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Abstract:

In this paper we describe a computer system that calculates allocation to claims

according to two kinds of bankruptcy rules. The first kind implemented are those whose

results corresponds to the classical solutions of game theory: The Talmud rule, the

Proportional rule, the Adjusted Proportional rule, the Constrained Equal Awards rule

and the Random Arrival rule. The second type implemented generates assignations to

claims that have no correspondence with the classical results, they are: Piniles´ rule, the

Constrained Egalitarian rule and Constrained Equal Losses rule.

 This computer system was developed in order to compute the different

allocations to claims in Allocation problems, distribution problems and Assignment

problems for real cases  and to be used in education of game theory and decision

problems. The system generates numerical and graphical results. It allows comparisons

between the numerical results and their graphic representations. It also allows the

exportation of the different outputs to any windows application.
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1.- Introduction

When a firm goes bankrupt an important question to answer is which is the best

way of splitting its remaining capital among its creditors.

A pioneer work in this matter was done by O’Neal (1982). He analyzed several

assignation rules used from ancestral time and studied its properties. A good survey of

the most common rules used in the literature of the bankruptcy problems is given by

Thomson, W. (2003).

In this paper we present a computer implementation to the most classical rules

corresponding to Game Theory solutions for solving bankruptcy problems and other

traditional rules.

The computer system for bankruptcy  problems is a software that computes the

way of sharing a value among n agents. The system is developed for a Windows

environment, using Delphi language. The system was mainly developed for being used

in teaching and research on Cooperative Game Theory. It can be also used for analyzing

bargaining problems and cost allocations problems. Lawyers and accountants can use it

when a firm goes  bankruptcy (according to the Argentinean Law 24.522).

This article extends the results given in Saavedra et al. (2003), by implementing

new solutions: Piniles´ rule, the Constrained egalitarian rule and Constrained Equal

losses rule. The system presents new tools and is entirely reprogrammed in Delphi 7.0.

The solutions are shown in graphical and analytical way. They can be exported

to other applications.

2.- Bankruptcy Rules.

We will introduce the class of problems to be studied. The capital E of a firm has

to be divided among a group of n claimants, ci is the claim of agent i  ∈ N  (where N is

a subset of the natural numbers and n the cardinality of N) and  c = (ci) i  ∈ N is the claims

vector. The sum of the claims is greater than the firm capital (the worth of the estate).

Definition 1: A bankruptcy problem is a pair (c,E) ∈ R+
n x R+ such that  ∑ ci ≥ E.  βN

denotes the class of this problems. 1

                                                
1 We denotes with R+

n the Cartesian product of n replies of R+   indexed by 1,....n.  By convenience  we
include the equality in the sum ∑ ci = E.



Definition 2 : A bankruptcy rule, or just a rule, is a function that associates each

bankruptcy problem (c,E) ∈ βN with a vector χ ∈ R+
n which coordinates sum up E :  ∑

χi = E.  We will use several instances of this vector denoted by Ti (c,E), P(c, E),  Pt
i(c,

E), etc.

2.1 Rules with results corresponding to the classical Solutions2

2.1.1 Proportional Rule, P

The most common assignment rule is the proportional: the assignations are proportional

to the claims.  The proportionality is usually a good criteria and has been used from

ancient time.

Definition 3: For all (c, E) ∈ βN, P(c, E) = λc, where λ is chosen so that ∑ λci = E  ( λ =

E / ∑ ci if c ≠ 0 ) .

2.1.2 Truncated-claims  Proportional Rule, Pt

A version of the proportional rule is obtained by making awards proportional to

the claims truncated by the worth of the estate:

Definition 4: For all (c, E) ∈ βN and all i ∈ N,  Pt
i(c, E) = λ min{ci, E}, where λ is

chosen so that ∑ λ min{ci, E} = E  ( λ = E / ∑ min {ci , E} if c ≠ 0 ) .

The difference with the previous rule is that this rule does not consider those

claims greater than the worth of the estate. Those claims that are greater than the worth

of the estate are truncated to the worth of the estate.

2.1.3 Adjusted Proportional Rule, Pa

This rule first requires calculating for each agent an amount that can be

interpreted as his “minimal right”.

 Definition 5 : For all (c, E) ∈ βN and all i ∈ N,  Let mi(c,E) =  max{E - ∑ j∈N\{i} cj, 0} be

the minimal right of claimant i ; also, let m(c, E) = (mi(c, E)) i ∈ N.  This is the amount

that remains if every other agent receives his claim or zero if that remain is negative.

Each claimant receives his minimal right and the remaining is divided proportionally

among all of them.

                                                
2 Nash Bargaining Solution, Weighted  Nash Bargaining Solution, Kalai-Smorodinsky bargaining
solution, extended equal losses bargaining solutions. Coalitional Games:  Shapley Value, Nucleolus,
Dutta-Ray Solution and T-Value (see Thomson, W. (2003)).



Definition 6: For all (c, E) ∈ βN and all i ∈ N,  Ai(c,E) = mi(c, E) + P(c – m(c, E), E - ∑

mi(c, E)).3

2.1.4 Constrained Equal Award Rule, CEA

This rule awards each claimant the same amount regarding not to give to any of

them more than his claim.

Definition 7:  For all (c, E) ∈ βN and all i ∈ N,  CEAi(c, E) = min{ci, λ}, where λ is

chosen so that ∑  min{ci, λ} = E .4

The system divides the worth of the estate by the number of claimants (initial λ ),

then assigns each of them his claim if it is less than λ  else assigns λ. No one receives

more than he claims and the remaining between the claim and λ in the cases that λ is

greater than the claim, is reallocated among those who claims more than λ.

2.1.5 Talmud Rule, T

From ancient time many discussions and recommendations have been done

following other criteria different from the proportionality.  An important and classical

rule is given in the Talmud5.

This rule, considers two different cases: 1) when the worth of the state is less or

equal to the half of the sum of the claims and 2) when it is greater.

Definition 8: For all (c,E) ∈ βN and all i ∈ N, 1) If ∑ ci/2 ≥ E then Ti (c,E) = min {ci/2,

λ}, where λ is chosen so that ∑min{ci/2,λ}= E. 2) If ∑ ci/2 ≤  E then Ti (c,E) = ci -

min{ci/2, λ}, where λ is chosen so that ∑ [ci - min { ci/2, λ }] = E.

The algorithm we implemented works as follows for each case. This

implementation is based on the proposal of Aumann & Maschler (1985).

1) We consider the worth of the estate to increase from 0 to half the sum of the

claims: the first units are divided equally until each claimant has received an amount

equal to half of the smallest claim. Then the claimant with the smallest claim stops

receiving anything; instead, any additional unit is divided equally among all others until

each of them has received an amount equal to half of the second smallest claim. Then

                                                                                                                                              
.
3 Curiel, Maschler y Tijs, 1987.
4 Dutta, B. and D. Ray, 1989.
5  Civil and religious code of the Jews.



the claimant with the second smallest claim stops receiving anything too and so on until

no more money remains.

2) For estates worth more than ∑ci/2 awards are computed in a symmetric way.

First, each claimant receives his claim and this claim is reduced considering shortfalls of

increasing size: initial shortfalls are divided equally until all claimants experience a loss

equal to half of the smallest claim, at that point, the smallest claimant stops loosing. The

others go on loosing until their common loss is equal to half of the second smallest

claim. The process continues until the estate is worth ∑ci/2.

2.1.6 Random Arrival Rule, RA

Now we consider claimants arriving one at a time to get their claims and we

suppose that each claim is fully paid until money runs out. The result of the awards will

depend on the order in which claimants arrive. To obtain independence, we take the

arithmetic average over all orders of arrivals . This proposal was made by O’Neill

(1982) and implemented by our computer system.

Definition 9: For all (c, E) ∈ βN and all i ∈ N,  RAi(c, E) = 1/n! ∑ π∈ΠN min{ci,  max{E

- ∑ j∈N,π(j)<π(i) cj, 0}}. (where Πn is the set of permutations of N).

2.2 Rules that provide results different from the classical ones.

2.2.1. Piniles´ Rule6.

This rule awards each claimant in the same way CEA does but using the half of

his claim instead of the whole claim, in the case that amount available is less or equal to

the half of the sum of the claims. Otherwise, each claimant receives the half of his claim

plus the amount resulting of the application of the CEA rule, still using the half of his

claim and the remaining money.

Definition 10:  For all (c, E) ∈ βN and all i ∈ N,  Pini (c, E) = CEAi(c/2, E)  if  ∑ (cj/2)

>= E  and  Pini (c, E) =  ci/2 +  CEAi(c/2, E - ∑ (cj/2)  otherwise.

2.2.2 Constrained egalitarian rule.

This rule is inspired by the solution of the uniform rule (Sprumont 1991). As in

Pinile´s the half-claims have a central role when the amount available is less or equal to

the half of the sum of the claims and otherwise it makes minimal changes in the formula

for the uniform rule to guarantee that are ordered as claims are.



Definition 11:  For all (c, E) ∈ βN and all i ∈ N,  CEi (c, E) = min{ci /2, λ}if E<=∑(cj/2)

and CEi (c,E) = max{ci /2,min{ci,λ}} otherwise, where in each case, λ is chosen so that

∑ CEi (c, E) = E.

2.2.3 Constrained Equal losses rule.

This is an alternative of the last rule, that focuses on the losses claimants incurs

instead of in what they receives.

Definition 12:  For all (c, E) ∈ βN and all i ∈ N,  CELi (c, E) = max{0, ci - λ} where  λ

is chosen so that   ∑ max {0, ci - λ}  = E.

3.- The Computer System.

The computer system for bankruptcy  problems is a software that computes the

way of sharing a value among n agents according to the rules described above. The

system is developed for a Windows environment, using Delphi language. It is multiuser,

requires 7 megabytes of free disk space for its installation on a PC with at least 64  Mb

of RAM There is available a CD for its installation and the user manual consisting of 35

pages.                         Figure 1: Data and Process  diagram
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In figure 1, we show the data flow and the process diagram of the system

developed. The system performs allocations to the agents regarding to different

bankruptcy rules whose algorithms are described in this paper. The agents may be

“claimants” (creditors) in the case of a firm that goes bankruptcy.

Now, we show some screens of the implemented computer system:

FIGURE 2 : CALCULATIONS SCREEN

After chosen “ Cálculos” at the left panel, the user can choose the firm

(enterprise) at the ListBox of the center panel and he will see the claimants and their

claims under the worth of the estate. Then, the user can choose the rule to compute the

allocations at the TabControl of the right panel.

FIGURE 3: COMPARATIVE RESULTS TABLE SCREEN



   After chosen “Comparaciones” at the left panel, the user can choose the firm

(enterprise) at the ListBox of the right panel and he will see the worth of the estate on

the right and a table with the claimants, their claims and the awards assigned by all the

rules, below. Under that table, he can select to print that table or to see the graphic

representation  of the values assigned.

If the user chooses “Gráficos” at the left panel of figure 3, what he will obtain at

the right panel is what is shown in figure 4.

FIGURE 4: ASIGNATION GRAPHIC CORRESPONDING TO THE SELECTED RULE

FIGURE 5:  COMPARATIVE  GRAPHIC WITH VISION ANGLE SELECTOR

The second panel in figure 4 is for changing the graphic characteristics such as

graphic type, 3-D, 2-D, showing all claimants, showing a group of claimants, printing

the graphic, exporting graphics and values, saving graphics and values, angle selector as

shown in figure 5, etc.



4.- Applications.

Using the system described above we will show different solutions for some

numerical problems. The results can be exported to other applications.

Now we will consider an hypothetical case of a firm having several claimants

who claim more than the worth of the estate.

Let´s suppose that a firm “Veronica 7” goes bankrupt. The worth of the state is

$5.000 and the claimants are seven bank named in the first column of. Figure 6, who

claim all together a total amount of $10.325. The claims are shown in the second

column. The allocations computed by the system are shown in the remaining columns.

FIGURE 6:  ANALYTICAL RESULTS

Claimants Rules
Banks Claims Talmud Proportio

nal
Truncated

Proportional
Adjusted

Proportional
Equal

Awards
Random
Arrival

Boston 300 150 145,28 145,28 145,28 300 142,86
Banex 500 250 242,13 242,13 242,13 500 242,44
Suquia 525 262,5 254,24 254,24 254,24 525 254,11
Nacion 1000 500 484,26 484,26 484,26 918,75 486,61
Galicia 1500 750 726,39 726,39 726,39 918,75 720,77
Frances 3000 1500 1452,8 1452,78 1452,78 918,75 1459,52
Rio 3500 1587,5 1694,9 1694,92 1694,92 918,75 1693,69

Figure 7 shows a comparative graphic of the analytical results shown in figure 6.

FIGURE 7: GRAPHICAL RESULTS



In the graphic shown above we can see the assingment to each claimant,

computed by the program for each  rule. Figures 6 and 7 were directly generated by the

computer system.

Having both, the analytical and graphic comparison, the final decision can be

taken considering the different allocations.

Now we will use the Computer System to analyze a historical problem discussed

in the Talmud, named The Estate Division Problem: A man has three wives (the Sultan)

whose marriage contracts specify that in case of his death they should receive $100,

$200 and $300 respectively. The Sultan dies and his estate is found to be worth only

$100. How should the amount be divided among his wives? See the figure 8.

FIGURE 8:  ESTATE DIVISION PROBLEM
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Wife 1 33,33 50 50 50 50 50 50 100

Wife 2 33,33 50 75 100 100 100 150 200

Wife 3 33,33 50 75 100 150 200 250 300

100 150 200 250 300 350 450 600

The claims are  (c1,c2,c3) = (100, 200, 300) , if the estate is worth $100: E = 100,  (d1, d2, d
33.33, 33.33) if it is worth E = 200,  The Talmud recommends (e1, e2, e3) = (50, 75, 75) and 
E = 300 it recommends (f1, f2, f3) = (50, 100, 150).

Now we will see the results given by the System for the Estate

Problems under different worth of  Estate, using others bankruptcy rules.

FIGURE 9: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING P

Worth of the estate 100 150 200 250 300 350 4

1º Wife ´s claim 100 16.67 25   33.33 41.67 50  58.33

2º Wife ´s claim 200 33.33 50   66.67 83.33 100 116.67 1

3º Wife ´s claim 300 50.00 75 100.00    125.00 150 175.00 2

C3

2
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FIGURE 10: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING PT

Worth of the estate 100 150 200 250 300 350 450 600

1º Wife ´s claim 100 33.33 37.50   40.00 45.45 50  58.33 75 100

2º Wife ´s claim 200 33.33 56.25   80.00 90.91 100 116.67 150 200

3º Wife ´s claim 300 33.33 56.25   80.00    113.64 150 175.00 225 300

FIGURE 11: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING PA

Worth of the estate 100 150 200 250 300 350 450 600

1º Wife ´s claim 100 16.67 25   33.33 41.67 50  54.55     62.50 100

2º Wife ´s claim 200 33.33 50   66.67 83.33 100 109.09 143.75 200

3º Wife ´s claim 300 50.00 75 100.00    125.00 150 186.36 243.75 300

FIGURE 12: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING CEA

Worth of the estate 100 150 200 250 300 350 450 600

1º Wife ´s claim 100 33.33 50   66.67 83.33 100     100      100 100

2º Wife ´s claim 200 33.33 50   66.67 83.33 100     125      175 200

3º Wife ´s claim 300 33.33 50   66.67 83.33 100     125      175 300

FIGURE 13: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING RA

Worth of the estate 100 150 200 250 300 350 450 600

1º Wife ´s claim 100 33.33  33.33    33.33 41.67 50  58.33   66.67 100

2º Wife ´s claim 200 33.33 58.33   83.33 91.67 100 108.33  141.67 200

3º Wife ´s claim 300 33.33 58.33   83.33 116.67 150 183.33  241.67 300

FIGURE 14: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING PIN

Worth of the estate 100 150 200 250 300 350 450 600

1º Wife ´s claim 100 33.33 50 50 50 50 66.67 100 100

2º Wife ´s claim 200 33.33 50 75 100 100 116.67 150 200

3º Wife ´s claim 300 33.33 50 75 100 150 166.67 200 300

FIGURE 15: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING CE

Worth of the estate 100 150 200 250 300 350 450 600

1º Wife ´s claim 100 33.33 50 50 50 50 100 100 100

2º Wife ´s claim 200 33.33 50 75 100 100 125 175 200

3º Wife ´s claim 300 33.33 50 75 100 150 125 175 300



FIGURE 16: AWARDS FOR THE ESTATE DIVISIÓN PROBLEM USING CEL

Worth of the estate 100 150 200 250 300 350 450 600

1º Wife ´s claim 100 0 0 0 0 0 16,67 50 100

2º Wife ´s claim 200 0 25 50 75 100 116,67 150 200

3º Wife ´s claim 300 100 125 150 175 200 216,67 250 300

5.- Conclusions

The Computer system provides a tool for obtaining both analytical and graphic

solutions to bankruptcy problems. We implemented the corresponding algorithms for

each rule.

 The number n of firms is only limited by the capacity of the computer disk

storage. The number of claimants is also arbitrary, however , for a proper graphic

representation of all the solutions we suggest to keep it under 50 agents. In case of

going above it, the graphical representation should be chosen by parts.
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