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Abstract 
This article presents the application of a Parallel Evolutionary Algorithm to solve the Minimum 
Interference Frequency Assignment Problem (MI-FAP). This is a capital problem in the mobile 
telecommunication field, which proposes to find an assignation of a set of frequencies to minimize 
the communication interference. MI-FAP is a NP-Complete optimization problem; so traditional 
exact algorithms are useless for solving real-life problem instances in reasonable execution times. 
This work proposes to use a metaheuristic approach to find good quality solutions for real-life MI-
FAP instances never faced before using Evolutionary Algorithms. Evaluation experiments 
performed on those real-life instances report promising numerical results for both serial and parallel 
models of the algorithm proposed. In addition, the parallel version shows high levels of 
computational efficiency, demonstrating a superlinear speedup behavior for the instances studied. 
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1.  Introduction 
Nowadays, wireless (also referred as mobile) communication is having a huge impact on developed 
countries’ way of life. Wireless communications use radio waves to transmit voice and data 
between devices, using the portion of the electromagnetic spectrum in which waves can be 
generated by alternating current fed to an antenna (the radio spectrum or radio frequencies). 
Network resource management has emerged as a capital problem in wireless telecommunication, 
due the fast development of wireless network infrastructures in the last fifteen years. Frequencies in 
the radio spectrum are a high cost and at the same time a scarcely available resource, so reutilization 
is a usual technique. When several connections share or use near frequencies, the communications 
suffer signal interference, a phenomenon that downgrades the transmission quality. The Frequency 
Assignment Problem (FAP) proposes to find an optimum assignation of a set of available 
frequencies to a large number of transmitter devices in order to satisfy certain constraints while 
optimizing some measure related with the communication quality (usually the goal consists in 
avoiding or at least minimizing the interference). 
In its generic formulation, the FAP is a NP-Complete optimization problem [9]. Since the size of 
the existing wireless communication networks is continuously enlarging, the underlying instances 
of FAP frequently pose a challenge to classic assignment algorithms. In consequence, the research 
community has been searching for new methods that are able to replace and improve over to the 
traditional exact ones, whose low efficiency often makes them useless for solving real-life problems 
of large size in reasonable times. In this sense, heuristic algorithms have been applied to frequency 
assignment problems. Although they could sometimes fail in computing a true optimum for the 
problem, they are able to find appropriate quasi-optimal solutions in reasonable times. Among a 
whole new set of heuristics and modern optimization techniques, Evolutionary Algorithms [13] 
have emerged as flexible and robust methods for solving the underlying complex optimization 
problems found in telecommunications as well as in many other areas of application. 
This article presents the application of a parallel evolutionary algorithm to the FAP, for solving 
real-life wireless network instances never faced before applying evolutionary techniques. The 
parallel evolutionary approach has been designed in the aim of solving the Frequency Assignment 
Problem with numerical accuracy and high computational efficiency. 
The manuscript is structured as follows. Next section describes Evolutionary Algorithms. Section 3 
presents the FAP, its mathematical formulation, and popular variants. Section 4 contains an overview 
of previous works related to EAs applied to solve the FAP. Section 5 describes the features of the 
algorithm used and their implementation details. The discussion on the experiments and results are 
summarized on Section 6, while conclusions and future work are formulated in Section 7. 

2. Evolutionary Algorithms 
Evolutionary Algorithms (EAs) are stochastic search methods that have been successfully applied in 
many real applications of high complexity.  
An EA is an iterative technique that applies stochastic operators on a pool of individuals (the 
population) in order to improve their fitness, a measure related to the objective function. Every 
individual in the population is the encoded version of a tentative solution. Initially, this population 
is randomly generated. An evaluation function associates a fitness value to every individual 
indicating its suitability to the problem. 
Iteratively, the applications of operations like recombinations of parts of two individuals 
(crossovers), or random changes (mutations) in their contents are guided by a selection-of-the-best 
technique to tentative solutions of higher quality. A particularly popular type of EA is the Genetic 
Algorithm (GA), in which all the mentioned operators are included. 
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Figure 1 presents a generic schema for an Evolutionary Algorithm. 
Initialize(Population(0))  
generation = 0  
while (not StopCriteria) do 
  Evaluate(Population(generation))  
  Fathers = Selection(Population(generation)) 
  Offsprings = Reproduction Operators(Fathers) 
  NewPop = Replace(Offsprings,Population(generation)) 
  generation ++  
  Population(generation)=NewPop  
return Best Solution Found 

Figure 1: Schema for an Evolutionary Algorithm. 
2.1. Genetic Algorithm 
Goldberg [8] introduced the classical formulation of a GA. Based on the generic schema in Figure 
1, the GA Reproduction Operators include recombination and mutation, applied to the 
population in each generation. GA techniques are widely spread due its versatility for solving 
combinatorial optimization problems [13].  
2.2. CHC Algorithm 
The CHC acronym stands for “Cross generational elitist selection, Heterogeneous recombination, 
and Cataclysmic mutation” [7]. CHC is a specialization of a traditional GA that incorporates a high 
conservative selection strategy, perpetuating the k better individuals over generations. CHC does 
not use mutation, and a special crossover operator (Uniform Crossover – HUX) is introduced: it 
randomly swaps exactly half of the bits that differ between the two parent strings. A mating 
restriction policy avoids recombining “too similar” individuals: only those parents that differ from 
each other by some number of bits are allowed to reproduce.  
CHC does not use traditional mutation, but introduces new diversity by a re-initialization procedure 
using the best individual found so far as a template for creating a new population after convergence 
is detected (i.e., when no offspring can be inserted after a number of generations). The initial 
threshold for allowing mating is often set to 1/4 of the chromosome length. If no offspring is 
inserted into the new population during the mating procedure, this threshold is reduced by 1.  
Figure 2 presents a pseudo-code for the CHC algorithm. 

Initialize(Population(0))  
generation = 0  
distance = ChromosomeLength/4  
while (not StopCriteria) do 
  Evaluate(Population(generation))  
  Fathers = Selection(Population(generation))  
  Offsprings = HUX(Fathers) 
  Evaluate(Offsprings) 
  NewPop = Replace(Offsprings,Population(generation)) 
  if (NewPop == Population(generation)) then 
    distance --  
  generation ++  
  Population(generation) = NewPop  
  if (distance == 0) then 
    Reinitialize(Population(generation))  
    distance = ChromosomeLength/4  
return Best Solution Found 

Figure 2: Schema for the CHC algorithm. 
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2.3. Parallel Evolutionary Algorithms 
In the last decade, parallel implementations became popular with the goal of making EAs more 
efficient. By splitting the population into several processing elements, parallel evolutionary 
algorithms (PEAs) allow to reach high quality results in reasonable execution times even for hard-
to-solve optimization problems [3]. In this work we use a parallel CHC implementation categorized 
within the “subpopulation with migration” model according to the classification from Nowostaski 
and Poli [14]. The original population is divided in several subpopulations (called demes) separated 
geographically from each other. Each deme runs a serial EA, so individuals are able to interact only 
with other individuals in the deme. An additional migration operator is defined: occasionally some 
selected individuals are exchanged among demes, introducing a new source of diversity in the EA.  
Figure 3 shows the generic schema for a subpopulation with migration PEA. Two conditions 
control the migration procedure: SendMigrants determines when the exchange of individuals takes 
place, and ReceiveMigrants establishes whether a foreign set of individuals has to be received or 
not. Even though in an asynchronous PEA these two conditions are separated in time, they coincide 
in a synchronous model, when the send and receive operations are executed synchronically, one just 
after the other. Migrants denote the set of individuals to exchange with some other deme, selected 
according to a given policy. We have explicitly distinguished between Selection for reproduction 
and Selection for migration; because they usually follow different policies. The SendMigration and 
ReceiveMigration operators carry out the exchange of individuals among demes according to a 
connectivity graph defined over them, most usually a unidirectional ring. 

Initialize(Population(0))  
generation = 0  
Evaluate(Population(0))  
while (not StopCriteria) do 
  Fathers = Selection for Reproduction(Population(generation)) 
  Offsprings = Reproduction(Fathers) 
  NewPop = Replace(Offsprings,Population(generation)) 
  generation ++  
  Population(generation)=NewPop  
  if (SendMigrants) 
    Migrants = Selection for Migration(Population(generation)) 
    SendMigration(Migrants) 
  if (ReceiveMigrants) 
    Inmigrants = ReceiveMigration() 
    P(generation) = Insert(Immigrants, P(generation)) 
return Best Solution Found 

Figure 3: Schema for a subpopulation with migration Parallel Evolutionary Algorithm. 

3. Frequency Assignment Problems 
Wireless communications use the radio frequency spectrum as the medium for the information to 
pass trough. Since the governments charge the communication companies for using the spectrum, 
one of the main tasks of networks designer is to split the range of frequencies in channels to 
perform one communication per each (the terms channel and frequency are often used as synonyms). 
The main advantage of wireless over wired networks is the possibility to tolerate the mobility of 
both transmitter end receiver, a feature that significantly increase the interference probability. 
Interference measures the ratio between signal and noise in a communication. Low-level 
interferences allow the receiver to distinguish the whole message in a clear way. On the other hand, 
if the interference level is big enough to unable the receiver to understand the message, turning the 
communication impossible, it is called unacceptable interference. 
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To be in presence of interference, the next situations between two transmitters have to happen 
simultaneously [9]: 

1. Physical proximity and enough power to cover the same area. 
2. Usage of the same (co-channel interference) or nearly (adjacent-channel interference) 

frequencies. 
The concept of restriction is introduced to avoid unacceptable interference values. A restriction can 
involve either the separation between channels or channels that cannot be used. This last class of 
restrictions is because of technical or governmental limitations.  
Summarizing, FAP can be defined as the problem to assign frequencies from a limited spectrum to 
a set of wireless transmitters maximizing the channel reuse and avoiding unacceptable 
interferences. Therefore, an optimal FAP solution implies balancing frequency reuse and 
communication quality. 
3.1. FAP Taxonomy  
Koster [12] proposed a categorization for the different flavours of FAP. Considering the objective 
to optimize as classification criteria, he identified four main categories: 

• Minimum Order Frequency Assignment Problem (MO-FAP): the goal is to minimize the 
number of used channels. 

• Minimum Span Frequency Assignment Problem (MS-FAP), the goal is to minimize the 
difference between the highest and the lowest used frequencies. 

• Minimum Blocking Frequency Assignment Problem (MB-FAP), the goal is to minimize the 
blocking probability. This objective is reached by using partial assignations and dynamic 
evaluation of the rest of frequencies to assign, depending on the possibility of blocking in 
the network communications. 

• Minimum Interference Frequency Assignment Problem (MI-FAP), the goal is to minimize 
the total sum of interferences. 

This paper focuses on the last class of problems. A MI-FAP formal description is presented in the 
following subsection. 

3.2. MI-FAP description and mathematical formulation 
As described in the previous subsection, MI-FAP is aimed to assign frequencies from the spectrum 
to the transmitters within the network, maximizing frequency reuse, avoiding unacceptable 
interference and minimizing the sum of all low-level interferences involved in the scenario. 
Every FAP problem can be modeled by a graph ( )EVG ,= , known as either interference graph or 
restriction graph, where:  

• V is the set of graph vertices corresponding to nodes of wireless scenario. 
• E is the set of graph edges. For two nodes Vwv ∈, , ( ) Ewv ∈,  if and only if the nodes v and 

w signals can suffer interference in at least in one pair of frequencies. 
• DDVv v ⊆∈∀ ;  is the available frequencies set for node v. 

• vc  is the number of required frequencies by Vv ∈ . 

• vwfgp  quantifies the interference between vDf ∈  and wDg ∈  frequencies.  

• vvfgp  quantifies the interference between f and g frequencies, both assigned to node v.  

Specifically, the mathematical formulation for the MI-FAP version is presented in Figure 4. 
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Figure 4: MI-FAP formal description. 
3.3. COST259 scenarios 
Mobile telephony network design implies solving the frequency assignment problem. To perform 
this task, a representation of the real environment (named scenario) is needed. Since some 
communication companies consider this information confidential, it is typically difficult getting real 
descriptions and lot of papers have been written performing tests on random-generated instances. 
Fortunately, some organizations have looked beyond these commercial limitations recently. By 
making available real information, they have allowed algorithms designers to test their solving 
techniques over an increasing number of real-life scenarios. In this work, COST 259 scenarios, 
published by the communications branch of European Cooperation in the field of Scientific and 
Technical research, have been used. Scenarios are described in Section 6.2 and their details are 
presented in Table 1. 

4. Related work  
This section briefly reviews several references reporting some work on applying EAs to frequency 
assignment problems. 
Crompton et al. [4] were pioneers in applying parallel genetic algorithms to the FAP. In their early 
work, the authors introduced R2, one of the three most popular mechanisms for encoding FAP 
solutions, and an alternative representation grouping together those sites using the same 
frequencies. Computational results obtained using a PEA with migration scheme to solve an unreal 
(but realistic) scenario with 272 transmitters showed that the improved order representation is able 
to reach better assignations in terms of fewer constraints violations. 
Dorne and Hao [5] faced the FAP with a special EA that had no crossover, but just mutation. The 
authors tested the algorithm with a set of 18 real problems in France. To improve the quality of 
results they hybridized the algorithm by introducing some local search features. The experimental 
phase showed very encouraging results, particularly because the solutions found are better than 
those obtained with simulated annealing and constraint programming. 

Instance: 
1. An undirected graph ( )EVG ,=  ; { } VvEvv ∈∀∈ ;, . 
2. Sets { } vwvw wvT Τ∈Ε∈Ζ⊂ 0,,, , of the relevant distances between ( )vf  and ( )vg  frequencies. 

3. A demands set +Ζ∈vc ∀  v ∈ E. 

4. An available frequencies subset  VvZDv ∈∀⊆ + , . =vD  {f / f is an available frequency for v}.  

5. Set U
Vv

vDD
∈

=  conformed by all available frequencies for some node within the wireless scenario. 

6. A set of penalization values +∈ Zpvwfg  ∀ { } Ewv ∈, , wv DgDf ∈∈ ,  . 
7. A positive integer K  that specifies the maximum acceptable value for the total of all penalizations 

within the scenario. 
Question: Does it exist a frequencies assignation DVf 2: →  that satisfies the following conditions? 
1. vcvf =)(  

2. vDvf ⊆)(  

3. ( )
( ) ( )

{ }
KTgfp

Ewv
gfwv

wggvff
vwfgvw ≤
















∈−∑ ∑

∈
≠∨≠
∈∈, )(),(

δ  ( )(Aδ = 1 if A  is true or 0 otherwise). 
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Karaoglu and Manderick [11] presented a FAP solving approach, grouping transmitters in clusters. 
The proposal uses a cluster discovery algorithm based on the concept of grouping those closer 
transmitters in order to assign a different frequency to each one within the cluster. This assignation 
reduces the interference calculation to inter-cluster transmitters since intra-cluster interference is, by 
definition, zero. Karaoglu and Manderick got an algorithm roughly 33 times faster than a traditional 
GA applied to this problem. They attributed this significant speed-up to the reduction of both the 
search space and the time complexity of fitness calculation. 
The proposal from Aardal et al. [1] resumed different models and solutions to all FAP flavors. The 
authors included a Genetic Algorithm section, presenting different approaches to the problem using 
this technique. GA-based FAP solving proposals are classified depending on the kind of FAP faced 
(MO-FAP, MS-FAP, MB-FAP, MI-FAP). In addition, the authors included a description of the 
more popular GA representations for FAP solutions (named R1, R2 and R3). 
The work of Weinberg et al. [16] presented COSEARCH, a co-evolutionist optimization method, 
which combines different and complementary metaheuristics, such as tabu search and genetic 
algorithms. All metaheuristic algorithms run in parallel and cooperate with the others, using an 
adaptive memory procedure. Weinberg et al. introduced a new encoding proposal and presented two 
new crossover mechanisms according to their original representation of solutions. The authors 
tested the COSEARCH metaheuristic on several benchmark problems provided by France Telecom. 
Finally, it is worth to note that there are no publications on evolutionary algorithms solving the 
Frequency Assignment Problem for the COST259 scenarios [6].  
 
5. Implementation  
5.1. Problem encoding 
Each chromosome encodes a frequency assignment for a mobile telephony network placed in some 
fixed area (i.e. a city). Aardal R1 encoding [1] was adopted due its conceptual simplicity and the 
possibility of applying standard evolutionary operators. 
R1 is the most intuitive encoding scheme for frequency assignments. It is based on using a n 
dimension integer vector, where n is the number of transmitters in the scenario. The element in the 
position i represents the frequency assigned to the transmitter i. Figure 5 presents an example of R1 
encoding, where the frequency number 16 is assigned to the first transmitter, the frequency number 
5 to the second transmitter, and so on.  
 

16 5 9 13 15 7 11 16 7 12 6 10 
Figure 5:  Solution encoding example (R1). 

5.2. Fitness function 
MI-FAP is a minimizing optimization problem, so the fitness function F to evaluate an individual x 
was designed as a quotient, whose expression is presented in Equation 1. The dividend evaluates the 
sum of total interference in the network plus the sum of each violated restriction, plus 1 (to avoid 
division by zero). A restriction violation can be originated either from not respecting a minimum 
span between two frequencies or from using a channel that is not available (a blocked channel).  

Equation 1: MI–FAP fitness function. 

( ) ( )( ) ( ) ( ) ( )( )∑ ∑∑ ∑∑
∈∈ ∈∈∈∈ ∈∈∉∈

∈∧∈+∈−+∈+
=

v wv wv DaVv DbVw
vwab

DaVv DbVw
vwvwab

DaVv
wgbvfapTbapvfa

xF

; ;; ;;

1
1

δδδ
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The fitness function has to be designed in such a way that a solution with high level of interference 
and low number of restriction violated has better fitness value than another with low interference 
and high violations. That is because in MI-FAP context, only one violated restriction could 
invalidate the whole assignment, because it disallows the communication between two points in the 
network. Therefore, it is desirable to reach a final solution without violated restrictions. To satisfy 
this goal, the fitness function in Equation 1 proposes using a lineal relation among the terms within 
the divisor. The interference level between two transmitters is quantified in a real number between 0 
and 1, and each violated restriction is computed as 1. Other fitness proposals have been studied in 
non-formalized experiments, yielding to similar results than the function in Equation 1. 
5.3. The MALLBA library 
The MALLBA project [2] is an effort to develop a library of optimization algorithms able to deal 
with parallelism, in a user-friendly and, at the same time, efficient way both for LAN and WAN 
environments. Optimization algorithms are implemented as software skeletons on the library. 
Skeletons are generic templates that the user has to instantiate with the features of the specific 
problem to solve. They incorporate all the knowledge related to the resolution method, its 
interactions with the problem, and the parallel execution. Skeletons are implemented by a set of 
required and provided C++ classes that represent an abstraction of the entities participating in the 
resolution method: 

• Provided classes implement skeletons internal features, in a problem-independent way. The 
most important provided classes in MALLBA are Solver (the algorithm) and SetUpParams 
(parameters setup). 

• Required classes specify information related to the problem. Each skeleton includes the 
Problem and Solution required classes, which encapsulate the problem-dependent entities 
needed by the resolution method. Depending on the skeleton, other classes may be required. 

The infrastructure used in the MALLBA project is made of communication networks and clusters of 
computers located in Málaga, La Laguna and Barcelona, in Spain. A chain of Fast Ethernet and 
ATM circuits interconnects these nodes. The MALLBA library is publicly available at University of 
Málaga location http://neo.lcc.uma.es/mallba/easy-mallba. 
The CHC algorithm used in this work has been codified using the MALLBA library. 

6. Experimental results  
This section describes the experiments performed using the CHC algorithm to solve the MI-FAP. 
Tests were mainly aimed to compare the quality of reached solutions and the computational 
efficiency (evaluating the time spent to obtain them) for both sequential and parallel version of the 
CHC algorithm. 

6.1. Execution platform 
All experiments were performed on a cluster of three AMD Athlon 3000 64 bits. Each cluster node 
has the following features: 2 GHz clock frequency, 1 GB RAM and Open SuSE Linux 10 operating 
system. Connectivity among nodes was done through a Fast Ethernet LAN at 100 Mbps. 
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6.2. Test instances 
Evaluation experiments were performed over three COST259 instances, whose most important 
features are described in Table 1. The Tiny test instance was used only for the correctness 
evaluation of the algorithm implementation (since it does not pose a challenge as combinatorial 
optimization problem due its reduced size), while K and Swiscomm arise from real-life, medium-
size wireless networks on dense urban environments provided by telecommunication companies [6]. 

Scenario Cells Transmitters Spectrum width 

Tiny 7 12 13 
K 264 267 50 
Swisscom 148 309 68 

Table 1: Scenarios features. 
6.3. CHC configuration 
Configuration experiments were performed to find the more suitable parameter combination able to 
reach good quality solutions without increasing drastically the execution times. Table 2 shows the 
parameter set that allowed reaching the best solutions in the configuration experiments. The same 
configuration was used for both serial and parallel CHC algorithm, but the parallel version splits the 
population among three demes. 

Values Parameter 
Sequential GA Parallel GA 

Population size 150 50 
Crossover probability 0.7 0.7 
Reinitialization probability 0.2 0.2 
Stopping criterion 30000 generations 30000 generations 

Table 2: CHC parameters. 
6.4. Evaluation experiments 
Evaluation experiments involved performing 10 independent executions of sequential and parallel 
CHC per scenario. Table 3 summarizes the results achieved for each test instance studied. 

Sequential CHC Parallel CHC 

Scenario 
Average 
Fitness 

Standard 
Deviation 

Average 
Fitness 

Standard 
Deviation 

Tiny 0,98039 0 0,97944 0,00300 
K 0,30690 0,02306 0,29852 0,01447 
Swisscom 0,00066 0,00031 0,00065 0,00011 

Table 3: Comparative results for serial and parallel CHC. 
Analyzing the quality of reached solutions showed in Table 3, it can be seen that the parallel version 
is not able to improve the results achieved by the serial algorithm. Both CHC versions reach the 
same results quality, since the difference between sequential and parallel versions is not significant 
statistically, because it is lower than the standard deviation on fitness values.  
The evolutionary approach was unable to achieve the solution quality obtained with other 
metaheuristic techniques (e.g. Simulated Annealing [10] and Tabu Search [15]). However, 
considering that the CHC algorithm does not include problem dependant information and uses 
simple evolutionary operators, the accomplished results could be considered as promising, and 
eloquently locates the evolutionary techniques as those useful to solve the MI-FAP. 
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Table 4 presents the computational efficiency analysis for both CHC versions. Experiments were 
aimed to evaluate the execution times, and then calculate the speedup and efficiency measures. The 
speedup (SM) relates the mean execution time demanded when using a single processor (T1) with the 
mean execution time when using M processors (TM), as Equation 2.1 states. Equation 2.2 defines the 
efficiency (EM), which normalize the speedup value, considering the computational resources used. 

M
M T

TS 1=   (2.1)                
M
SE M

M =    (2.2) 

Equation 2: Speedup and efficiency definitions. 
Focusing on the execution times, the computational efficiency for parallel CHC algorithm was 
significantly better than its sequential counterpart. As a matter of fact, in the most relevant scenarios 
(those that model real-life wireless networks) CHC showed a superlinear speedup behavior and, 
consequently, computational efficiency was greater than one. (Results on Tiny scenario are not 
representative to qualify the algorithm in real networks, since it is a very small instance created in 
order to teach the researchers about the file format and algorithm correctness). 

Sequential CHC Parallel CHC 
Scenario Average Time 

Spent (hours) 
Standard 
Deviation 

Average Time 
Spent (hours) 

Standard 
Deviation 

Speedup Computational 
Efficiency 

Tiny 0,136 0,012 0,048 0,003 2,8 0,93 
K 16,530 0,174 4,649 0,030 3,55 1,18 
Swisscom 26,348 0,330 8,410 0,047 3,13 1,04 

Table 4: Computational efficiency comparison. 
Table 4 eloquently demonstrates that splitting the population significantly reduces the execution 
times. Solving the MI-FAP for K and Swiscomm scenarios demand large execution times for the 
serial CHC algorithm (it demands more than 24 hours for Swisscom instance). However, employing 
a multi deme parallel version can notably diminish this amount of time. 
Figure 6 presents a graphical analysis that tracks the fitness evolution for a representative single run 
of serial CHC for solving the K scenario. The fitness values show that CHC is able of achieve well-
suited individuals in a relatively low number of generations, and it also demonstrates the CHC 
capability of avoiding premature convergence (i.e. fitness values show a increasing derivative). A 
similar behavior was detected for CHC parallel version as well as for experiments performed to 
solve the Swisscom scenario. 
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Figure 6: Fitness evolution sample (CHC serial version, K scenario). 

7. Conclusions and future work 
This article presents the resolution of MI-FAP using serial and parallel versions of CHC 
evolutionary algorithm. The work is focused on solving a set of scenarios never faced before using 
evolutionary techniques.  
Even though using simple evolutionary operators the CHC algorithm is not able to outperform the 
solution quality obtained with other techniques, the parallel evolutionary approach showed itself as 
competitive to reach good results in reasonable execution times. 
From the results and efficiency comparison, it is possible to conclude that the parallel CHC version 
allows reaching similar values of solutions quality than the sequential version, but considerably 
reducing the execution times. The computational efficiency is a promising feature, because 
superlinear speedup behaviour was detected. 
Using R1 encoding and traditional non-specific evolutionary operators, CHC was unable to achieve 
results obtained by Simulated Annealing and Tabu Search methods [10] [15]. This situation lead to 
many possible approaches to be studied in future work. The main proposal involves trying to 
improve the quality of solutions using ad hoc evolutionary operators considering problem 
dependant information. Related to this topic, it is also important experimenting with other 
encodings such as traditional R2 and R3 or even original proposals. Other options include using 
different fitness function trying to reach a balance between exploring in early generations and 
exploiting in advanced ones. Due the differences existing among test scenarios, it is worth to try 
designing a dedicated fitness function for each group of scenarios with similar features. 
Regarding the computational efficiency, other models of parallel evolutionary algorithms should be 
studied. A comparative study analyzing scalability, speedup and efficiency will be worth to reach 
even better results after implementing some of the problem-dependant modifications mentioned 
above. Since the computational resources available limited the experiments, the scalability of 
parallel versions should be further investigated, to determine whether it would be useful for solving 
complex scenarios using the power of large clusters of computers. 
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Finally, considering the total interference and the separation and blocked channel restrictions as 
three different independent objectives, it is possible to face the problem following a multi-objective 
evolutionary algorithm approach. We are working on some of these topics right now. 
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