
Designing an Agent System for Controlling

a Robotic Soccer Team †

Alejandro J. Garćıa Gerardo I. Simari Telma Delladio

Grupo de Robótica Cognitiva
Laboratorio de Investigación y Desarrollo en Inteligencia Artificial (LIDIA)

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur. Av. Alem 1253, (8000) Bah́ıa Blanca, Argentina

Tel: ++54 291 459 5135 - Fax: ++54 291 459 5136
{ajg,gis,td}@cs.uns.edu.ar

Abstract

Robotic soccer is a way of putting different developments in intelligent agents into
practice, including not only problems such as multi-agent planning and coordination, but
also physical problems related to vision and communication subsystems. Because these
problems cannot be all taken into account beforehand, the system must be designed to
be robust enough to recover from any eventualities.

In this work, we present the design used as the basis for an agents system implemented
for the control of a team of robots for the E-League competition in RoboCup 2004. The
implementation of the system was carried out following a layered design, with the objective
of having a set of Service Layers, each of which is associated with a different level of
abstraction. This layered design allows to construct a functional system with basic services
that can be tested and refined progressively. The layers that are proposed as a basis for
the arquitecture of a robotic soccer team offer a modular design, allowing the possibility
of reuse in other robotic soccer leagues.

Finally, the agents are implemented using the prolog language; the three uppermost
layers in the hierarchy offer interfaces designed explicitly for this language.

Keywords: Intelligent Agents, Multi-agent Systems, Cognitive Robotics,

Logic Programming.

1 Problem Description and Background

The development and implementation of any type of computational system requires an adequate

analysis of requirements that allows the definition of the system that will be modelled, restric-

tions imposed (be them on requirements or on the specification), and performance parameters

by which the behavior of the system can be evaluated.

†Workshop de agentes y sistemas inteligentes (WASI)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In diverse research fields, systems are not always developed as a solution of a particular

problem; sometimes, they are conceived in the form of testbeds for new theories, tools, and

problem solving techniques. This methodology is common practice in the area of inteligent

systems, in which problems with a rich structure are considered in order to address reasoning,

belief revision, comunication, learning, and autonomy, among other aspects. In the last few

years, the game of soccer has drawn much attention in the area of multi-agent system research

and development [ASV96]. This is due to the fact that soccer is a complex and challenging

domain that is useful in the evaluation of different kinds of developments that have been carried

out in the field.

The game of soccer can be seen as a well defined system: the number and type of players,

duration of play, allowed behaviors, and penalizations (among other aspects of the game)

are governed by a well defined set of rules that are known to all participants. However, the

interaction among the players cannot be defined beforehand. Each team is composed of players

that must cooperate in order to reach their goal of winning the game. They must also take into

account the existence of the opposing team, which also has the goal of winning the game.

Robotic soccer is a way of putting different developments in intelligent agents into practice.

This includes developments in autonomous, cooperative, competitive, reasoning, learning, and

revision systems [Wei98, HV]. Furthermore, it is useful in identifying problems related to

aspects concerned with vision and communication. This type of problems cannot be all taken

into account beforehand, and therefore demand that the system be designed in to be robust

enough to recover from eventualities of this type. Robotic soccer is a complex domain, and it

is necessary to take into account several aspects related to the robots. Each robot has sensors

and effectors which are prone to failure. The enviroment is dynamic so there is no chance of

knowing in advance the situations that can arise in a game. Therefore, it is necessary to be able

to recover from adverse situations like sensorial or effectorial failure, and the decisions needed

to carry out the recovery process have to be taken quickly.

In this work, we present the design used as the basis for an agents system implemented

for the control of a team of robots for the E-League competition in RoboCup 2004 [LIS]. The

implementation of the system was carried out following a layered design; the objective is to have

a set of Service Layers, each of which is associated with a different level of abstraction. Each

layer solves a different set of problems by means of the services that it offers; these services can

then be used by the upper layers. This layered design allows to construct a functional system

with basic services that can be tested and refined progressively. As the low level service layers

are implemented, the upper ones can be designed and tested using prototypes. This is also

useful in testing different situations that may arise. For example, a prototype of the layers

that offer services of sensorial and effectorial information can be used to evaluate and refine the

design of these layers which implement the robot’s behavior. The layers that are proposed as

a basis for the arquitecture of a robotic soccer team offer a modular design. A team designed

following this scheme could then be modified easily and reused in another robotic soccer league.

2 The E-League

The E-League [COL] is currently a part of RoboCup [ROB]. It was conceived with the objective

of initiating students in robotic research, and to provide an environment that is adequate for

research and teaching [ABLS03]. This league provides common basic services to all of the

participants, such as vision and communication. Teams can use low cost kits such as [LEG] and

concentrate on the development and study of Artificial Intelligence techniques such as planning,

multi-agent development, communication, and learning. The league’s most important feature is

its simple and modular structure. There are only three basic components that must be available

to obtain a functional team: a vision module that works as the robot’s perception component,

a communication module that allows actions to be communicated to the robots, and a control

module that is implemented by agents that control the robots on the field of play.

Figure 1: E-League setup (taken from [GSD+04])

Each team has one or more auxiliary computers in which the agents are executed. These

agents communicate with the vision component in order to obtain information about what

happens on the field, and send messages to the robots by means of a communication module

(see Figure 1). Even though the league does not define a standard platform for the construction

of the robots, it does impose restrictions over the processing and memory capacity. This allows

the use of low cost robotic kits, many of which fall under these restrictions. The system we

developed was implemented using Lego Mindstorms kits [LEG], which are within the rules of

the league.

Each team is composed of four robots. One of the robots can act as goalkeeper, but this is

not strictly necessary. There are restrictions over the size of the robots, their shape, and the

Figure 2: A proposed architecture for the implementation of an E-League team.

components used in their construction. Even though the robots do not communicate amongst

themselves, the processes that control them can do so.

3 Design of the agent system

The proposed design considers the construction of the system based on services that are asso-

ciated with four main layers (see Figure 2), each of which covers different levels of abstraction

of the problem to be solved. Each of these layers provides services to the upper layers, which

are implemented using those provided by the lower layers. This layered design allows local

modifications. The implementation of some services can be modified without provoking many

changes in other layers using these services.

3.1 Low level communication layer

We associate with this layer the basic hardware and software support that is provided by the

league. This includes physical support, such as infrared transmitters, video camera, communi-

cation network, and common software. The software that is provided by the league includes

video and command communication servers. Furthermore, this includes the communication

processes by which the referee conveys his decisions to both teams.

The video server, called Doraemon [JBA, AB], is part of the software support provided

by the league. A video camera covers the field of play and this server processes the images

that it obtains, generating information packets that are then made available to be used by the

agents that control the both teams’ robots. The packets that are generated by the video server

provide information about the objects that we defined above and that are on the field of play.

Information is transmitted about the position, orientation, and speed of these objects. This

vision software allows the definition of different types of objects [AB]; however, during game

play, the only objects that it recognizes are the ball and the players (robots).

Communication between the teams and the vision software follows the client-server model.

The process or processes that implement each soccer team communicate through the data net-

work to a UDP socket over which the vision server sends the data packets that are transmitted

in ASCII format. The parameters that are necessary for establishing this communication are

determined at configuration time. The information that is generated by the video server is

transmitted to all of its clients, and has the following format:

0 No. obj. Frame no. Time diff.

1 CamX CamY CamZ

2 Type Name Found? PosX PosY PosZ Orient. VelX VelY
... .

10 Type Name Found? PosX PosY PosZ Orient. VelX VelY

Line 0 indicates the number of objects that are being tracked, a packet number, and the time

that has elapsed between the last two transmissions. Line 1 contains the (x,y,z) coordinates of

the camera with respect to the field of play. The following nine lines contain the information

about each of the robots (for both teams) and the ball. Each of these lines contains the following

information:

1. Object type: indicates if the object is a ball, robot, or other type of object.

2. Object name: an identifier for the object; if it’s the ball, the identifier could be ball and,

for the robots, the name will be the identifier associated to each of them when the server

was configured.

3. A flag indicating if the object was effectively identified by the vision server. If this does not

occur, it indicates that the object was not found (NoFnd) and the information associated

with it is only a prediction carried out by the vision software.

4. The object’s (x,y,z) coordinates.

5. The object’s orientation expressed in radians. The ball does not have an orientation.

6. The object’s speed.

The league also provides a command communication software called Command Server (ab-

breviated CS from now on), which allows the agents, who control the robots, to send messages

to the field. As we have mentioned, the processing and memory capabilities of the robots is

limited, and the control software must therefore reside and execute on auxiliary computers.

In this way, the decision processes are carried out by these agents, and the decisions are then

communicated to the robots through the CS. This communication process also follows the

client-server model. As with the vision server, the necessary parameters (host, ports, etc) are

determined during the configuration stage.

As we have seen, the CS is the bridge between the agent processes and the robots. The CS

listens over a socket for the messages from its clients (agents), which are in ASCII format and

have the following form:

[name]:[msg]\n

where [name] if the identifier of the robot to which the message is directed, and [msg] is the

message to be sent. The CS maintains an 8 byte buffer (one byte for each player) that it

uses to store the messages sent to the robots. Every time it receives a message it updates the

byte corresponding to the robot to which it is directed. This information is transmitted to the

field through an infrared transmitter connected to a standard serial or USB port. Each of the

messages that are transmitted is a 10 byte packet of the form:

[START][command-buffer][CHKSUM]

where [START] is an initial byte, [CHKSUM] is a control byte, and [command-buffer] is the

information that, at the moment, was stored in the buffer maintained by the CS. This infor-

mation contains the 8 bytes that represent the messages for each of the players on the field.

A special firmware [BRI] used in the robots allows them to identify the byte that contains the

message directed to each robot in particular within the packet sent by the CS.

The flow of the game is controlled externally by a referee, whose decisions are communicated

to the robots through a predetermined interface. Therefore, because the referee is part of the

environment, the agents must be designed to recognize his decisions and carry out the necessary

actions for the robots to respond accordingly. For this reason, the system that we implemented

has a process by which it continuosly senses the referee’s decisions and, depending on them,

updates the state of the game. In Figure 3, we show part of the state space for a game. Normal

game play is represented by “Game on”; if the referee blows the whistle, the game is stopped

and its state can change to one of several options, depending on the referee’s decision. For

example, if the referee calls a penalty kick for the opposing team, the current state will change

to “Waiting their penalty”.

3.2 Logical Communication Layer

This layer offers as its services a set of routines that are the interface between the low level

communication layer and the upper layers. Basically, the necessary services that allow commu-

nication with the vision and communication servers are provided.

The routines that implement these services have been developed in the C programming

language and, using these routines, prolog predicates are implemented. These predicates are

Figure 3: Part of the game’s state space and the transitions caused by the referee’s decisions.

used by the upper layers in order to communicate with the different servers. This decision

has several advantages. One of these advantages has to do with the execution of actions. As

we mentioned before, the environment is highly dynamic, which causes the states of the world

to change quickly. Therefore, it is necessary for the robots to be able to react accordingly

to this dynamism. Moreover, the information obtained by the robots can be wrong due to

sensorial failure; after recovering from such a failure, the current situation could be completly

different from the one previously perceived. In this type of cases, the system has to be able

to analyze new situations, and quickly decide which actions should be taken by the robots.

For these reasons some critical services, like the ones which sense the environment, have been

implemented using the C programming language. Nevertheless, many of the aspects related to

the design of the behavior of a team require richer languages that can more easily reflect the

decision processes made by the agents. For this reason, we chose the prolog language for the

implementation of the agents’ behavior. Furthermore, the majority of the developments carried

out in our research group are implemented in prolog.

One of the routines implemented in C reads the packets generated by the video server, and

returns the information in an adequate format. This routine is used in the implementation of

a prolog query predicate (called dora/9) which has parameters that are used for returning

the information that is obtained. This prolog predicate is used by the upper layers in the

implementation of the aforementioned agents.

Another routine establishes the communication with the CS. This routine accepts the iden-

tifier of one of the robots and the mesage to be sent, builds a packet with this information, and

delivers it to the CS so that it can send it via the infrared transmitters to the field. With this

routine, a prolog predicate (called msg2robot/2) is implemented, which will later be used by

the agents to send commands (actions) to the robots. Each robot has a set of basic actions

that are implemented and executed by the robot’s own processor. These are basic movement

actions, such as turning the motors on and off.

Finally, a routine that continuously senses the referee decision is implemented as the basis

of a prolog predicate (called referee/1) which allows to query the current state of the game.

This predicate is used by the agents to carry out their decision processes.

The existence of this layer allow us to disregard the physical structure of the environment in

which the team of robots is embedded. For example, it is possible to implement the services of

this layer based on a simulated environment like the RoboCup Simulated League. If the interface

of the services offered by this layer remain unchanged, then the rest of the upper layers can

also remain unchanged.

3.3 Sensorial/Effectorial Layer

In this layer, the visual information is processed and translated into terms that express states of

the world. The coordinates and speeds of the robots and the ball can be interpreted to express

particular situations. Query and action predicates related to particular game situations are

defined. Among others, we define prolog predicates to determine:

• The robots’ and the ball’s positions,

• player and/or team that is closest to the ball,

• distances between different objects on the field, between players, rival players, etc, and

• plays involving high levels of risk.

All of these predicates are implemented by querying and analyzing the information from the

video server. Then, the situations modelled through these predicates are used in the upper

layer to model and implement the team’s game strategy.

Furthermore, predicates are also designed to implement the actions that must be carried

out by the robots. These are primitive actions that can later be combined, in the upper layer,

to build a more complex plan of action. General primitive movement actions are defined,

such as rotation and forward and backward movements. Moreover, there are primitive actions

that implement basic actions that every agent implemented in the upper layer can use. Some

examples of these types of actions are: go to a given position, kick, move to a given position

while avoiding obstacles, among others.

3.4 Cognitive Layer

This layer is responsible for the design of the agents that implement the team. Like in any

other agent system, the agents perceive information about the environment and reason about

the actions to take, as we show in Figure 4. This layer is formed by a set of logical agents

implemented using logic programming (prolog). Each agent perceives the information from

the environment (composed of the vision information and the state of the game) and acts in

consequence to reach its goals according to its design. In order to do this, each agent is modelled

Figure 4: Perception and action loop in our agent-based system.

through a perception/action loop of the form:

agent ←
referee(GameState),

dora(PerceptionInfoList),

decide(GameState, PerceptionInfoList, Msg),

msg2robot(Msg),

agent.

Each agent perceives the state of the game through the referee’s decisions, obtains the infor-

mation of the field of play through the video server and, according to this data, chooses the

actions to perform. These actions are sent to the robot via de CS; it should be noted that,

from the point of view of this layer, the robots are essentially complex effectors. For example,

for the goalkeeper, the following situation may arise: the game state is normal (the referee has

not made a call), the ball is in posession of the opponent team and close to the goal. In this

case, the goalkeeper will position itself in the part of the goal that will allow it to intercept an

eventual shot at the goal.

4 Conclusions and Future Work

In this work, we have presented an agents system for controlling a robotic soccer team based

on the organization into different Service Layers. This design allows the abstraction and mod-

ularization of the different aspects of the complex domain that robotic soccer represents. The

design of the team of agents was carried out using a logic-based model. Logic programming is

a useful tool for the implementation of reasoning systems that offer the possibility of rapid pro-

totyping of agents and declarative design. As we have seen, this was taken into account in the

design of the different layers, which provide a basis for the development of agents implemented

using prolog.

Having built a functional team of agents using this model to participate in the RoboCup

competitions, we are currently working on the development of more complex agents that in-

corporate a wide range of AI techniques developed within LIDIA from the fields of planning,

argumentation, learning, belief revision, and game theory and decision theory, among others.

Acknowledgements

We are very grateful to the Association of Computing Machinery (ACM) for granting us a

scholarship that allowed us to cover most of the costs of participating this year in the com-

petition in Lisbon, and to Dr. Elizabeth Sklar and Dr. Simon Parsons of the University of

Columbia in New York, for making this possible. We are also grateful to the Department of

Computer Science and Engineering, Universidad Nacional del Sur, for making its space and

resources available to us at any time. We would also like to thank the rest of our supporters,

which can be found at http://cs.uns.edu.ar/∼ajg/matebots/. The project is also partially

supported by the Agencia Nacional de Promoción Cient́ıfica y Tecnológica (PICT 13096), and

the Secretaŕıa de Ciencia y Tecnoloǵıa of Universidad Nacional del Sur. LIDIA is a Mem-

ber of the IICyTI (Instituto de Investigación en Ciencia y Tecnoloǵıa Informática). Gerardo

Simari is partially supported by Comisión de Investigaciones Cient́ıficas, (CIC) Gobierno de la

Provincia de Buenos Aires, and Telma Delladio is partially supported by Consejo Nacional de

Investigaciones Cient́ıficas y Técnicas (CONICET).

Finally, this work describes part of the work that has been carried out in the Cognitive

Robotics group as a general effort to participate in the RoboCup competitions. Apart from

the authors, the following people also take part in this project: Diego Garćıa, Mariano Tucat,

Fernando Mart́ın, Sebastián Gottifredi, and Nicolás Rotstein.

References

[AB] John Anderson and Jacky Baltes. Doraemon user’s manual.

http://sourceforge.net/projects/robocup-video.

[ABLS03] John Anderson, Jacky Baltes, David Livingston, and Elizabeth Sklar. Toward an

undergraduate league for robocup. In Proceedings of the RoboCup Symposium, 2003.

[ASV96] S. Achim, P. Stone, and M. Veloso. Building a dedicated robotic soccer system,

1996. In Proceedings of the IROS-96 Workshop on RoboCup.

[BRI] http://brickos.sourceforge.net/. First open-source operating system for the Lego

Mindstorms RCX Controller.

[COL] http://agents.cs.columbia.edu/eleague/. Official E-League webpage.

[GSD+04] Alejandro J. Garćıa, Gerardo I. Simari, Telma Delladio, Diego R. Garćıa, Mariano

Tucat, Nicolás D. Rotstein, Fernando A. Mart́ın, and Sebastián Gottifredi. Cog-

nitive robotics in a soccer game domain: A proposal for the e-league competition.

In Universidad Nacional del Comahue, editor, 6to Workshop de Investigadores en

Ciencias de la Computación (WICC), pages 289–293, 2004.

[HV] Kwun Han and Manuela Veloso. Automated robot behavior recognition applied to

robotic soccer. Robotics Research: the Ninth International Symposium, pages 199–

204. Springer-Verlag, London, 2000. Also in the Proceedings of IJCAI-99 Workshop

on Team Behaviors and Plan Recognition.

[JBA] Benn Vosseteig Jacky Baltes and John Anderson. Robocup e-league video server.

http://sourceforge.net/projects/robocup-video.

[LEG] http://www.legomindstorms.com. Lego Mindstorms robots and RCX controllers.

[LIS] http://www.robocup2004.pt. Official webpage of the RoboCup 2004 competition,

held in Lisbon, Portugal.

[MAT] http://cs.uns.edu.ar/∼gis/robocup-tdp.htm. English version of the official Matebots

E-League team webpage.

[ROB] http://www.robocup.org. Official webpage of the RoboCup Federation.

[Wei98] Gerhard Weiss. Learning to coordinate actions in multi-agent systems. In Reading

in Agents, pages 481–486. Morgan Kaufmann, 1998.

