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Abstract 
 

Parallel machine scheduling, involves the allocation of jobs to the system resources (a bank of 
machines in parallel). A basic model consisting of m machines and n jobs is the foundation of more 
complex models. Here, jobs are allocated according to resource availability following some 
allocation rule. In the specialised literature, minimisation of the makespan has been extensively 
approached and benchmarks can be easily found. This is not the case for other important objectives 
such as the maximum tardiness and the number of tardy jobs. These problems are NP-hard for 2 ≤ m 
≤ n, and conventional heuristics and evolutionary algorithms (EAs) have been developed to provide 
acceptable schedules as solutions. To solve the unrestricted identical parallel machine scheduling 
problems, this paper proposes MCMP-SRI and MCMP-SRSI, which are two multirecombination 
schemes that combine studs, random and seed immigrants. Evidence of the improved behaviour of 
the EAs when inserting problem-specific knowledge is provided. Experiments and results are 
discussed. 
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1. Introduction 
 

Unrestricted identical parallel machine scheduling problems are frequent in production 
systems. The completion time of the last job to leave the system, known as makespan (Cmax), is one 
of the most common objective functions to be minimised. In a production system it is also usual to 
stress minimisation of others due date based objectives such as maximum tardiness (Tmax) and 
number of tardy jobs (Nt). 

 
These problems types have received considerable attention by different researchers. For many 

years their computational complexity remained as an open research topic until established as NP-
Hard [16]. 

To provide reasonably good solutions in very short time the scheduling literature offers a set of 
dispatching rules and heuristics. Depending on the particular instance of the problem we are facing, 
some heuristics behave better than others. Among other heuristics [12], evolutionary algorithms 
(EAs) have been successfully applied to solve scheduling problems [9-11]. Current trends in 
evolutionary algorithms make use of multiparent [3-5] and multirecombined approaches [6-8]. This 
latter approach is known as multiple crossovers on multiple parents (MCMP). Instead of applying 
crossover once on a pair of parents, this scheme applies n1 crossover operations on a set of n2 
parents. In order to improve the trade-off between exploration and exploitation in the search process 
a variant called MCMP-SRI [13,14] recombines a breeding individual (stud) by repeatedly mating 
individuals that randomly immigrate to a mating pool. Under this approach the random immigrants 
and the multi-mating operation with the stud incorporate exploration and exploitation, respectively 
in the search process.  
 

If we are trying to incorporate knowledge to the blind evolutionary search process, the main 
issue here is how to introduce problem-specific knowledge? If optimality conditions for the 
solutions are known in advance we can restrict the search operating only on solutions which hold 
these conditions. When optimality conditions are unknown, which is the case here, one of the 
options is to import this knowledge from solutions that come out of heuristics specifically designed 
for the problem under consideration. These types of knowledge-based intermediate solutions 
contain some of the features included in the best (optimal or quasi-optimal) solution at the end of 
the evolutionary process. 
 

Consequently MCMP-SRSI, a latest variant of MCMP-SRI, considers the inclusion of a stud-
breeding individual in a pool of random and seed-immigrant parents. Here the seeds generated by 
conventional heuristics introduce the problem-specific knowledge. The following sections describe 
the above mentioned scheduling problems, ways of inserting problem-specific knowledge and 
provide a discussion of the results obtained. 
 
 
2. Scheduling problems 
 

The problems we are facing [16] can be stated as follows: n jobs are processed without 
interruption on some of the m equal machines belonging to the system; each machine can handle no 
more than one job at a time. Job j (j=1,...,n) becomes available for processing at time zero, requires 
an uninterrupted positive processing time pj on a machine, and has a due date dj by which it should 
ideally be finished. For a given processing order of the jobs, the earliest completion time Cj and the 
tardiness Tj = max {Cj -dj, 0} of job j can readily be computed. The problem is to find a processing 
order of the jobs with minimum objective values. The objectives to be minimized are: 



 

 

 
Maximum Tardiness :   )(maxmax jj TT =  
 
Number of Tardy Jobs:   

 
 
 

 
 
3. Conventional approaches to scheduling problems 
 

Dispatching heuristics assign a priority index to every job in a waiting queue. The one with the 
highest priority is selected to be processed next. There are different heuristics [12] for the above 
mentioned problems whose principal property is not only the quality of the results but also to give a 
schedule of the jobs close to the optimal sequence. The following dispatching rules and heuristics 
were selected to determine priorities, build schedules and contrast their outcomes with those 
obtained by the evolutionary algorithms proposed. 
 
 
SPT (Shortest Processing Time first): The job with the shortest processing time is selected first. The 
final scheduled jobs are ordered satisfying: p1 ≤ p2 ≤   … ≤ pn . 
 
WSPT (Weighted Shortest Processing Time first): The job with the weighted shortest processing 
time is selected first. The final scheduled jobs are ordered satisfying: 
(w1 / p1 ) ≥ (w2 / p2 ) ≥  … ≥ (wn / pn ) . 
 
EDD (Earliest Due Date first): The job with earliest due date is selected first. The final scheduled 
jobs are ordered satisfying: d1 ≤ d2 ≤   … ≤ dn . 
 
SLACK (Least slack): The job with smallest difference between due date and processing time is 
selected first. The final scheduled jobs are ordered satisfying: 
d1-p1 ≤ d2-p2 ≤   … ≤ dn-pn . 
 
Hodgson Algorithm: This algorithm gives an optimal schedule for the number of tardy jobs 
objective. The heuristic provides a schedule according to the following procedure, 
Step 1: Order the activities using EDD heuristic. 
Step 2: If there are no tardy jobs, stop; this is the optimal solution. 
Step 3: Find the first tardy job, say k, in the sequence.  
Step 4: Move the single job j (1 ≤ j ≤ k ) with the longest processing time to the end of the sequence. 
Step 5: Check the completion times and return to step 2. 
 
 
4. Multirecombination of random and seed immigrants with the stud 
 

Multiple Crossovers per Couple (MCPC) [6,7] and Multiple Crossovers on Multiple Parents 
(MCMP) [8] are multirecombination methods, which improve EAs performance by reinforcing and 
balancing exploration and exploitation in the search process. In particular, MCMP is an extension of 
MCPC where the multiparent approach proposed by Eiben [3-5] is introduced. Results obtained in 
diverse single and multiobjective optimization problems indicated that the searching space is 
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efficiently exploited by multiple applications of crossovers and efficiently explored by the greater 
number of samples provided by the multiple parents. 

A further extension of MCMP is known as MCMP-SRI [13,14]. This approach considers the 
mating of an evolved individual (the stud) with random immigrants. The process for creating 
offspring is performed as follows. From the old population the stud is selected by means of 
proportional selection and inserted in the mating pool. The number of n2 parents in the mating pool 
is completed with randomly created individuals (random immigrants). The stud mates every other 
parent, the couples undergo crossover operation and 2*(n2-1) offspring are created. The best of 
these 2*(n2-1) offspring is stored in a temporary children pool. The crossover operation is repeated 
n1 times, for different cut points each time, until the children pool is completed. Finally, the best 
offspring created from n2 parents and n1 crossover is inserted in the new population. 

As EAs are blind search methods our new variant (MCMP-SRSI) [15], proposes to insert 
problem-specific knowledge by recombining potential solutions (individuals of the evolving 
population) with seeds, which are solutions provided by other heuristics specifically designed to 
solve the scheduling problems under study. In MCMP-SRSI, the process for creating offspring is 
similar to that of MCMP-SRI, except that the mating pool contains also seed immigrants. In this 
way, the evolutionary algorithm incorporates problem-specific knowledge supplied by the specific 
heuristic. Figure 1 displays these processes. 

We worked with different indirect representations: processor dispatching priorities and task 
priority list (both are indirect-decode representations) and another based on permutations. 

The results discussed in next section correspond to EAs that worked on permutation-based 
representation using the PMX crossover operator because with this combination of representation 
and operator we obtained the best results.  

 
 

5. Experimental Tests and Results 
 

As it is not usual to find published benchmarks for the scheduling problems we worked on, we 
built our own test suite with data (pj, dj, wj) based on selected data corresponding to weighted 
tardiness problems taken from OR library [1,2]. For problems sizes of 40 and 100 jobs, 
respectively, there were selected twenty problems each one with the same identification number 
although they are not the same problem, that is to say that we have a problem numbered 1, with 40 
jobs and another with 100 jobs, and so on. The numbers of the problems are not consecutive 
because each one of them was selected randomly from different groups, where the tardiness factor 
varies being harder for those with highest identification number. 
 

These data were the input for dispatching rules, conventional heuristics and our proposed EAs. 
To evaluate the dispatching rules and the conventional heuristics we used PARSIFAL [12] a 
software package provided by Morton and Pentico, to solve different scheduling problems by mean 
of different heuristics. 

 
The initial phase of the experiments consisted in establishing the best results from dispatching 

rules and conventional heuristics to use them as upper bounds for the scheduling objectives. Also, 
the best parameter values for the EAs were empirically derived after performing a set of previous 
experiments. In all the experiments, we used population size 15 and we ran de EAs for 200 
generations. The values of the remaining parameters are the following: crossover probability 0.65, 
n1 = 18, n2 = 20, seed number = 1 (only for MCMP-SRSI). For each problem and algorithm studied 
we performed 30 runs. 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
  
 
 

 
 
 

Figure 1. Stud and (random immigrants / seeds and random immigrants) multirecombination 
processes. 

 
 

To compare the algorithms, the following relevant performance variables were chosen: 
 
Ebest = ((best value - opt_val)/opt_val)*100 
It is the percentile error of the best found individual when compared with the known or estimated 
(upper bound) optimum value opt_val. It gives a measure on how far the best individual is from that 
opt_val. When this value is negative, the op_val has been improved. 
Mean Ebest (MEbest): It is the mean value of Ebest throughout all runs. 
Best: It is the minimum objective value corresponding to some of the best found individuals 
throughout all runs. 
Max Best: It is the maximum objective value corresponding to some of the best found individuals 
throughout all runs. 
Mean Best (µµµµBest): It is the mean objective value obtained from the best found individuals 
throughout all runs. 
Gbest: It is the generation where the best individual was found. 
Mean Gbest: It is the mean generation number where the best individual was found, throughout all 
runs. 
Hit Ratio: Denotes the percentage of runs where the algorithm reaches the upper bound or 
improves it. Its value is 1 (a 100% of success) when the upper bound is reached or improved in 
every run. 
Evals: Is the number of evaluations necessary to obtain the best found individual throughout all 
runs. The evaluation of an individual consists of calculating its fitness value. 
Mean Evals (MEvals): Is the mean number of evaluations necessary to obtain the best found 
individual throughout all runs. 
σσσσBest: It is the standard deviation of the objective values corresponding to the best found 
individuals throughout all runs with respect to µBest. 
(σσσσ/µµµµ) Best: This coefficient of variation it is calculated as the σBest and µBest ratio. It represents 
the deviation as a percentage of the value µBest. When this value is closer to zero higher is the 
robustness of the results obtained by the EA. 

indiv1 
 

-- 
-- 
-- 
-- 
-- 
-- 
-- 
 

 

child1 
child2 

-- 
-- 

childn1 
 

stud s1 stud
s1 s s1 

 

s p3 s 
p3 s p3 

-- 
-- 
-- 

s pn2 s 
p n2 s pn2

 

stud 
seed1 

 

stud 
parent3 
-- 
-- 

stud 
parentn2 

 

stud 
parent1 

 
stud 

parent2 
 

indiv1 
indiv2 

-- 
-- 
-- 
-- 
-- 
-- 
-- 

indivn 
 

stud 
seed1 

parent1 
parent2 
parent3 

-- 
-- 

parentn2 
 

Seeds and random immigrants 
or 

random immigrants 

Old 
Population 

Mating Pool Multirecombination Temporary 
children 

pool 

New 
Population 

The best of 
n1 children 
is inserted 
in the new 
population 

The best of 2*(n2-1) 
children is inserted 
in the children pool 
 



 

 

Several experiments were performed for 2 and 5 parallel equal machines scheduling systems 
for the objectives described before. The results obtained with the different multirecombined EAs 
implementations performed well for both scheduling systems. In this paper, due to space 
constraints, we only present the best results obtained corresponding to the 5 parallel equal machines 
scheduling problem with problems sizes of 40 and 100 jobs, respectively. Average values of 30 runs 
for the MEbest and MEvals performance variables, obtained under MCMP-SRI and MCMP-SRSI 
approaches, are showed in Figures 2 and 3, respectively. 

 
Considering the precision of the results found by the EAs, it can be seen in Figure 2 that in 

general they performed very well with respect to the upper bounds. For the maximum tardiness 
objective, MCMP-SRI did not perform as well as we expect for the 100 jobs problems size. This 
can happens as a consequence of having a small population (only 15 individuals), besides the fact 
that the selected stud in each generation was not as good as needed to guide the search to more 
promising areas of the space of solutions. Taking into to account both objectives we worked on, 
MCMP-SRSI for all the instances reached or improved the values used as benchmarks. 

 
In Figure 3, are shown the average number of evaluations done by the EAs. It can be observed 

that the most costly method was MCMP-SRI. Besides, the average number of evaluations done by 
MCMP-SRI increases for the 100 jobs problems size for the Tmax and Nt objectives. The same 
occurs when considering the Nt objective for MCMP-SRSI. It is clear that augmenting the size of 
the scheduling problems produces an increase of the dimensionality in the search space of the 
algorithm. In general the average number of evaluations done by MCMP-SRSI is lower than 
MCMP-SRI due to the knowledge of the problem used to guide the search to promising areas of 
solutions. However MCMP-SRSI is still a costly method. 

 
In Table 1 are presented the coefficients of variation calculated by the multirecombinated EAs 

for all the objectives and instances we worked on. Although not all the coefficients values are equal 
to 0.0 they are very close suggesting the algorithms’ robustness with respect to the results that they 
found. 

 
 

6. Conclusions 
 

Multirecombined evolutionary algorithms have been successfully used to solve scheduling 
problems. In particular MCMP-SRSI, has demonstrated its ability on unrestricted identical parallel 
machine scheduling problems by improving the upper bounds calculated with different heuristics 
using PARSIFAL [12] and the values found by MCMP-SRI, for various problem data of different 
sizes taken from the OR-Library. MCMP-SRI also had a good performance for the problems of size 
40 in both objectives and for the problems of size 100 when considering the Nt objective. 
 

Comparing MCMP-SRSI with MCMP-SRI, the former finds good results with a lower cost 
(number of evaluations), due to the knowledge of the problem used to guide the search to promising 
areas of solutions. Considering the Tmax objective the average numbers of evaluations done with 
MCMP-SRSI for both problems sizes (40 and 100 jobs) are similar. For the Nt objective the number 
of evaluations done with MCMP-SRSI for the 100 jobs size problems was higher than with the 
problems of 40 jobs size problems; this could be produced as a consequence on the inherent 
hardness of the scheduling problem, besides the fact that the seeds used for the Tmax objective could 
be more suitable than the ones used for the Nt objective. 
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(b) Number of Tardy Jobs 
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Figure 2. Average MEbest values found by the EAs 
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(b) Number of Tardy Jobs 
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Figure 3. Average MEvals values found by the EAs 



 

 

 
Table 1. (σσσσ/µµµµ) Best values found by the EAs 

 
  40 Jobs 100 Jobs 
  MCMP-SRI MCMP-SRSI MCMP-SRI MCMP-SRSI 

N° Tmax Nt Tmax Nt Tmax Nt Tmax Nt 
1 0.05 0.09 0.02 0.08 0.04 0.07 0.00 0.08 
6 0.02 0.07 0.00 0.05 0.01 0.04 0.01 0.03 

11 0.01 0.04 0.00 0.03 0.01 0.03 0.01 0.02 
19 0.01 0.02 0.00 0.02 0.00 0.03 0.00 0.02 
21 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 
26 0.17 0.12 0.10 0.26 0.22 0.22 0.12 0.13 
31 0.03 0.06 0.02 0.07 0.05 0.05 0.00 0.05 
36 0.02 0.04 0.01 0.04 0.04 0.04 0.01 0.04 
41 0.03 0.04 0.00 0.04 0.03 0.03 0.00 0.02 
46 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.02 
56 0.09 0.13 0.02 0.11 0.12 0.09 0.02 0.09 
61 0.06 0.09 0.02 0.06 0.06 0.05 0.01 0.05 
66 0.03 0.05 0.01 0.03 0.05 0.03 0.01 0.05 
71 0.02 0.01 0.01 0.02 0.02 0.02 0.00 0.01 
86 0.06 0.08 0.03 0.06 0.08 0.05 0.00 0.06 
91 0.03 0.03 0.01 0.05 0.04 0.03 0.00 0.03 
96 0.01 0.00 0.01 0.01 0.03 0.02 0.00 0.01 

111 0.08 0.04 0.02 0.05 0.07 0.05 0.00 0.05 
116 0.06 0.05 0.02 0.05 0.04 0.02 0.01 0.02 
121 0.03 0.01 0.01 0.01 0.04 0.02 0.00 0.02 

AVG 0.04 0.05 0.02 0.05 0.05 0.05 0.01 0.04 
 

Future work will be devoted to solve due date related problems in unrestricted identical parallel 
machine scheduling systems for larger number of jobs and to compare the performance of the 
different EAs implemented with others population-based stochastic search heuristics. 
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