know what the response will be, but not the internal mechanisms used.

In conventional, AGM-style belief revision [1] the epistemic model has two components: an
epistemic state represented by a belief set, and an input sentence represented by a formulae of the
language. The main property of AGM model is that the input sentence is always accepted. Non-
prioritized belief revisions relax this requirement and they operate on belief bases [10, 18, 15], on
belief sets (theories) [9, 23, 20], and on entrenchment-based and sphere-based systems [20].

The principle of primacy of new information is often criticized, since it can not be accepted
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in all circumstances. Sometimes we have more con�dence in our current beliefs than in the new
information. Here we will represent belief states by means of belief bases. It is more natural to think
of the belief state as represented by a limited number of sentences that may (roughly) correspond to
the explicit beliefs. Changes can operate on this smaller set, rather than directly on the belief set.
Such a model is much closer to the workings of actual human minds and actual computers.

Merge operators open the possibility that the new evidence is partially or even completely ignored
if old information is more entrenched or more plausible. The merge operator joins old and new
information to a consistent whole without giving undue precedence to the one or the other [10].

3 MERGING BELIEF BASES

3.1 Postulates

Now we will de�ne different postulates for belief base merging. Let A,B,C, D,E be belief bases
and �~� a belief merge operator. We will notate the merge of A and B as A~B and we propose the
following postulates for a merge operator.

Inclusion A~B ⊆ A ∪B.
This postulate establishes that, if we merge two belief bases A and B, then the new stock of
beliefs will be contained in the union of A and B.

Symmetry A~B = B~A.
This postulate stablishes the two belief base to be merged are equality considered.

Consistency Preservation If A 0 ⊥ and B 0 ⊥ then A~B 0 ⊥.
This postulate ensures that the merged belief base is consistent whenever the original belief
bases are consistent.

Strong Consistency A~B 0 ⊥.
This postulate ensures consistency in the merged belief base without consider the consistency
of each belief base.

Vacuity If A ∪B 0 ⊥ then A~B = A ∪B.
This postulate establishes that A and B are jointly consistent then the merge is equal to the
union of them.

Core Retainment If α ∈ (A ∪ B) \ (A~B) then there is a set E such that E ⊆ (A ∪ B), E is
consistent but E ∪ {α} is inconsistent.
This postulate expresses the intuition that nothing is removed from the union of the original be-
lief bases unless its removal in some way contributes to making the new belief base consistent.

Relevance If α ∈ (A ∪ B) \ (A~B) then there is a set E such that A~B ⊆ E ⊆ (A ∪ B), E is
consistent but E ∪ {α} is inconsistent.
This postulate is a stronger version of core retainment and we will use it to characterize some
kinds of revision operators. Together with core retainment, this postulate tries to capture the
notion of minimal change.
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Reversion If A∪B and C∪D have the same minimally inconsistent subsets then (A∪B)\(A~B) =
(C ∪D) \ (C~D).
This postulate establishes that, if A ∪ B and C ∪ D contain the same minimally inconsistent
subsets then the sentences erased in the respective merges are the same.

Congruence If A ∪B = C ∪D then A~B = C~D.
This postulate expresses that A joined with B is equal to C joined with D then the merge of A
and B is equal to the merge of C and D.

Relevance and Core Retainment have been adapted from Hansson's work [16, 19] and they was used
in [8] for multiple change operators. Congruence was presented by Fuhrmann's work [10] for his
merge operator and Reversion was presented by Falappa et al. [8].

In the next subsections we will propose different constructions for merge operators. In each case,
we will show which postulates are satis�ed and, in some special cases, we will present representation
theorems of de�ned operators.

3.2 Trivial Merge

De�nition 1: Let K and H be two belief bases. The trivial merge operator �∧� for K and H is
de�ned as K∧H = K ∩H .

Observation 1: Let K and H be two belief bases and �∧� be a trivial merge operator for K and H .
Then �∧� satis�es inclusion, symmetry and consistency preservation. ¥

The trivial merge operator produces a very drastic change and it violates the principle of minimal
change [13]. However, it can be useful from a theoretical point of view because it can be seen as a
lower bound of every plausible merge operator. With some examples, we will show why the trivial
merge operator does not satisfy the principle of minimal change.

Example 1: Let p, q, r, s logically independent propositional letters. Suppose that K = {p, q, r} and
H = {p, q,¬s}. The trivial merge of K and H is equal to {p, q}. We may look that r and ¬s are
erased from K∧H without necessity because their are both consistent with the K∧H . From this
example, we may verify that �∧� does not satisfy vacuity, core retainment and relevance.

Example 2: Let p, q, r logically independent propositional letters. Suppose that K = {p, p → q, r}
and H = {p, q, r}. The trivial merge of K and H is equal to {p, r} even though q are logically
implied by K and H . Again, we may verify that �∧� does not satisfy vacuity, core retainment and
relevance.

3.3 Kernel Merge

De�nition 2: Let K be a belief base and α a sentence. Then K⊥⊥α is the set of all K ′ such that
K ′ ∈ K⊥⊥α if and only if K ′ ⊆ K, K ′ ` α, and if K ′′ ⊂ K ′ then K ′′ 0 α. The set K⊥⊥α is called the
kernel set, and its elements are called the α-kernels of K.

In order to de�ne the operator of kernel merge we need to use an incision function. This function
selects sentences to be removed from K ∪ H and it is called incision function because it makes an
incision in every ⊥-kernel.
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De�nition 3: Let K and H be two belief bases. A general incision function for K and H is a function
�σ� (σ : 22L⇒2L) such that for any sets K,H ⊆ L, the following hold:
1) σ((K ∪H)⊥⊥⊥) ⊆ ∪((K ∪H)⊥⊥⊥).
2) If X ∈ (K ∪H)⊥⊥⊥ and X 6= ∅ then (X ∩ σ((K ∪H)⊥⊥⊥)) 6= ∅.
The limit case in which (K ∪H)⊥⊥⊥ = ∅ then σ((K ∪H)⊥⊥⊥) = ∅.

De�nition 4: Let K and H be belief bases and �σ� a general incision function. The operator �~� of
kernel merge (~ : 2L×2L⇒2L) is de�ned as K~H = (K ∪H) \ σ((K ∪H)⊥⊥⊥).

The mechanism of this operator is to join K and H and then eliminate from the result all possible
inconsistency by means of an incision function that makes a �cut� over each minimally inconsistent
subset of K ∪ H . Since this operator uses an incision function and the set of ⊥-kernels, we call it
kernel merge.

Theorem 1: Let K and H be two belief bases. The operator �~� is a kernel merge of K and H if
and only if it satis�es inclusion, strong consistency, core retainment and reversion.

Proof.

[Construction to Postulates] Let �~� be a kernel revision by a set of sentences for K. We must
show that �~� satis�es the postulates enumerated in the theorem. Let K~H = (K ∪ H) \
(σ((K ∪H)⊥⊥⊥)).

Inclusion: Straightforward from the de�nition.
Strong Consistency: Since all sets in (K ∪H)⊥⊥⊥ are minimally inconsistent, and σ cuts ev-

ery set in it, then (K ∪H) \ σ((K ∪H)⊥⊥⊥) is consistent.
Core Retainment: Suppose that α ∈ (K ∪H)\ (K~H). That is, α ∈ K ∪H and α 6∈K~H .

Then α ∈ σ((K ∪H)⊥⊥⊥). Since σ((K ∪H)⊥⊥⊥) ⊆ ∪((K ∪H)⊥⊥⊥) there is some X
such that α ∈ X and X ∈ (K ∪H)⊥⊥⊥. Let Y = X \ {α}. Then there is some Y such
that Y ⊆ (K ∪H), Y 0 ⊥ but Y ∪ {α} ` ⊥. Therefore, core retainment is satis�ed.

Reversion: Suppose that K ∪ H and K ′ ∪ H ′ have the same minimally inconsistent subsets.
That means that (K ∪H)⊥⊥⊥ = (K ′ ∪H ′)⊥⊥⊥. Since σ is a well de�ned function then
σ((K ∪H)⊥⊥⊥) = σ((K ′ ∪H ′)⊥⊥⊥). We need to show that (K ∪ H) \ (K~H) =
(K ′ ∪H ′) \ (K ′~H ′).
⊆) If α ∈ (K ∪ H) \ (K~H) then, by de�nition of �~�, α ∈ σ((K ∪H)⊥⊥⊥). Since

σ((K ∪H)⊥⊥⊥) = σ((K ′ ∪H ′)⊥⊥⊥) then α ∈ K ′ ∪H ′ and α 6∈K ′~H ′. Therefore,
(K ∪H) \ (K~H) ⊆ (K ′ ∪H ′) \ (K ′~H ′).

⊇) If α ∈ (K ′ ∪H ′) \ (K ′~H ′) then, by de�nition of �~�, α ∈ σ((K ′ ∪H ′)⊥⊥⊥). Since
σ((K ′ ∪H ′)⊥⊥⊥) = σ((K ∪H)⊥⊥⊥) then α ∈ K ∪ H and α 6∈K~H . Therefore,
(K ′ ∪H ′) \ (K ′~H ′) ⊆ (K ∪H) \ (K~A).

[Postulates to Construction] We need to show that if an operator satis�es the enumerated postulates
then it is possible to build an operator in the way speci�ed in the theorem. Let �σ� be a function
such that, for every pair of sets K and H , it holds that:

σ((K ∪H)⊥⊥⊥) = {α : α ∈ (K ∪H) \ (K~H)}

We must show:
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Part A.
1. �σ� is a well de�ned function.

That is, if K ′ and H ′ are sets of sentences such that (K ∪H)⊥⊥⊥ = (K ′ ∪H ′)⊥⊥⊥,
we must show that σ((K ∪H)⊥⊥⊥) = σ((K ′ ∪H ′)⊥⊥⊥). From the hypothesis we
have that K ∪ H and K ′ ∪ H ′ have the same minimally inconsistent subsets. It
follows from reversion that (K ∪H) \ (K~H) = (K ′ ∪H ′) \ (K ′~H ′). Therefore:

σ((K ∪H)⊥⊥⊥) = {α : α ∈ (K ∪H) \ (K~H)}
= {α : α ∈ (K ′ ∪H ′) \ (K ′~H ′)}
= σ((K ′ ∪H ′)⊥⊥⊥)

Therefore, �σ� is well de�ned.
2. σ((K ∪H)⊥⊥⊥) ⊆ ∪((K ∪H)⊥⊥⊥).

Let α ∈ σ((K ∪H)⊥⊥⊥). Then α ∈ (K ∪ H) \ (K~H). Due to core retainment
there is some E such that E ⊆ (K ∪H), E 0 ⊥ but E ∪{α} ` ⊥. Since α ∈ K ∪H
then there is a ⊥-kernel X in (K ∪H) (i.e., there is a minimally inconsistent subset
of K ∪H) such that X ⊆ E ∪ {α} and α ∈ X . Therefore, α ∈ ∪((K ∪H)⊥⊥⊥).

3. If X ∈ (K ∪H)⊥⊥⊥ then (X ∩ σ((K ∪H)⊥⊥⊥)) 6= ∅.
Let X ∈ ((K ∪H)⊥⊥⊥). We need to show that X ∩ σ((K ∪H)⊥⊥⊥) 6= ∅. Due
to strong consistency K~H 0 ⊥. Since X ` ⊥ we may conclude that X *
K~H . This means that there is some β such that β ∈ X and β 6∈K~H . Since
X ⊆ (K ∪ H) then β ∈ (K ∪ H) \ (K~H), i.e., β ∈ σ((K ∪H)⊥⊥⊥). So
β ∈ (X ∩ σ((K ∪H)⊥⊥⊥)). Therefore, (X ∩ σ((K ∪H)⊥⊥⊥)) 6= ∅.

Part B: �~σ� is equal to �~�.
Due to inclusion and from the de�nition of σ((K ∪H)⊥⊥⊥) we conclude that K~H =
K~σH .

3.4 Partial Meet Merge

De�nition 5: Let K be a set of sentences and α a sentence. Then K⊥α is the set of all X such that
X ∈ K⊥α if and only if X ⊆ K, X 0 α and if X ⊂ X ′ ⊆ K then X ′ ` α. The set H⊥α is called
the remainder set of K with respect to α, and its elements are called the α-remainders of K.

In order to de�ne the partial meet version of this operator, we need a general selection function.

De�nition 6: Let K and H be two belief bases. A general selection function for K and H is a
function �γ� (γ : 22L⇒22L) such that for any K,H ⊆ L, it holds that:
1) γ((K ∪H)⊥⊥) ⊆ (K ∪H)⊥⊥.
2) γ((K ∪H)⊥⊥) 6= ∅.

Since every set X ⊆ L contains a consistent subset then X⊥⊥ is always non-empty.

De�nition 7: Let K,H, K ′, H ′ be belief bases and �γ� a general selection function. Then γ is
an equitable selection function if (K ∪H)⊥⊥⊥ = (K ′ ∪H ′)⊥⊥⊥ implies that (K ∪ H) \ ∩γ((H ∪
H)⊥⊥) = (K ′ ∪H ′) \ ∩γ((K ′ ∪H ′)⊥⊥).

The intuition behind this de�nition is that, if the set of minimally inconsistent subsets of K ∪H
is equal to the set of minimally inconsistent subsets of K ∪ B then α is erased in the selection of
⊥-remainders of K ∪ A if and only if it is erased in the selection of ⊥-remainders of K ′ ∪H ′ [8].
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De�nition 8: Let K and H be two belief bases and �γ� an equitable selection function for K and H .
The operator �~� of partial meet merge (~ : 2L×2L⇒2L) is de�ned as K~H = ∩γ((K ∪A)⊥⊥).

The mechanism of this operator is to join K and H and then eliminate from the result all possible
inconsistencies by means of an equitable selection function that makes a choice among the maximally
consistent subsets of K ∪H and intersect them. Since this operator uses a selection function and the
remainder set, we call it partial meet revision merge.

Lemma 1: The following results are useful to prove the representation theorem of partial meet merge.

a) If A⊥⊥ = B⊥⊥ then A = B.

b) If �~� satis�es reversion then it satis�es congruence.

Proof. The item a) is proven in [8]. We will prove the item b). Let A ∪ B = C ∪ D. Then A ∪ B
and C ∪ D have the same minimallity inconsistent subsets. Due to reversion, (A ∪ B) \ (A~B) =
(C ∪D) \ (C~D). Therefore, A~B = C~D.

Theorem 2: Let K and H be two belief bases. The operator �~� is a partial meet merge of K and
H if and only if it satis�es inclusion, strong consistency, relevance and reversion.

The proof of this theorem is left to the reader. Fuhrmann [10] found another representation theorem
for this kind of operator that can be showed using the part b) of the Lemma 1.

Theorem 3: Let K and H be two belief bases. The operator �~� is a partial meet merge of K and
H if and only if it satis�es inclusion, strong consistency, relevance and congruence.

Corolary 1: Let K and H be two belief bases:

a) If �~� is a partial meet merge for K and H then �~� is a kernel merge for K and H .

b) If �~� is a partial meet merge for K and H then it sati�es vacuity and symmetry.

c) If �∧� is a trivial merge for K and H and �~� is a kernel merge or partial meet merge for K
and H . Then K∧H ⊆ K~H .

The proof of this corollary is trivial. A partial meet merge is a kernel merge because relevance implies
core retainment.1 Looking the constructions, is easy to show that every partial meet (or kernel) merge
satis�es vacuity and symmetry. The latest observation is trivial by de�nition of partial meet merge.

4 APPLICATION ON MULTI-AGENT SYSTEMS

It is in the �eld of Cognitive Robotics where belief revision �nds its most appropriate application. An
intelligent agent is a physical or virtual entity in which certain general characteristics are recognized.
It should be capable of acting on its environment in a �exible, autonomous manner, including the
ability to communicate with similar entities. Furthermore, its behavior should be controlled by a set
of tendencies. In designing agents with these characteristics, we need to devise an architecture in
which the components of the agent are described and the interactions among these components are
de�ned.

1More relations between partial meet and kernel operator can be found in [6].
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The Belief-Desire-Intention (BDI) model has its roots in the philosophical tradition of understand-
ing practical reasoning. In the BDI model an agent has a set of Beliefs, a set of Desires and a set of
Intentions [2]. Intentions play a crucial role in the practical reasoning process. Perhaps the most ob-
vious property of intentions is that they tend to lead to action. Intentions drive means-ends reasoning,
constrain future deliberation, persist, and in�uence beliefs upon which future practical reasoning is
based.

In order to design agents that have these (and other) desirable properties, a given model must be
followed. The model's characteristics will greatly depend on the environment that the agent occupies,
and on the type of behavior that is expected from it. These models carry the name of architectures,
and they de�ne a set of components that interrelate in order to generate the agent's behavior.

The basic BDI model needs to be complemented with two mechanisms: one for reasoning about
intentions, and one for revising beliefs upon perception. In this work, we propose the use of Defeasi-
ble Logic Programming for knowledge representation and reasoning about beliefs and intentions, and
we introduce a non-prioritized belief merge function that changes the agent's beliefs.

4.1 DeLP Framework

Defeasible Logic Programming (abbreviated DeLP) will provide a representation language and a
reasoning mechanism. Consequently, the agent's beliefs will be represented as a defeasible logic
program. Here, we will introduce DeLP in an intuitive manner. The reader is referred to [11, 12] for
a complete presentation of DeLP.

In DeLP, a program P is a pair [K, ∆] where K is a set of facts and strict rules (undefeasible
beliefs) and ∆ is a set of defeasible rules. Facts are represented by literals (ground atoms or negated
ground atoms that use strong negation �¬�), strict rules are denoted �L0← L1, . . . , Ln�, and defea-
sible rules are denoted�L0−≺L1, . . . , Ln�. In both types of rules, the head L0 is a literal, and the
body L1, . . . , Ln is a �nite non-empty conjunction of literals. Defeasible rules are used to represent
tentative information that may be used if nothing can be posed against it, whereas strict rules and facts
represent non-defeasible knowledge. Thus, a defeasible rule represents a weak connection between
the body and the head, and should be read as �reasons to believe in L1, . . . , Ln provide reasons to
believe in L0�. These rules, by representing weak connections, equip the representation language
with a natural device to characterize a link between information that could be invalidated when more
information comes into play [24, 25]. However, since defeasible rules represent tentative informa-
tion, defeasible derivations for contradictory literals are allowed from K ∪∆. When this happens, a
defeasible argumentation formalism is used for deciding which literal prevails as warranted. In DeLP
a literal L is warranted if there exists a non-defeated argument A supporting L. A set of defeasible
rules A ⊆ ∆ is an argument for a literal L if K ∪ A is a minimal consistent set that entails L.

When we have two agents deliberating or cooperating, it is necessary a way to establish the com-
mon knowledge for arguments construction. We propose to use merge operators in order to get the
facts and strict rules that can be used in their arguments. We will assume that two agents have as-
sociated two defeasible logic programs [KO, ∆O] and [KP, ∆P] respectively. We propose that these
agents may obtain arguments using their respective defeasible rules sets and a subset of their merged
undefeasible beliefs. Let �~� be a kernel merge operator for KO and KP. Then, two agents could
deliberate obtaining arguments from [(KO~KP)∩KO, ∆O] and [(KO~KP)∩KP, ∆P] respectively.
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Example 3: Suppose that we have two agents O and P with these defeasible logic programs associ-
ated:2

KO =





peng(tweety)
bird(X)← peng(X)
animal(X)← bird(X)



 and ∆O = {¬flies(X)−≺peng(X), bird(X)}

KP =




¬peng(tweety)
bird(tweety)
animal(X)← bird(X)



 and ∆P = {flies(X)−≺bird(X)}

Suppose that O and P are deliberating about properties of Tweety. O may obtain the argument
A1 = {¬flies(tweety)−≺peng(tweety), bird(tweety)} for ¬flies(tweety), whereas P may ob-
tain the argument A2 = {flies(tweety)−≺bird(tweety)} for flies(tweety). The problem is that
the arguments can not be compared because they are supported by inconsistent (undefeasible) beliefs.
The agent P can not accept the argument A1 because it is supported by the fact peng(tweety) which
is inconsistent with its undefeasible beliefs KP. Our approach is that the two agents may support their
arguments with a consistent subset of their respective undefeasible beliefs; this consistent subset will
be a subset of the merged undefeasible sets.

Now, suppose that we want to obtain a kernel merge of KO and KP. We have to join KO and KP

and then erase all possible inconsistencies from the resulting set.

KO ∪KP =





peng(tweety)
¬peng(tweety)
bird(tweety)
bird(X)← peng(X)
animal(X)← bird(X)





Clearly, the minimal inconsistent subset of KO ∪ KP is {peng(tweety),¬peng(tweety)} and an
incision function will cut this ⊥-kernel. Then, we have several cases:

1. The incision function cut the sentence ¬peng(tweety).

KO~KP =





peng(tweety)
bird(tweety)
bird(X)← peng(X)
animal(X)← bird(X)





The agent O may obtain the argumentA1 for ¬flies(tweety) based on [(KO~KP)∩KO, ∆O]
and the agent P may obtain the argumentA2 for flies(tweety) based on [(KO~KP)∩KP, ∆P]
Now, both arguments are comparable because they are supported by a consistent set of unde-
feasible beliefs. Using speci�city criteria, the literal ¬flies(tweety) is warranted because is
supported by the argument A1 which defeat to the argument A2. Therefore, the two agents
agree with ¬flies(tweety).

2. The incision function cut the sentence peng(tweety).

KO~KP =





¬peng(tweety)
bird(tweety)
bird(X)← peng(X)
animal(X)← bird(X)





2Strict and defeasible rules are ground. However, following the usual conventions, this example uses �schematic
rules� with variables.

1351



in which case the agent P may obtain the argument A2 for flies(tweety) but the agent O can
not obtain the argumentA1 any more. Therefore, the literal flies(tweety) is warranted and the
two agents agree with flies(tweety).

3. The incision function cut both sentences. In this case, the result is the same that the case 2.

5 CONCLUSION AND FUTURE WORK

In this work, we de�ne several non-prioritized merge operators. In a constructive approach, a mecha-
nism for change was explicitly constructed. In a black box approach, we speci�ed the postulates that
an operator should have (irrespective of how it is constructed). Representation theorems join the two
approaches, improving our understanding both of the constructions and of the postulates.

The new merge operators can be used for changing the beliefs of two agents. This operator has the
desirable property of conserving as much information as possible since the knowledge is represented
using the language of Defeasible Logic Programming. The combination of both frameworks results
in a formalism for knowledge representation and reasoning about beliefs, allowing that two agents
can deliberate or negotiate using arguments supported by consistent subsets of their own beliefs.

As a future work, we will explore more properties of this operator and we will develop multi-agent
applications. The intention is to generalize the merging operator to more than two belief bases, allow-
ing the use of comparison methods such as speci�city [3], explanations [8], and distances between
models [21, 22].
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