
A Simple Genetic Algorithm for a

Minimal Overlapping Scheduling Problem

Alfredo Olivera Sergio Nesmachnow

Instituto de Computación, Facultad de Ingenieŕıa,

Universidad de la República, Montevideo, Uruguay.

{aolivera, sergion}@fing.edu.uy

July 30, 2004

Abstract

This article introduces a new version of the Multiple Machine Scheduling Problem: the
Scheduling Problem with Time Windows and Minimal Overlap (SPTWMO). Given a set of non-
preemptive jobs with time windows and a number of identical machines, the problem consists on
finding a starting time for each job which satisfies time window constraints while minimizing a
measure of resource infeasibility (the Total Overlap). The problem is NP-Complete even in the
case when only one machine is considered. We present a simple genetic algorithm applied to the
SPTWMO, reporting efficient numerical results according to lower bounds obtained solving the
preemptive version of the problem.
Keywords: Genetic Algorithms, Optimization, Scheduling.

Destinated to Agents and Intelligent Systems Workshop

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Scheduling problems consist in determining execution times for a set of jobs in order to satisfy
temporal constraints and resource constraints, while optimizing a quality measure. Traditionally,
time windows (a time interval in which a job must be executed) and precedence constraints (li-
near inequalities relating starting times of pairs of jobs) appear as temporal constraints. Resource
constraints model the availability of machines over time (usually one machine is able to process
only one job at a time) and may also impose compatibility restrictions between jobs and machines.
Many alternatives have been proposed as quality measures, for example, the total execution time
(makespan) and the number of late jobs, among others.

In some cases it not possible to satisfy both temporal and resource constraints, and some res-
trictions are relaxed, including them in the quality measure. The most common approach consists
in relaxing temporal constraints, that means, to find schedules that satisfy every resource constraint
and a good subset of temporal constraints. The idea behind this approach is that when resource
constraints are violated, more machines will be needed to put the schedule into practice. When
temporal constraints are time windows and there is only one machine available, the problem is
known as One Machine Problem [1] or 1|rj |

∑

Uj in the classification proposed by Graham et al.
[2]. In the One Machine Problem, the objective is to find a schedule that minimizes the number
of late jobs (those jobs violating temporal constraints). This is a well known problem, and various
methods have been proposed to solve it [3, 4, 5].

An alternative approach consists on relaxing resource constraints. In this case, the problem is
to find a schedule that satisfies every temporal constraint while minimizing some measure of the
violated resource constraints. In a survey performed, we have not found references to this approach
in the literature. In our previous work [6] we presented the problem and developed a simple genetic
approach to solve the single machine version. In this article, we extend this idea for a problem with
multiple identical machines, non-preemptive jobs and time windows as temporal constraints.

The rest of the paper is organized as follows. Section 2 presents the problem, its mathematical
formulation as well as some applications and the computational complexity analysis. In Section 3, a
genetic algorithm to solve the problem is specified. Section 4 summarizes and comments the results
of the algorithm’s execution over a set of test cases. Finally, in Section 5, we state the conclusions
and propose lines for future work.

2 Problem Description

In the Scheduling Problem with Time Windows and Minimal Overlap, a set of non-preemptive jobs
J = {1, . . . , n} is to be scheduled over m identical machines. Each job j ∈ J has an associated time
window [rj , dj ] and a processing time pj (rj , dj , pj ∈ Z). Time window constraints state that the
starting time t of each job j must verify that t ≥ rj (the job cannot start before rj) and t + pj ≤ dj

(it cannot end after dj).
It can be assumed, without loss of generality, that minj∈J{rj} = 0. Also, as every task j must

be completed by dj , there will be no task executing later than T = maxj∈J{dj}−1. So, the relevant
time interval for the scheduling problem is [0, T ].

Given a feasible schedule (i.e., a schedule that satisfies the time window constraints), the ex-
pression in Equation 1 defines the Overlap at time t ∈ [0, T ] where qt stands for the number of jobs
running at time t.

Ot =

{

0 if qt ≤ m
qt −m otherwise

. (1)

The non-overlapping situation (first case in Equation 1) occurs when all running jobs can be
executed using the m available machines, while on the other case only m of the jobs can be processed
and the remaining qt − m jobs overlap. A more compact expression for the Overlap at time t is



Table 1: Jobs for an example instance of the SPTWMO.

j 1 2 3 4 5

rj 0 5 1 2 3
dj 5 11 8 9 10
pj 4 5 5 6 5

Figure 1: A solution to the example instance with Total Overlap 7.

Ot = max(0, qt − m). The SPTWMO proposes to minimize the Total Overlap
∑T

t=0 Ot, which
evaluates the resource constraints violation in the relevant time interval.

Considering the simple SPTWMO instance with 2 machines and 5 jobs specified in Table 1 and
the Gantt diagram for a feasible schedule shown in Figure 1. At times 0 and 1, only one job is
being executed, so O0 = O1 = 0. On each of the next four time instants 3 jobs are running, so
O2 = O3 = O4 = O5 = 1. There are 4 jobs running at time 6, so O6 = 2. Finally, O7 = 1 and
O8 = O9 = O10 = 0. So, the presented solution has a Total Overlap value of 7.

2.1 Mathematical Formulation

The SPTWMO may be formulated as a Mixed Integer Linear Program. Given a job j ∈ J , a binary
decision variable sj,t is defined to indicate whether job j starts at time t or not. The index t of
sj,t takes values only in [rj , dj − pj ], which is the time interval where j can start without violating
the time window constraint. In addition, a positive real variable Ot is defined for every t ∈ [0, T ],
evaluating the Overlap at time t. The problem is formulated in Equations 2-6.

min
T

∑

t=0

Ot (2)

s.t.

dj−pj
∑

t=rj

sj,t = 1 ∀j ∈ J (3)

n
∑

j=1

min(t,dj−pj)
∑

t′=max(t−pj+1,rj)

sj,t′ ≤ Ot + m ∀t ∈ [0, T ] (4)

sj,t ∈ {0, 1} ∀j ∈ J, ∀t ∈ [rj , dj − pj ] (5)

Ot ∈ R
+ ∀t ∈ [0, T ] (6)

In this model, Equation 2 gives the objective function, which corresponds to minimizing the Total
Overlap. Restriction 3 states that job j must start exactly once within [rj , dj − pj ]. Equation 4
determines the Overlap values at each time unit in the relevant time interval. Finally, Equations 5
and 6 set the domain for the decision variables.



2.2 Applications

An application of this particular scheduling problem arises when post-processing the output of
the Critical Path Method (CPM) [7]. The CPM allows to find a minimal duration schedule for a
project, composed by a set of jobs subject to precedence constraints, without considering resource
constraints. After solving the problem, for each job j the earliest starting time tj and a slack sj

are obtained, such that the job can start anytime in the interval [tj , tj + sj ] without retarding the
whole project duration. If resource constraints are considered for some jobs, the problem of finding
starting times satisfying resource constraints (as much as possible) without affecting the project
duration can be modeled as a SPTWMO.

The SPTWMO can also be applied in the Vehicle Routing with time windows domain [8].
Classic Vehicle Routing algorithms do not consider fleets having a finite number of vehicles and
also do not allow vehicles to perform more than one route in a planning period. When such cases
must be considered, assigning routes to vehicles is not a trivial task [9, 10]. For finding solutions,
the problem can be decomposed in a routing phase that generates a candidate set of routes, and
a scheduling phase which determines if those routes can be assigned to the fleet of vehicles. Given
that routes are subject to time windows, the scheduling phase can be solved as a SPTWMO. If a
schedule with Total Overlap 0 is obtained, then the routes can be assigned to vehicles. If not the
SPTWMO solution provides information about congested time intervals (those in which the Overlap
is not 0), which can be used as feedback to perform a routing phase iteration. In fact, the problem
appeared while solving a Vehicle Routing Problem.

2.3 Computational Complexity

The SPTWMO is NP-Complete, even for the simplified case when only one machine is considered
(m = 1), as we prove as follows.

Consider the decision problem (SP): “given a finite set of tasks with time windows and known
processing times, does there exist a schedule over one machine satisfying time windows and resource
constraints?”. SP is known to be NP-Complete [11]. The decision problem associated to SPTWMO
with m = 1 is (DP): “given a finite set of tasks with time windows and known processing times and
K ∈ Z, does there exist a schedule over one machine satisfying time windows constraints having a
Total Overlap value less than or equal to K?”.

Any algorithm that solves DP can be used to solve SP. Given an instance of SP, an instance
of DP is solved with the same input data and K = 0. If the answer to DP is “yes”, then a schedule
exists such that time windows are respected and the Total Overlap value is less than or equal to
0. As Total Overlap cannot be negative, it should be equal to 0, which implies that the resource
constraint is also satisfied. So the answer to SP is “yes”. On the other hand, if the answer to DP is
“no”, then every schedule that satisfies time windows violates the resource constraint, so the answer
to SP is “no”.

The previous argumentation shows that SP can be reduced to DP; since input data of both
problem instances are the same, the reduction can be performed in polynomial time. Given that SP

is NP-Complete, DP also is. Moreover, as DP is the decision problem associated to SPTWMO with
m = 1, the latter is NP-Complete. Finally, if m has not a fixed value the problem is a generalization,
and so it remains NP-Complete.

The fact that the SPTWMO is NP-Complete, suggests the convenience of using heuristic algo-
rithms to find solutions of acceptable quality in reasonable amounts of time, since the low efficiency
of traditional exact methods makes them impractical for solving large size problem instances.

3 The Genetic Algorithm

Evolutionary techniques have been successfully applied to solve a variety of combinatorial opti-
mization problems, including scheduling problems [12, 13]. The proposed Genetic Algorithm (GA)



follows the generational model [14], but it incorporates an elitist mechanism, perpetuating the best
individual over generations. A pseudocode of the GA is shown in Algorithm 1.

Algorithm 1 Simple Genetic Algorithm with Elitism.

Initialize population P0 with PS individuals
N ← 1
repeat

Create an empty population PN ← {}
while |PN | < PS do

Select individuals p1 and p2 from PN−1

Apply crossover to p1 and p2 to obtain s1 and s2

Mutate s1 and s2

Add s1 and s2 to PN : PN ← PN ∪ {s1, s2}
end while

b← the best individual of PN−1

if b /∈ PN then

w ← the worst individual of PN

Replace w with b in PN : PN ← (PN\{w}) ∪ {b}
end if

N ← N + 1
until N = nGen
Return the best individual of PN

The GA uses a fixed effort stopping criteria, evolving during nGen generations and returning
the best solution found. Considering that this particular problem has not been previously tackled,
we decided to set a high number of generations as stopping criteria (nGen = 2000), in the quest for
accurate solutions. The GA was implemented using the GAlib v2.4 [15] library.

3.1 Problem Encoding

Choosing a good encoding scheme for the individuals has high impact in GA’s performance [16]. In
traditional scheduling problems is usual to use permutation based codifications indicating the order
in which jobs start [17]. This codification is adequate for problems where, given the starting order
of the jobs, the starting times can be easily inferred. Since this is not the case in the SPTWMO,
we discarded using a permutation based codification scheme. We also decided not to use binary
codifications, since it would imply the need of using a decodification heuristic procedure as the one
used in Crawels et al. [12].

To encode SPTWMO solutions we used vectors in Z
n, where the integer in position j indicates

the starting time of job j. For instance, the solution presented on the example of Section 2 (Figure 1)
is represented by the vector (0, 6, 2, 2, 4). Using this integer-based codification most of the traditional
evolutive operators are easy to implement, as we present in the next subsection.

3.2 Genetic Operators

The following list describes the operators used by the GA implemented.

Initialization: it randomly builds individuals, choosing the starting time of each job j uniformly
over the interval of its possible starting times: [rj , dj − pj ]. This procedure ensures working
only with feasible individuals in the initial population.

Selection: proportional selection is used.



Crossover: three classic [16] operators were evaluated: Single and Double Point crossover (SPX and
DPX) and uniform crossover (UX). This three operators maintain the feasibility of individuals,
and they are applied with a certain probability pc.

Mutation: three operators were considered, which are applied to each individual with probability
pm. The classic swap mutation (SM) [16], that randomly picks two jobs and interchanges their
starting times, and two problem specific operators which modify the starting time of one job
in the schedule: Flip Mutation (FM) and Push Mutation (PM). FM operator randomly picks
a new starting time for job j from its possible starting time interval [rj , dj − pj ], similarly to
the initialization operator. PM operator increases or decreases in one unit (with probability
0.5) the starting time of the job. SM and PM operators may generate infeasible solutions that
violate time window constraints. Infeasible solutions will be penalized by the fitness function.

3.3 Fitness Function

The fitness function is the sum of two terms: one term evaluates the Total Overlap of the schedule
(which is the objective of the problem) and the other penalizes time windows constraints violations,
pressing the evolutive search towards the feasible region of the problem. Equation 7 shows the
fitness function expression, where ω stands for the number of time instants that tasks are running
out of their time windows and φ is a generic penalization function.

fitness =
T

∑

t=0

Ot + φ(ω) . (7)

Two models were proposed for φ: a linear penalization model where φ(ω) = kω and a quadratic
penalization model in which φ(ω) = kω2. The empirical evidence showed that, in practice, using
the linear model with k = 5 allowed to obtain a satisfactory evolution behavior, not allowing the
perpetuation of non feasible solutions for the test problems considered.

4 Computational Results

4.1 Test Problems

As it was previously mentioned, as far as we know this work is the first reference about this problem,
and therefore it was not possible to use standard test suites to evaluate our results. In order to do
that, we designed a test suite of 1040 instances, generated following the scheme proposed by Baptiste
et al. [3] for the One Machine Problem. Although SPTMWO is not exactly the One Machine
Problem, the input data for both problems are very similar (SPTWMO has m as an additional
parameter) and we assume that considerations taken into account for designing test instances in
Baptiste et al. are also valid for our problem.

Two independent sets of test problems were generated in order to avoid biases in the experiments.
One set of problems was used in the parameter configuration phase and the other was used for the
GA evaluation. The parameter configuration test problem set consists of 50 problems with n varying
between 20 and 100 and m = 1.

Given a feasible schedule for a problem instance with m > 1, if the number of machines is
increased by 1, then the overlap of the given schedule in the new instance decreases in at least
|{t : Ot > 0}| units (where Ot is defined as in Equation 1). As a consequence, problem instances
with low values of m are harder to schedule, so we assume are more difficult to solve using the
genetic algorithm. The motivation for using m = 1 in the parameter configuration test problems is
to tune the genetic algorithm parameters with a subset of the harder problem instances.

The evaluation problem set includes 165 sets of jobs with n varying between 20 and 100; each
set of jobs was tested with values of m varying from 1 to 6, so there is a total of 990 test problems.



4.2 Lower Bounds

Given that optimal solutions to the test problems are not known, we used lower bounds (obtained
solving the problems considering preemptive jobs) to estimate the quality of the GA’s solutions.
The preemptive version of SPTWMO can be modelled as a minimum cost network flow problem.
Consider the net N = (X, U, W ) defined in Equations 8-12.

X = J ∪ [0, T ] ∪ {u, z} (8)

U = {(j, t) | j ∈ J, t ∈ [rj , dj − 1]} ∪ {(t, u), (t, z) | t ∈ [0, T ]} (9)

W (j, t) = 1 ∀j ∈ J, ∀t ∈ [rj , dj − 1] (10)

W (t, z) = m ∀t ∈ [0, T ] (11)

W (t, u) =∞ ∀t ∈ [0, T ] (12)

In the previous flow network, X is the set of nodes, U is the set of arcs and W is the capacity
of each arc. There is one node for each job, one node for each possible time instant and 2 auxiliary
sink nodes (u and z) which help to express the objective function. Equation 10 states that each job
j can send at most one flow unit to each time instant in its time window and must send a total of pj

units. Equation 11 indicates that each time instant can send at most m flow units to node z while
Equation 12 states that each time instant can send flow to node u with no limit. Feasible solutions
to the SPTWMO can be represented as flows over N , while the objective is to minimize the total
flow reaching the sink node u. In an optimal solution, the flow that each time instant t sends to u
will be Ot, the Overlap value at time t.

The linear relaxation of a network flow problem with integer parameters is known to have
integer basic solutions [18]. So, the optimal solution to the flow problem presented (i.e., the desired
lower bound) can be obtained using Linear Programming techniques. Equations 13-18 present the
formulation of the preemptive version of the SPTWMO as a min-cost network flow problem.

min
T

∑

t=0

xt,u (13)

s.t.

dj−1
∑

t=rj

xj,t = pj ∀j ∈ J (14)

∑

{j∈J | t∈[rj ,dj−1]}

xj,t = xt,u + xt,z ∀t ∈ [0, T ] (15)

0 ≤ xj,t ≤ 1 ∀j ∈ J, ∀t ∈ [rj , dj − 1] (16)

0 ≤ xt,z ≤ m ∀t ∈ [0, T ] (17)

xt,u ≥ 0 ∀t ∈ [0, T ] (18)

Being LB the optimal value of this problem and sGA the value of the solution obtained by the
Genetic Algorithm, we propose using GAP = 100(sGA − LB)/LB as an estimation value for the
GA’s solutions quality. GAP measures the difference between the preemptive lower bound and the
value of the solution found by the GA, in terms of the lower bound. If the preemptive lower bound
is close to the unknown optimal value for the non-preemptive problem then GAP is a good quality
measure. So, it must be considered as an upper bound for the distance to the optimal solution,
whose tightness is unknown.

4.3 Operator and Parameter Configuration

The GA operators and parameters were determined in three phases: the analysis of crossover and
mutation operators, the determination of the population size (PS) and the configuration of crossover
and mutation probabilities (pc and pm).



Figure 2: Representative case obtained when varying crossover and mutation operators.

Table 2: Results obtained varying the population size.

n T250 T500
T500

T250
S500 = S250 S500 < S250 S500 > S250

20− 40 53 108 2.04 93% − 7%
50− 70 108 220 2.04 55% 45% −
80−100 142 289 2.04 53% 27% 20%

In order to select the most appropriate operators, we tested every combination of the crossover
and mutation operators proposed in Section 3.2. Each combination was run over the parameter
configuration test problems, using PS = 500, pc = 0.7 and pm = 0.05. For the majority of the
problems, the objective function followed the same pattern, which is shown in Figure 2. The
empirical analysis showed that the choice of the crossover operator does not have a significant
influence on the quality of the results, and so we chose to use UX in the GA evaluation experiments.
Related to mutation operators, solutions obtained when using SM shows low-quality values when
compared with those obtained by FM and PM, which presented close results. We opted to use PM
in the GA evaluation experiments, considering that PM introduces slight perturbations, performing
a local search in the neighborhood of each solution, while FM simply selects new starting times,
possibly disrupting accurate schedules.

To determine an adequate population size, we evaluated the solutions obtained using populations
of 250 and 500 individuals for 5 independent runs of the GA over the parameter configuration test
problems. We used UX and PM operators, with pc = 0.7 and pm = 0.05. Table 2 summarizes the
results, where TPS and SPS stand for the average execution time (in seconds) and the objective value,
respectively, when using PS individuals. Even though the execution times duplicated when using
PS = 500, solution quality increased. Given the low execution times obtained even for problems
with n = 100, we decided to use 500 individuals.

To choose the best crossover and mutation probabilities, three values were considered for each:
0.5, 0.7 and 0.9 for pc and 0.01, 0.05 and 0.1 for pm. The configuration test problems were solved
with each of the 9 combinations. The average GAP values obtained in each case are presented in
table 3. We opted to use the combination pc = 0.9 and pm = 0.05, because it produced the best
results.



Table 3: Average GAP obtained varying pc and pm.

pc pm GAP pc pm GAP pc pm GAP

0.5 0.01 12% 0.7 0.01 12% 0.9 0.01 12%
0.5 0.05 10% 0.7 0.05 9% 0.9 0.05 4%
0.5 0.1 5% 0.7 0.1 9% 0.9 0.1 8%

Table 4: Results for the evaluation test problems.

m n GAP T G Optimal m n GAP T G Optimal

1 20−40 2% 64 370 67% 4 20−40 1% 62 151 91%
1 50−70 2% 123 409 66% 4 50−70 5% 125 477 61%
1 80−100 2% 189 577 52% 4 80−100 8% 189 559 65%

2 20−40 4% 62 405 73% 5 20−40 0% 60 69 94%
2 50−70 2% 125 525 57% 5 50−70 2% 124 394 76%
2 80−100 3% 184 659 44% 5 80−100 3% 186 486 75%

3 20−40 1% 62 210 90% 6 20−40 0% 60 38 98%
3 50−70 4% 125 538 57% 6 50−70 4% 125 361 76%
3 80−100 1% 188 644 54% 6 80−100 2% 189 400 77%

4.4 Evaluation Results

To evaluate the results, the GA was used to solve the 990 test problems with the parameters
determined in the configuration phase. Table 4 summarizes the results, reporting the average values
of GAP , the execution time in seconds (T ) and the average generation in which the best individual
was found (G), and the percentage of the cases in which a provably optimal solution was found (i.e.
GAP = 0). We used a Pentium III machine at 300 MHz having 192 MB RAM with Windows ME
operating system as execution platform.

Related to solution quality, provably optimal solutions were found on 71% of the cases; in 20%
of the cases GAP was not greater than 5%. Only for 9% of the test problems was GAP greater
than 5%. Given that GAP is an upper bound on the distance to the optimal value, we consider this
results as acceptable.

Figure 3 shows that as m increases, the percentage of cases in which a provably optimal solution
is found becomes bigger. This results support the conjecture stating that instances with a high
number of machines become easier to solve for the GA.

Figure 3: Percentage of the cases in which a provably optimal solution was found.



Figure 4: Average number of generations needed to find the best individual.

On average, the best individual is found earlier when more machines are available, as is depicted
in Figure 4. It also can be seen that, for a given number of machines, problems with less jobs take
less generations to reach a convergence state.

Execution times were moderate in all cases, and can be reduced (modifying the fixed effort
criterion) observing that on average the GA finds the best individual in much less than the 2000
generations it evolves.

Table 4 does not reveal a relation between the average GAP and the number of jobs and machines.
GAP is a good quality measure only when the preemptive lower bound is near to the non-preemptive
optimal value. We have seen that this proximity depends on each particular case.

5 Conclusions and Future Work

In this paper we have presented a genetic algorithm that solves a scheduling problem over multiple
machines minimizing the Total Overlap. The problem was mathematically formulated, as well as
its preemptive version, which was used to obtain lower bounds for estimating the quality of the
solutions obtained by the GA.

Several aspects of the GA configuration were analyzed, including empirical analysis of opera-
tors and parameters setting, searching for high quality results on a set of SPTWMO configuration
instances.

The algorithm was evaluated over a wide set of test problems with 20 to 100 jobs and 1 to
6 machines. Results show that the GA was effective to solve the problem, reaching high-quality
solutions (including several optimal solutions), using low execution times.

Further work should be made to find tighter lower bounds, which would allow a more precise
estimation of solution quality. Other difficulty measures (rather than m and n) should be proposed,
in order to distinguish hard problem instances from simpler ones. Finally, it would be interesting
to calculate exact results for the problem; as well as to design other heuristics to solve this problem
and compare the results with the GA solutions presented.

References

[1] Carlier, J.: The one machine sequencing problem. European Journal of Operations Research
11 (1982) 42–47

[2] Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 5 (1979)
287–326



[3] Baptiste, P., Le Pape, C., Peridy, L.: Global constraints for partial csps: A case-study of
resource and due date constraints. Lecture Notes in Computer Science 1520 (1998) 87–101

[4] Dauzère-Pérès, S.: Minimizing late jobs in the general one machine scheduling problem. Euro-
pean Journal of Operational Research 81 (1995) 134–142

[5] Moore, J.: An n job, one machine sequencing algorithm for minimizing the number of late jobs.
Management Science 15 (1968) 102–109

[6] Olivera, A., Nesmachnow, S.: Algoritmo genético aplicado a un problema de scheduling con
mı́nimo solapamiento. In: 3er Congreso Español de Metaheursticas, Algoritmos Evolutivos y
Bioinspirados (MAEB ’04). (2004) 486–493 Text in Spanish.

[7] Kaufmann, A., Desbazeille, G.: The Critical Path Method. Gordon and Breach (1969)

[8] Toth, P., Vigo, D.: The Vehicle Routing Problem. SIAM (2002)

[9] Brandão, J., Mercer, A.: The multi-trip vehicle routing problem. Journal of the Operational
Research Society 49 (1998) 799–805

[10] Taillard, D., Laporte, G., Gendreau, M.: Vehicle routing with multiple use of vehicles. Journal
of the Operations Research Society 47 (1996) 1065–1070

[11] Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company (1979)

[12] Crauwels, H., Potts, C., Van Wassenhove, L.: Local search heuristics for the single machine
total weighted tardiness scheduling problem. Informs Journal on Computing 10 (1998) 341–350

[13] Avci, S., Akturk, M., Storer, R.: A problem space algorithm for single machine weighted
tardiness problems. IIE Transactions 35 (2003) 479–486

[14] Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold (1991)

[15] Wall, M.: Galib: A C++ library of genetic algorithm components. http://lancet.mit.edu/ga
(1996)

[16] Golberg, D.: Genetic algorithms in search, optimization, and machine learning. Addison Wesley
Longman (1989)

[17] Bierwirth, C., Mattfeld, D., Kopfer, H.: On permutation representations for scheduling prob-
lems. Lecture Notes in Computer Science 1141 (1996) 310–318

[18] Nemhauser, G., Wolsey, L.: Integer and Combinatorial Optimization. John Wiley and Sons
(1998)


