

Evolutionary Optimization of Due Date Based Objectives in Unrestricted
Identical Parallel Machine Scheduling Problems

Ferretti E., Esquivel S., Gallard R.

Laboratorio de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)1

Facultad de Ciencias Físico-Matemáticas y Naturales
Universidad Nacional de San Luis

Ejército de los Andes 950 – Local 106
5700 – San Luis – Argentina

{ferretti, esquivel}@unsl.edu.ar

Abstract

Parallel machine scheduling, involves the allocation of jobs to the system resources (a bank of
machines in parallel). A basic model consisting of m machines and n jobs is the foundation of more
complex models. Here, jobs are allocated according to resource availability following some
allocation rule. In the specialised literature, minimisation of the makespan has been extensively
approached and benchmarks can be easily found. This is not the case for other important objectives
such as the maximum tardiness and the number of tardy jobs. These problems are NP-hard for 2 ≤ m
≤ n, and conventional heuristics and evolutionary algorithms (EAs) have been developed to provide
acceptable schedules as solutions. To solve the unrestricted identical parallel machine scheduling
problems, this paper proposes MCMP-SRI and MCMP-SRSI, which are two multirecombination
schemes that combine studs, random and seed immigrants. Evidence of the improved behaviour of
the EAs when inserting problem-specific knowledge is provided. Experiments and results are
discussed.

Keywords: Parallel machine scheduling, evolutionary algorithms, multirecombination, maximum
tardiness, number of tardy jobs.

Workshop: Agentes y Sistemas Inteligentes

1 The LIDIC is supported by the Universidad Nacional de San Luis and the ANPCYT (National Agency to Promote
Science and Technology).

1. Introduction

Unrestricted identical parallel machine scheduling problems are frequent in production
systems. The completion time of the last job to leave the system, known as makespan (Cmax), is one
of the most common objective functions to be minimised. In a production system it is also usual to
stress minimisation of others due date based objectives such as maximum tardiness (Tmax) and
number of tardy jobs (Nt).

These problems types have received considerable attention by different researchers. For many

years their computational complexity remained as an open research topic until established as NP-
Hard [16].

To provide reasonably good solutions in very short time the scheduling literature offers a set of
dispatching rules and heuristics. Depending on the particular instance of the problem we are facing,
some heuristics behave better than others. Among other heuristics [12], evolutionary algorithms
(EAs) have been successfully applied to solve scheduling problems [9-11]. Current trends in
evolutionary algorithms make use of multiparent [3-5] and multirecombined approaches [6-8]. This
latter approach is known as multiple crossovers on multiple parents (MCMP). Instead of applying
crossover once on a pair of parents, this scheme applies n1 crossover operations on a set of n2
parents. In order to improve the trade-off between exploration and exploitation in the search process
a variant called MCMP-SRI [13,14] recombines a breeding individual (stud) by repeatedly mating
individuals that randomly immigrate to a mating pool. Under this approach the random immigrants
and the multi-mating operation with the stud incorporate exploration and exploitation, respectively
in the search process.

If we are trying to incorporate knowledge to the blind evolutionary search process, the main
issue here is how to introduce problem-specific knowledge? If optimality conditions for the
solutions are known in advance we can restrict the search operating only on solutions which hold
these conditions. When optimality conditions are unknown, which is the case here, one of the
options is to import this knowledge from solutions that come out of heuristics specifically designed
for the problem under consideration. These types of knowledge-based intermediate solutions
contain some of the features included in the best (optimal or quasi-optimal) solution at the end of
the evolutionary process.

Consequently MCMP-SRSI, a latest variant of MCMP-SRI, considers the inclusion of a stud-
breeding individual in a pool of random and seed-immigrant parents. Here the seeds generated by
conventional heuristics introduce the problem-specific knowledge. The following sections describe
the above mentioned scheduling problems, ways of inserting problem-specific knowledge and
provide a discussion of the results obtained.

2. Scheduling problems

The problems we are facing [16] can be stated as follows: n jobs are processed without
interruption on some of the m equal machines belonging to the system; each machine can handle no
more than one job at a time. Job j (j=1,...,n) becomes available for processing at time zero, requires
an uninterrupted positive processing time pj on a machine, and has a due date dj by which it should
ideally be finished. For a given processing order of the jobs, the earliest completion time Cj and the
tardiness Tj = max {Cj -dj, 0} of job j can readily be computed. The problem is to find a processing
order of the jobs with minimum objective values. The objectives to be minimized are:

Maximum Tardiness :)(maxmax jj TT =

Number of Tardy Jobs:

3. Conventional approaches to scheduling problems

Dispatching heuristics assign a priority index to every job in a waiting queue. The one with the
highest priority is selected to be processed next. There are different heuristics [12] for the above
mentioned problems whose principal property is not only the quality of the results but also to give a
schedule of the jobs close to the optimal sequence. The following dispatching rules and heuristics
were selected to determine priorities, build schedules and contrast their outcomes with those
obtained by the evolutionary algorithms proposed.

SPT (Shortest Processing Time first): The job with the shortest processing time is selected first. The
final scheduled jobs are ordered satisfying: p1 ≤ p2 ≤ … ≤ pn .

WSPT (Weighted Shortest Processing Time first): The job with the weighted shortest processing
time is selected first. The final scheduled jobs are ordered satisfying:
(w1 / p1) ≥ (w2 / p2) ≥ … ≥ (wn / pn) .

EDD (Earliest Due Date first): The job with earliest due date is selected first. The final scheduled
jobs are ordered satisfying: d1 ≤ d2 ≤ … ≤ dn .

SLACK (Least slack): The job with smallest difference between due date and processing time is
selected first. The final scheduled jobs are ordered satisfying:
d1-p1 ≤ d2-p2 ≤ … ≤ dn-pn .

Hodgson Algorithm: This algorithm gives an optimal schedule for the number of tardy jobs
objective. The heuristic provides a schedule according to the following procedure,
Step 1: Order the activities using EDD heuristic.
Step 2: If there are no tardy jobs, stop; this is the optimal solution.
Step 3: Find the first tardy job, say k, in the sequence.
Step 4: Move the single job j (1 ≤ j ≤ k) with the longest processing time to the end of the sequence.
Step 5: Check the completion times and return to step 2.

4. Multirecombination of random and seed immigrants with the stud

Multiple Crossovers per Couple (MCPC) [6,7] and Multiple Crossovers on Multiple Parents
(MCMP) [8] are multirecombination methods, which improve EAs performance by reinforcing and
balancing exploration and exploitation in the search process. In particular, MCMP is an extension of
MCPC where the multiparent approach proposed by Eiben [3-5] is introduced. Results obtained in
diverse single and multiobjective optimization problems indicated that the searching space is

 otherwise 0)(

 0 if 1)(where,)(
1

=

>==∑
=

jT

jTjTTN
n

j
jt

δ

δδ

efficiently exploited by multiple applications of crossovers and efficiently explored by the greater
number of samples provided by the multiple parents.

A further extension of MCMP is known as MCMP-SRI [13,14]. This approach considers the
mating of an evolved individual (the stud) with random immigrants. The process for creating
offspring is performed as follows. From the old population the stud is selected by means of
proportional selection and inserted in the mating pool. The number of n2 parents in the mating pool
is completed with randomly created individuals (random immigrants). The stud mates every other
parent, the couples undergo crossover operation and 2*(n2-1) offspring are created. The best of
these 2*(n2-1) offspring is stored in a temporary children pool. The crossover operation is repeated
n1 times, for different cut points each time, until the children pool is completed. Finally, the best
offspring created from n2 parents and n1 crossover is inserted in the new population.

As EAs are blind search methods our new variant (MCMP-SRSI) [15], proposes to insert
problem-specific knowledge by recombining potential solutions (individuals of the evolving
population) with seeds, which are solutions provided by other heuristics specifically designed to
solve the scheduling problems under study. In MCMP-SRSI, the process for creating offspring is
similar to that of MCMP-SRI, except that the mating pool contains also seed immigrants. In this
way, the evolutionary algorithm incorporates problem-specific knowledge supplied by the specific
heuristic. Figure 1 displays these processes.

We worked with different indirect representations: processor dispatching priorities and task
priority list (both are indirect-decode representations) and another based on permutations.

The results discussed in next section correspond to EAs that worked on permutation-based
representation using the PMX crossover operator because with this combination of representation
and operator we obtained the best results.

5. Experimental Tests and Results

As it is not usual to find published benchmarks for the scheduling problems we worked on, we
built our own test suite with data (pj, dj, wj) based on selected data corresponding to weighted
tardiness problems taken from OR library [1,2]. For problems sizes of 40 and 100 jobs,
respectively, there were selected twenty problems each one with the same identification number
although they are not the same problem, that is to say that we have a problem numbered 1, with 40
jobs and another with 100 jobs, and so on. The numbers of the problems are not consecutive
because each one of them was selected randomly from different groups, where the tardiness factor
varies being harder for those with highest identification number.

These data were the input for dispatching rules, conventional heuristics and our proposed EAs.
To evaluate the dispatching rules and the conventional heuristics we used PARSIFAL [12] a
software package provided by Morton and Pentico, to solve different scheduling problems by mean
of different heuristics.

The initial phase of the experiments consisted in establishing the best results from dispatching

rules and conventional heuristics to use them as upper bounds for the scheduling objectives. Also,
the best parameter values for the EAs were empirically derived after performing a set of previous
experiments. In all the experiments, we used population size 15 and we ran de EAs for 200
generations. The values of the remaining parameters are the following: crossover probability 0.65,
n1 = 18, n2 = 20, seed number = 1 (only for MCMP-SRSI). For each problem and algorithm studied
we performed 30 runs.

Figure 1. Stud and (random immigrants / seeds and random immigrants) multirecombination
processes.

To compare the algorithms, the following relevant performance variables were chosen:

Ebest = ((best value - opt_val)/opt_val)*100
It is the percentile error of the best found individual when compared with the known or estimated
(upper bound) optimum value opt_val. It gives a measure on how far the best individual is from that
opt_val. When this value is negative, the op_val has been improved.
Mean Ebest (MEbest): It is the mean value of Ebest throughout all runs.
Best: It is the minimum objective value corresponding to some of the best found individuals
throughout all runs.
Max Best: It is the maximum objective value corresponding to some of the best found individuals
throughout all runs.
Mean Best (µµµµBest): It is the mean objective value obtained from the best found individuals
throughout all runs.
Gbest: It is the generation where the best individual was found.
Mean Gbest: It is the mean generation number where the best individual was found, throughout all
runs.
Hit Ratio: Denotes the percentage of runs where the algorithm reaches the upper bound or
improves it. Its value is 1 (a 100% of success) when the upper bound is reached or improved in
every run.
Evals: Is the number of evaluations necessary to obtain the best found individual throughout all
runs. The evaluation of an individual consists of calculating its fitness value.
Mean Evals (MEvals): Is the mean number of evaluations necessary to obtain the best found
individual throughout all runs.
σσσσBest: It is the standard deviation of the objective values corresponding to the best found
individuals throughout all runs with respect to µBest.
(σσσσ/µµµµ) Best: This coefficient of variation it is calculated as the σBest and µBest ratio. It represents
the deviation as a percentage of the value µBest. When this value is closer to zero higher is the
robustness of the results obtained by the EA.

indiv1

--
--
--
--
--
--
--

child1
child2

--
--

childn1

stud s1 stud
s1 s s1

s p3 s
p3 s p3

--
--
--

s pn2 s
p n2 s pn2

stud
seed1

stud
parent3
--
--

stud
parentn2

stud
parent1

stud

parent2

indiv1
indiv2

--
--
--
--
--
--
--

indivn

stud
seed1

parent1
parent2
parent3

--
--

parentn2

Seeds and random immigrants
or

random immigrants

Old
Population

Mating Pool Multirecombination Temporary
children

pool

New
Population

The best of
n1 children
is inserted
in the new
population

The best of 2*(n2-1)
children is inserted
in the children pool

Several experiments were performed for 2 and 5 parallel equal machines scheduling systems
for the objectives described before. The results obtained with the different multirecombined EAs
implementations performed well for both scheduling systems. In this paper, due to space
constraints, we only present the best results obtained corresponding to the 5 parallel equal machines
scheduling problem with problems sizes of 40 and 100 jobs, respectively. Average values of 30 runs
for the MEbest and MEvals performance variables, obtained under MCMP-SRI and MCMP-SRSI
approaches, are showed in Figures 2 and 3, respectively.

Considering the precision of the results found by the EAs, it can be seen in Figure 2 that in

general they performed very well with respect to the upper bounds. For the maximum tardiness
objective, MCMP-SRI did not perform as well as we expect for the 100 jobs problems size. This
can happens as a consequence of having a small population (only 15 individuals), besides the fact
that the selected stud in each generation was not as good as needed to guide the search to more
promising areas of the space of solutions. Taking into to account both objectives we worked on,
MCMP-SRSI for all the instances reached or improved the values used as benchmarks.

In Figure 3, are shown the average number of evaluations done by the EAs. It can be observed

that the most costly method was MCMP-SRI. Besides, the average number of evaluations done by
MCMP-SRI increases for the 100 jobs problems size for the Tmax and Nt objectives. The same
occurs when considering the Nt objective for MCMP-SRSI. It is clear that augmenting the size of
the scheduling problems produces an increase of the dimensionality in the search space of the
algorithm. In general the average number of evaluations done by MCMP-SRSI is lower than
MCMP-SRI due to the knowledge of the problem used to guide the search to promising areas of
solutions. However MCMP-SRSI is still a costly method.

In Table 1 are presented the coefficients of variation calculated by the multirecombinated EAs

for all the objectives and instances we worked on. Although not all the coefficients values are equal
to 0.0 they are very close suggesting the algorithms’ robustness with respect to the results that they
found.

6. Conclusions

Multirecombined evolutionary algorithms have been successfully used to solve scheduling
problems. In particular MCMP-SRSI, has demonstrated its ability on unrestricted identical parallel
machine scheduling problems by improving the upper bounds calculated with different heuristics
using PARSIFAL [12] and the values found by MCMP-SRI, for various problem data of different
sizes taken from the OR-Library. MCMP-SRI also had a good performance for the problems of size
40 in both objectives and for the problems of size 100 when considering the Nt objective.

Comparing MCMP-SRSI with MCMP-SRI, the former finds good results with a lower cost
(number of evaluations), due to the knowledge of the problem used to guide the search to promising
areas of solutions. Considering the Tmax objective the average numbers of evaluations done with
MCMP-SRSI for both problems sizes (40 and 100 jobs) are similar. For the Nt objective the number
of evaluations done with MCMP-SRSI for the 100 jobs size problems was higher than with the
problems of 40 jobs size problems; this could be produced as a consequence on the inherent
hardness of the scheduling problem, besides the fact that the seeds used for the Tmax objective could
be more suitable than the ones used for the Nt objective.

(a) Maximum Tardiness

-40

-20

0

20

40

60

80

100

1 6 11 19 21 26 31 36 41 46 56 61 66 71 86 91 96 111 116 121

Problem Instance

M
Eb

es
t

(b) Number of Tardy Jobs

-60

-50

-40

-30

-20

-10

0

10

20

1 6 11 19 21 26 31 36 41 46 56 61 66 71 86 91 96 111 116 121

Problem Instance

M
Eb

es
t

MCMP-SRI 40 MCMP-SRSI 40 MCMP-SRI 100 MCMP-SRSI 100

Figure 2. Average MEbest values found by the EAs

(a) Maximum Tardiness

0

250000

500000

750000

1000000

1250000

1500000

1750000

2000000

1 6 11 19 21 26 31 36 41 46 56 61 66 71 86 91 96 111 116 121

Problem Instance

M
Ev

al
s

(b) Number of Tardy Jobs

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1 6 11 19 21 26 31 36 41 46 56 61 66 71 86 91 96 111 116 121

Problem Instance

M
Ev

al
s

MCMP-SRI 40 MCMP-SRSI 40 MCMP-SRI 100 MCMP-SRSI 100

Figure 3. Average MEvals values found by the EAs

Table 1. (σσσσ/µµµµ) Best values found by the EAs

 40 Jobs 100 Jobs
 MCMP-SRI MCMP-SRSI MCMP-SRI MCMP-SRSI

N° Tmax Nt Tmax Nt Tmax Nt Tmax Nt
1 0.05 0.09 0.02 0.08 0.04 0.07 0.00 0.08
6 0.02 0.07 0.00 0.05 0.01 0.04 0.01 0.03

11 0.01 0.04 0.00 0.03 0.01 0.03 0.01 0.02
19 0.01 0.02 0.00 0.02 0.00 0.03 0.00 0.02
21 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01
26 0.17 0.12 0.10 0.26 0.22 0.22 0.12 0.13
31 0.03 0.06 0.02 0.07 0.05 0.05 0.00 0.05
36 0.02 0.04 0.01 0.04 0.04 0.04 0.01 0.04
41 0.03 0.04 0.00 0.04 0.03 0.03 0.00 0.02
46 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.02
56 0.09 0.13 0.02 0.11 0.12 0.09 0.02 0.09
61 0.06 0.09 0.02 0.06 0.06 0.05 0.01 0.05
66 0.03 0.05 0.01 0.03 0.05 0.03 0.01 0.05
71 0.02 0.01 0.01 0.02 0.02 0.02 0.00 0.01
86 0.06 0.08 0.03 0.06 0.08 0.05 0.00 0.06
91 0.03 0.03 0.01 0.05 0.04 0.03 0.00 0.03
96 0.01 0.00 0.01 0.01 0.03 0.02 0.00 0.01

111 0.08 0.04 0.02 0.05 0.07 0.05 0.00 0.05
116 0.06 0.05 0.02 0.05 0.04 0.02 0.01 0.02
121 0.03 0.01 0.01 0.01 0.04 0.02 0.00 0.02

AVG 0.04 0.05 0.02 0.05 0.05 0.05 0.01 0.04

Future work will be devoted to solve due date related problems in unrestricted identical parallel
machine scheduling systems for larger number of jobs and to compare the performance of the
different EAs implemented with others population-based stochastic search heuristics.

Acknowledgements

In memory of Dr. Raúl Gallard who was the inspirer of the present work, with all our respect and

gratitude.
We acknowledge the Universidad Nacional de San Luis and the ANPCYT from which we

receive continuous support.

References

[1] J.E. Beasley “Weighted Tardiness”, OR Library, http://mscmga.ms.ic.ac.uk/
[2] H.A.J. Crauwels, C.N. Potts and L.N. Van Wassenhove, “Local Search Heuristics for the

Single Machine Total Weighted Tardiness Scheduling Problem”, Informs Journal on
Computing 10, pp. 341-350, 1998.

[3] Eiben A.E., Raué P.E., and Ruttkay Z., “Genetic Algorithms with Multi-parent
Recombination”, Proceedings of the 3rd Conference on Parallel Problem Solving from Nature,
number 866 in LNCS, pp. 78-87, Springer-Verlag, 1994.

http://mscmga.ms.ic.ac.uk/

[4] Eiben A.E., Van Kemenade C.H.M., and Kok J.N., “Orgy in the Computer: Multiparent
Reproduction in Genetic Algorithms”, Proceedings of the 3rd European Conference on
Artificial Life, number 929 in LNAI, pp. 934-945, Springer-Verlag, 1995.

[5] Eiben A.E. and. Bäck T., “An Empirical Investigation of Multi-parent Recombination
Operators in Evolution Strategies”, Evolutionary Computation, 5(3):347-365, 1997.

[6] Esquivel S., Leiva A., Gallard R., “Multiple Crossover per Couple in Genetic Algorithms”,
Evolutionary Computation (ICEC'97), IEEE Publishing Co, pp. 103-106, ISBN 0-7803-3949-
5, Indianapolis, USA, April 1997.

[7] Esquivel S., Leiva A., Gallard R., “Couple Fitness Based Selection with Multiple Crossover
Per Couple in Genetic Algorithms”, Proceedings del International Symposium on Engineering
of Intelligent Systems, University of La Laguna, España, Tenerife, Vol. 1, pp 235-241, ISBN
3-906454-12-6, February 1998.

[8] Esquivel S., Leiva H., Gallard R., “Multiple Crossovers between Multiple Parents to Improve
Search in Evolutionary Algorithms”, Evolutionary Computation, IEEE Publishing Co,
Washington DC, pp. 1589-1594, 1999.

[9] Esquivel S., Ferrero S., Gallard R., Salto C., Alfonso H. and Schütz M., “Enhanced
Evolutionary Algorithms for Single and Multiobjective Optimization in the Job Shop
Scheduling Problem”, Knowledge-Based Systems 15 (2002), pp. 13-25.

[10] Feltl H. and Raidl G., “An Improved Hybrid Genetic Algorithm for the Generalized
Assignment Problem”, In Proceedings of the 2004 ACM symposium on Applied computing,
Nicosia, Cyprus, ECO, pp. 990 – 995, ISBN:1-58113-812-1, 2004.

[11] Min Liu and Cheng Wu, “Scheduling Algorithm based on Evolutionary Computing in Identical
Parallel Machine Production Line”, Robotics and Computer-Integrated Manufacturing 19
(2003), pp. 401-407.

[12] Morton T., Pentico D., “Heuristic Scheduling Systems”, Wiley series in Engineering and
technology management, John Wiley and Sons, INC, 1993.

[13] Pandolfi D., Vilanova G., De San Pedro M., Villagra A., Gallard R., “Multirecombining Studs
and Immigrants in Evolutionary Algorithm to face Earliness-Tardiness Scheduling Problems”,
In Proceedings of the International Conference in Soft Computing, pp. 138, University of
Paisley, Scotland, U.K., June 2001.

[14] Pandolfi D., De San Pedro M., Villagra A, Vilanova G., Gallard R., “Studs Mating Immigrants
in Evolutionary Algorithm to Solve the Earliness-Tardiness Scheduling Problem”, In
Cybernetics and Systems of Taylor and Francis Journal, Vol.33 Nro. 4, pp. 391-400 (U.K.),
June 2002.

[15] Pandolfi D., De San Pedro M., Villagra A., Vilanova G., Gallard R., “Multirecombining
Random and Seed Immigrants in Evolutionary Algorithms to Solve W-T Scheduling
Problems”, In proceedings of CSITeA02, pp 133-138, Iguazu Falls, Brazil, June 2002.

[16] Pinedo M., “Scheduling: Theory, Algorithms and System”, Prentice Hall, First edition, 1995.

	5. Experimental Tests and Results

