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ABSTRACT: In this paper, metrics regarding different architectures for distributed arithmetic based FIR 
filters in FPGA are presented. Main filter parameters are described as well as diverse design techniques 
applied: pipelining, bit-serial, digit-serial y bit-parallel. Each filter description was written in VHDL at 
RTL level. For achieving this goal no relative location (rloc) technique was used what redounds on more 
generic and expensive designs than those available through Core Generator tool. Implementation has been 
carried out over FPGAs belonging to Xilinx Virtex II family. 

 
I. INTRODUCTION 
Today's FPGAs high density has allowed a new field of application: single-chip systems design 
with embedded DSP algorithms [1,2]. Advantages of this solution are multiple: extra component 
usage is avoided, off-chip connections are reduced and DSP-core can be simplified and optimized 
with regard to the application, taking account of different aspects such as required data rate, 
precision, etc. Frequently bit-parallel circuits are used, but these implementations are expensive in 
terms of area yielding a greater speed than required. Digit-serial architectures are important choices 
for efficently implementing a wide range of circuits with real time signal processing. This solution 
allows the designer to get results expressed in terms of area-speed, ranging between both 
implementations: bit-serial and bit-parallel. [3] 
Distributed arithmetic-based FIR filters are widely used for implementations that require high 
performance. Distributed arithmetic is basically a bit-serial operation that performs two vector 
product (one of which is constant). This technique avoids multiplications through the utilization of 
lookup tables (LUTs) taking highest advantage of technologies with plenty of memory elements 
such as RAM based FPGAs, where designers can use LUTs and adders to compute the product. [4]  
In this paper a comparison between different single-rate FIR filter architectures based on distributed 
arithmetic in FPGA is shown. With this aim, RTL descriptions in VHDL and automatic synthesis 
tools were used. This study involves bit-parallel, bit-serial, digit-serial and pipelining architectures. 
For descriptions, relative location (rloc) techniques [5] were not used and this allows generic 
designs to be implemented in any kind of FPGA although at a higher cost because the place and 
route is performed by the automatic synthesis tool at ease.  
 
II. DISTRIBUTED ARITHMETIC 
A FIR filter with T taps constant coefficients is characterized by: 
 
                                                                T-1   

y[n] = Σ h[n].x[n-k] 
                                                               k=0 

 
(1) 

An efficient way for implementing this filter in FPGA consists in using distributed arithmetic [6]. 
The main idea underlying this technique is the computation of sum of products such as 
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                                                                                                              T-1 

y = h’.x’ = Σ hi.xi 
                                                                                                             i=0 

 
(2) 

                                                                                  T-1                       N -1 

y = Σ hi.(-xi 0 + Σ xi k.2-k) 
                                                                                  I=0                       k=1 

 
(3) 

                                                                               T-1                N -1     T-1 

y = - Σ hi.xi 0 + Σ  (Σ hi.xi k ).2-k 
                                                                              i=0                 k=1    i=0 

 
(4) 

         N-1 

y = -A0 (x0 0, x1 0,,,,xT-1 0) + Σ Ak(x0 k, x1 k,,,,xT-1 k).2-k 
        k=1 

 
(5) 

 
Where hi stands for known values conforming filter coefficients, T the number of taps, N input 
value precision and x the input data.  

                                    T-1 

Ak (x0 k, x1 k,,,,xT-1 k) = Σ hi.xi k 
                                   i=0 

 
(6) 

 
y = - (h0.x0 0 +h1.x 1 0 +...+hT-1.xT-1 0) + (h0.x0 1 +h1.x 1 0 +...+ hT-1.xT-11 ) 2-1 + 

 (h0.x0 1 +h1.x 1 1 +h2.x2 1 +...+ hT-1.xT-1 1 ) 2-2 +  ... + (h0.x0 N-1 +h1.x 1 N-1 +...+hT.xT-1 N-1) 2-(N-1) 

 

 
(7) 

 

Ak only can have a finite number of values (2T), what means that every single term in (7) is stored 
either in ROM or LUT. In fig. 1 is shown the way of implementing the sum of products where 
ROM size is 2TxWROM , with WROM the precision of output data. 
 

 
Fig. 1 - Sum of products with distributed arithmetic 

 
 
II. MODELS USED IN THIS WORK 
 
Operations to be performed by architectures based on distributed arithmetic consist in sequentially 
searching tables, adding, subtracting and shifting the input signal. All of these can be efficiently 
implemented through FPGAs. 
As tables sizes can become huge, memory can be partitioned in T/k k-bit partitions. In this way it is 
possible to change from a memory with 2T size to T/k memories with 2k size, incorporating adders 
because of the partitioning . 
As stated above, bit-serial, digit-serial, bit-serial with pipelining, digit-serial with pipelining and 
bit-parallel architectures are considered in this paper. 



  
 
 

 

Distributed arithmetic based filters have a bit-serial pattern (fig. 2). For N-bit precision inputs N 
clock cycles are need to yield an output, so that if CR is the clock rate, filter sampling rate (SR) is 
CR/N. 

 
Fig. 2 – Bit-serial FIR filter 

 
To indirectly increase the sampling rate, pipeline can be used. With this technique (pipelining) 
clock rate (CR) can be increased decreasing logical paths through the inclusion of registers. In fig. 3 
is shown that the portion of segmented bit-serial architecture is that related with the cascaded 
adders that operate on the pre-stored values coming from ROMs or LUTs. 

 
Fig. 3 – Pipelined bit-serial FIR filter 

 
To directly improve filter sampling rate, more bits can be processed serially (fig. 4) using digit-
serial and digit size D. In this way, the sampling rate is accelerated D times (SR=DxSR [bit-serial]). 
Furthermore, sampling rate can be increased by means of pipelining producing an increased clock 
rate. Maximum rate is obtained when D equals N, i.e. parallel situation. 



 

 
Fig. 4 – Digit-serial FIR filter (2-bit digit) 

 
Let CR be the clock rate, SR the filter' sampling rate, N the input size, D the digit size, therefore the 
following assertions may be assumed as valid (theoretically): 
 
SR[bit-serial] = CR [bit-serial]/N  
SR[digit-serial] = DxSR [bit-serial]  
SR[parallel] = SR [digit-serial]  
CR[bit-serial con pipelining] > CR[bit-serial]                => SR[bit-serial with pipelining] > SR[bit-serial] 
CR[digit-serial con pipelining] > CR[digit-serial]          => SR[digit-serial with pipelining] > SR[digit-serial]    
 
When FPGAs are used, it is not possible to certify these assertions because the implementation 
strongly depends on the successive stages of the automatic synthesis process [7]. As a matter of 
fact, in this experience neither relative location (rloc) technique nor physical or logical constraints 
were used. Therefore the place and route tool proceeded at ease when performing physical design 
for the different alternatives. 
 
 
III. EXPERIMENTAL RESULTS 
 
Distributed-arithmetic FIR filters architectures with 8, 12, 16, 24, 32 and 64 taps were implemented 
using a Virtex 2 FPGA from Xilinx (XC2v2000-6bg575). Synthesis was provided with XST (Xilinx 
Synthesis Technology) Tools [8] running on Xilinx ISE (Xilinx System Environment) version 5.1 
[9]. 
Different filters were tested with 8-bit and 12-bit inputs and coefficients. Precision and bit-size of 
output data were automatically computed taking account the number of taps, input data precision 
and coefficient values. Thus, calculations were performed in advance aiming the filter can compute 
the sums without overflow as well as an extension for successive shifts applied was considered. 
The following 8-bit inputs and coefficients filters were implemented: 



  
 
 

 

 
• FIR bit-serial  
• FIR bit-serial with pipelining 
• FIR digit-serial (digit size 2) 
• FIR digit-serial (digit size 2) with pipelining 
• FIR digit-serial (digit size 4) 
• FIR digit-serial (digit size 4) with pipelining 
• FIR bit-parallel 
 

Taps B-Serial B-Serial 
Pipe 

D-Serial (2) 
 

D-Serial (2) 
Pipe  

D-Serial (4) D-Serial (4) 
Pipe 

B-Parallel 

8 101,94 149,48 85,32 133,69 62,03 73,26 43,63 
12  92,25 144,30 73,21 123,91 54,79 81,57 36,79 
16  80,71 138,12 68,68 112,99 51,02 70,97 32,16 
24 73,69 142,04 63,01 117,92 40,75 77,34 30,07 
32  69,98 131,93 55,01 106,72 39,81 71,17 29,58 
64  53,05 92,51 46,30 90,01 36,35 63,86 29,88 

Table 1 – Clock rate (CR) for filters with 8-bit inputs and coefficients [Mhz] 
 
Table 1 shows that bit-serial filters with pipelining have the best CR for 8-bit inputs and 
coefficients but this is not what happened with the sampling rate (SR) because of the different digit 
sizes involved. In table 2 can be seen that, best SR filters (for all tap numbers, except for 8) were 
those implemented as digit-serial with pipelining and digit size equal 4. 
 

Taps B-Serial B-Serial 
Pipe 

D-Serial (2) 
 

D-Serial (2) 
Pipe  

D-Serial (4)
 

D-Serial (4) 
Pipe  

B-Parallel 

8  12,74 18,68 21,33 33,42 31,01 36,63 43,63 
12  11,53 18,04 18,30 30,98 27,39 40,78 36,79 
16  10,09 17,26 17,17 28,25 25,51 35,48 32,16 
24 9,21 17,75 15,75 29,48 20,37 38,67 30,07 
32  8,74 16,49 13,75 26,68 19,90 35,58 29,58 
64  6,63 11,56 11,57 22,50 18,17 31,93 29,88 
Table 2 – Sampling rate (SR) for filters with 8-bit inputs and coefficients [Mhz] 

 
Tables 3 and 4 show slices and equivalent gates occupation for the 8-bit input filters. As expected, 
parallel filters are those more expensive in terms of slices and equivalent gate occupation. 
 
 

Taps B-Serial B-Serial 
Pipe 

D-Serial (2) 
 

D-Serial (2) 
Pipe  

D-Serial (4) 
 

D-Serial (4) 
Pipe  

B-Parallel 

8  63 (1)  72 (1) 80 (1) 85 (1) 117 (1) 120 (1) 178 (1) 
12 92 (1) 106 (1) 120 (1) 135 (1) 184 (1) 201 (1) 298 (2) 
16 122 (1) 135 (1) 161 (1) 174 (1) 244 (2) 261 (2) 395 (3) 
24 188 (1) 209 (1) 259 (2) 287 (2) 408 (3) 447 (4) 680 (6) 
32 239 (2) 252 (2) 324 (3) 335 (3) 494 (4) 506 (4) 825 (7) 
64 477 (4) 508 (4) 660 (6) 699 (6) 1030 (9) 1089 (10) 1718 (15) 

Table 3 – slices occupation for FIR with 8-bit inputs and coefficients 
(Percentage over a total of 10752 slices) 

 



 

Taps B-Serial B-Serial 
Pipe 

D-Serial (2) 
 

D-Serial (2) 
Pipe  

D-Serial (4) 
 

D-Serial (4) 
Pipe  

B-Parallel 

8  1296  1660 1574 2014 2178 3124 3156 
12 1860 2512 2372 3470 3486 5518 5426 
16 2338 3028 2988 4156 4336 6544 6700 
24 3536 4832 4736 7108 7244 11774 11720 
32 4448 5830 5890 8434 8822 13756 14056 
64 8706 11508 11786 17156 18006 28572 29234 

Table 4 – Equivalent gate occupation for FIR with 8-bit inputs and coefficients 
 

The following 12-bit inputs and coefficients filters were designed and implemented: 
 
• FIR bit-serial  
• FIR bit-serial with pipelining 
• FIR digit-serial (digit size 2) 
• FIR digit-serial (digit size 2) with pipelining 
• FIR digit-serial (digit size 4) 
• FIR digit-serial (digit size 4) with pipelining 
• FIR digit-serial (digit size 6) 
• FIR digit-serial (digit size 6) with pipelining 
• FIR bit-parallel 
 
Table 5 shows that bit-serial filters with pipelining have the best CR for 12-bit inputs and 
coefficients (as happened with 8-bit precision). Regarding the sampling rate (SR), in table 6 can be 
seen that, best SR filters were those implemented as digit-serial with pipelining and digit size equal 
6. 
 

Taps B-Serial B-Serial 
Pipe 

D-Serial 
(2) 

D-Serial 
(2) 

Pipe 

D-Serial 
(4) 

D-Serial 
(4) 

Pipe 

D-Serial 
(6) 

D-Serial 
(6) 

Pipe 
B-Parallel

8  111,60 133,15 75,07 131,93 61,05 70,67 44,31 53,30 25,99 
12  92,98 131,06 73,80 122,10 53,99 75,81 40,92 51,33 25,32 
16  85,11 129,03 69,83 115,07 51,39 74,40 38,94 50,45 24,08 
24 63,86 129,87 59,84 118,48 43,76 71,63 34,47 49,07 21,89 
32  64,68 122,25 48,68 110,99 43,29 72,41 31,54 48,17 21,71 
64  47,71 100,20 43,94 94,61 34,78 57,50 29,66 46,32 20,25 

Table 5 – Clock rate (CR) for filters with 12-bit inputs and coefficients [Mhz] 
 

Taps B-Serial B-Serial 
Pipe 

D-Serial 
(2) 

D-Serial 
(2) 

Pipe 

D-Serial 
(4) 

D-Serial 
(4) 

Pipe 

D-Serial 
(6) 

D-Serial 
(6) 

Pipe 
B-Parallel

8  9,30 11,09 12,51 21,99 20,35 23,56 22,15 26,65 25,99 
12  7,75 10,92 12,30 20,35 17,99 25,27 20,46 25,66 25,32 
16  7,09 10,75 11,64 19,18 17,13 24,80 19,47 25,22 24,08 
24 5,32 10,82 9,97 19,75 14,59 23,88 17,23 24,53 21,89 
32  5,39 10,19 8,11 18,50 14,43 24,14 15,77 24,08 21,71 
64  3,97 8,35 7,32 15,77 11,59 19,17 14,83 23,16 20,25 

Table 6 – Sampling rate (SR) for filters with 12-bit inputs and coefficients [Mhz] 
 
Tables 7 and 8 show slices and equivalent gates occupation for the 12-bit input filters. As with 8-
bit, parallel filters are those more expensive in terms of slices and equivalent gate occupation. 
 
 



  
 
 

 

Taps B-Serial B-Serial 
Pipe 

D-Serial 
(2) 

D-Serial 
(2) 

Pipe 

D-Serial 
(4) 

D-Serial 
(4) 

Pipe 

D-Serial 
(6) 

D-Serial 
(6) 

Pipe 

B-Parallel 

8  91 (1) 102 (1) 115 (1) 121 (1) 167 (1) 171 (1) 221 (2) 224 (2) 368 (3) 
12  133 (1) 150 (1) 173 (1) 191 (1) 261 (2) 286 (2) 345 (3) 380 (3) 589 (5) 
16  174 (1) 189 (1) 229 (2) 242 (2) 344 (3) 362 (3) 459 (4) 481 (4) 793 (7) 
24 266 (2) 293 (2) 357 (3) 396 (3) 561 (5) 616 (5) 761 (7) 837 (7) 1328  (12) 
32 339 (3) 355 (3) 454 (4) 466 (4) 689 (6) 704 (6) 927 (8) 940 (8) 1617 (15) 
64 668 (6) 706 (6) 910 (8) 957 (8) 1398 (13) 1476 (13) 1887 (17) 1918 (18) 3309 (30) 

Table 7 – slices occupation for FIR with 12-bit inputs and coefficients 
(Percentage over a total of 10752 slices) 

 

Taps B-Serial B-Serial 
Pipe 

D-Serial 
(2) 

D-Serial 
(2) 

Pipe 

D-Serial 
(4) 

D-Serial 
(4) 

Pipe 

D-Serial 
(6) 

D-Serial 
(6) 

Pipe 
B-Parallel 

8  1840 2356 2246 2996 3130 4474 4044 6010 6420 
12 2628 3524 3364 4866 4938 7754 6522 10680 10930 
16 3282 4252 4204 5848 6120 9244 8052 12678 13456 
24 4956 6744 6606 9908 10090 16440 13570 23004 23506 
32 6192 8116 8194 11726 12270 19150 16362 26612 28008 
64 11998 15850 16168 23542 24592 39124 33002 54744 57074 

Table 8 – Equivalent gate occupation for FIR with 12-bit inputs and coefficients 
 
Let δ be the relationship between the sampling rate (throughput) and the area or number of 
equivalent gates. This quantity was computed for every single filter(i,j), where i stands for the 
coefficient number or taps (row of tables) and j stands for the technique applied (column of tables). 
Hence: 

 
δ [filter(i,j)] = [SR(i,j) / EG(i,j) ]* r(i) (8) 

 
where EG is the equivalent gate number for the design and r(i) a factor used for normalizing SR(i,j) 
as well as EG(i,j): 
 

r(i)  = max[EG (i,j)] / max[SR(i,j)] (9) 
 
maximums are computed for all j or filters designed for a certain tap (i row). 
 
Tables 10 and 11 show speed (rate)-area ratio for filters with 8-bit and 12-bit inputs respectively. 
Values were computed through (8) 
 

Taps B-Serial B-Serial 
Pipe 

D-Serial 
(2) 

D-Serial 
(2) 

Pipe 

D-Serial 
(4) 

 

D-Serial 
(4) 

Pipe 
B-Parallel 

8  0,711 0,814 0,980 1,200 1,030 0,848 1 
12  0,825 0,956 1,026 1,188 1,045 0,983 0,902 
16  0,815 1,076 1,085 1,284 1,111 1,024 0,906 
24 0,789 1,113 1,008 1,257 0,852 0,995 0,778 
32  0,776 1,117 0,922 1,250 0,891 1,021 0,831 
64  0,697 0,920 0,900 1,201 0,924 1,023 0,936 

Avg. 0,769 0,999 0,987 1,23 0,975 0,982 0,892 
Table 10 – Speed-area ratio (δ) for filters with 8-bit inputs and coefficients 

 



 

Taps B-Serial B-Serial 
Pipe 

D-Serial 
(2) 

 

D-Serial 
(2) 

Pipe 

D-Serial 
(4) 

D-Serial 
(4) 

Pipe 

D-Serial 
(6) 

D-Serial 
(4) 

Pipe 
B-Parallel

8  1,218 1,134 1,342 1,768 1,566 1,269 1,319 1,068 0,975 
12  1,256 1,320 1,557 1,781 1,552 1,388 1,336 1,023 0,987 
16  1,153 1,349 1,477 1,750 1,493 1,431 1,290 1,061 0,954 
24 1,029 1,537 1,446 1,910 1,336 1,392 1,217 1,021 0,892 
32  1,012 1,460 1,151 1,836 1,368 1,466 1,121 1,052 0,901 
64  0,815 1,298 1,116 1,651 1,161 1,207 1,107 1,043 0,874 

Avg. 1,080 1,350 1,348 1,782 1,413 1,359 1,232 1,045 0,930 
Table 11 – Speed-area ratio (δ) for filters with 12-bit inputs and coefficients 

 
 
IV. CONCLUSIONS 
A distributed arithmetic based single-rate FIR in FPGAs study was presented. 8-bit and 12-bit 
inputs and coefficients filters were analyzed as well as a wide coefficient diversity.  
As no relative location (rloc) technique was used, designs are generic, i.e. can be implemented over 
any FPGA. 
Although the synthesis tool had the maximum freedom degree for implementing at ease, results 
obtained have a close correspondence with that expected through theoretically considerations. Bit-
parallel filters are more expensive in terms of area but are faster (in terms of sample rate) than 
digit-serial filters, which in turn are more expensive and faster than bit-serial filters. Through the 
application of pipelining techniques speed and area were increased. 
Finally, was concluded that digit-serial with pipelining and digit size 2 implementation has the best 
speed-area ratio (δ) among all filters considered in this work. 
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