
MINIMUM AREA, LOW COST FPGA IMPLEMENTATION OF AES

 Liberatori, Mónica. Bonadero, Juan Carlos.
Facultad de Ingeniería. Universidad Nacional de Mar del Plata

 Laboratorio de Alta Frecuencia
Juan B. Justo 4302. Mar del Plata (7600). Bs. As. Argentina.

mlibera@fi.mdp.edu.ar

ABSTRACT
The Rijndael cipher, designed by Joan Daemen and
Vincent Rijmen and recently selected as the official
Advanced Encryption Standard (AES) is well suited
for hardware use. This implementation can be
carried out through several trade-offs between area
and speed.
This paper presents an 8-bit FPGA implementation
of the 128-bit block and 128 bit-key AES cipher.
Selected FPGA Family is Altera Flex 10K. The
cipher operates at 25 MHz and consumes 470 clock
cycles for algorithm encryption, resulting in a
throughput of 6.8 Mbps. The design target was
optimisation of area and cost.
Keywords: AES, cipher, cryptography, FPGA,
VHDL.

1. INTRODUCTION
The Rijndael Algorithm, developed by Joan Daemen
and Vincent Rijmen [1], has been approved by the
U. S. National Institute of Standards and Technology
(NIST) as the was the new Advanced Encryption
Standard (AES). It became official in October 2000,
replacing DES [2]. As this block cipher is expected
to be widely used in an extensive variety of
products, its efficient implementation becomes a
significant priority. It is a private-key symmetric
block cipher, [16], [17], operating on a block size of
128 bits. It comprises 10, 12 or 14 rounds when the
key size is 128, 192 or 256 bits respectively. The
intermediate cipher result is called the state [1].

Figure 1 – Input to, and output from, the cipher state
array.

 It is an array of 4 rows and Nc columns, where Nc is
the input sequence length divided by 32. In this state
array, denoted by the symbol s, each individual byte
has two indexes: its row number r, in the range 0 ≤ r

< 4, and its column number c, in the range 0 ≤ c <
Nc, hence allowing it to be referred as s[r, c]. For
AES the range for c is 0 ≤ c < 4, since Nc has a fixed
value of 4. At the start (end) of an encryption or
decryption operation the bytes of the cipher input
(output) are copied to (from) this state array in the
order shown in Fig. 1. The four bytes in each
column of the state can be thought of as an array of
four bytes indexed by the row number r or as a
single 32-bit word (bytes within all 32-bit words will
always be enumerated using the index r). The state
can hence be considered as a one-dimensional array
of words where the column number c provides the
array index.
The round function is parameterised using a Round
Key that consists of a Nc word sub-array from the
key schedule. In general the length of the cipher
input, the cipher output and the cipher state, Nc,
measured in multiples of 32 bits, is 4, 6 or 8 but the
AES standard only allows a length of 4. The length
of the cipher key, Nk, again measured in multiples of
32 bits, is also 4, 6 or 8, all of which are allowed by
both Rijndael and the AES standard.
Each encryption round is composed of four
operations: SubBytes, ShiftRows, MixColumns and
KeyExor. The last round is slightly different because
MixColumns is not present.
SuBytes transformation is a non-linear byte
substitution where each byte of the state is inverted
over GF(28) followed by an affine transformation.
The overall operation is known as the S-Box and can
be performed through a look up table as depicted by
Fig. 2 [12], [13].

Figure 2 – SubBytes Transformation

ShiftRows transformation operates on a whole state
(128 bits). Rows of the state are cyclically shifted to
the left as shown in Fig. 3.
MixColumn transformation acts independently on
every column of the state and treats each column as

in0 in4 in8 in12
in1 in5 in9 in13
in2 in6 in10 in14
in3 in7 in11 in15

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

out0 out4 out8 out12
out1 out5 out9 out13
out2 out6 out10 out14
out3 out7 out11 out15

s0,0 s0,1 s,0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

 s’1,1 s1,1

SubBytes

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042926?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a four-term polynomial. The columns of the state are
considered as polynomials over GF(28) and
multiplied modulo (x4+ 1) with a fixed polynomial
c(x), coprime to x4+ 1 and therefore invertible [14].
This operation can be written as a matrix
multiplication and is represented in Fig. 4.

Figure 3 – ShiftRows Transformation

Figure 4 – MixColumns Transformation

2. GENERAL ASPECTS
As is the case with software, hardware
implementations can be optimized in speed and size.
However, size usually translates much more directly
into cost in hardware when compared to software.
Doubling the size of an encryption program may
make little difference on a general-purpose computer
with a large memory, but doubling the area used in a
hardware device will likely more than double the
cost of the device.
A promising alternative for implementation consists
of reconfigurable hardware devices such as Field
Programmable Gate Arrays (FPGAs) [4], [5], [8].
FPGAs comprise an array of uncommitted circuit
elements, called logic blocks, and interconnected
resources. FPGAs configuration is performed by the
end user, facilitating design changes. This new
technology offers many advantages for designers of
cryptographic equipment due to its high flexibility,
low development costs and physical security.
The FPGA family selected For the present
implementation is Altera Flex 10K, in particular
EPF10K20. It is well suited for memory functions
and complex logic functions such as digital signal
processing and data transformation. The EPF10K20
device contains an embedded array to implement
memory functions and a logic array to implement
general logic functions. The device has 1152 logic
elements (LEs) and 6 embedded array blocks
(EABs). Each LE consists of a 4-input look up table
(LUT), a programmable flip-flop, and dedicated
signal paths for carry and cascade functions. LEs are

grouped into 144 LABs. These LABs are arranged
into 6 rows and 24 columns. The embedded array
consists of a series of EABs, each of which provides
2048 bits of memory, and can be used to create
RAM or ROM or to contribute 100 to 300 gates
toward combinatorial logic functions. Each I/O cell
contains a bi-directional I/O buffer and a flip-flop
that can be used as either an input or output register.
In this case, the device is part of the UP1
Educational Board of the University Program
Design Laboratory Package from Altera.
MAX+PLUS II Version 7.21 Student Edition is the
software used to synthesise a VHDL implementation
of the AES algorithm. This tool is also used to
perform behavioural and timing simulations.

3. ARCHITECTURE OPTIONS

Rijndael is a block cipher with a basic looping
architecture whereby data is iteratively passed
through a round function. There are several
architectural options to yield optimised
implementations [3].
When examining AES principal aspects, it is
obvious that an implementation of the fully 128 data
path stream could encrypt 128 bits per cycle.
Assuming a 25 MHz clock, this translates into a
throughput of 3.2Gps. Such an implementation will
also consume too many resources in terms of area. It
will require a large amount of I/O pins and will not
fit on low target FPGA. Since the EPF10k20 is
available in 240-pin RQFP package, it is not suitable
for this type of architecture.
On the other hand, in a minimum configuration, the
cipher should use as few memory blocks as possible
and a basic interface with a host system as to allow
its adaptation to a wide range of proposals. Since
one byte is the basic data unit for the Rijndael
operations, the architecture selected to implement
the cipher is an 8 bit basic one.
After defining the bit-width of the architecture, the
next problem is determining a set of operation types
that will define the functional units. A first analysis
of the algorithm identifies primary operations, which
leads to the development of the functional units
needed. This design strategy is a hierarchical one,
where the basic blocks are implemented and then
composed to obtain the cipher.
In the encryption core, only one round is
implemented and the cipher must iterate ten rounds
to perform an encryption. Iterative looping (LU-1) is
a subset of loop unrolling (LU-i) where only one
round is unrolled. This approach usually minimizes
the hardware required for the implementation and an
effort is made to maximize the speed.
Thus, one round is implemented with combinatorial
logic supplemented with registers, memories and
multiplexers. First, input block of data is fed to the
circuit via the 8-bit input interface and the initial
round is executed. In this round the input data is

s0,0 s0,1 s,0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3
s1,1 s1,2 s1,3 s1,0
s2,2 s2,3 s2,0 s2,1
s3,3 s3,0 s3,1 s3,2

s0,0 s0,1 s,0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3
s1,0 s1,1 s1,2 s1,3
s2,0 s2,1 s2,2 s2,3
s3,0 s3,1 s3,2 s3,3

MixColumns

s0,1
s1,1
s2,1
s3,1

s’0,1
s’1,1
s’2,1
s’3,1

XORed with the Cipher Key and the result stored in
a RAM memory. Then the encryption unit evaluates
ten rounds of the algorithm and the result is
temporarily stored in the RAM. A control unit
generates control signals for the other units,
answering the question of the separation between
control and data path logic.
The provided embedded RAM is used to replace the
round key and S-Box hardware. As a result, there is
no key scheduling unit; instead a memory for storing
the internal keys and the circuitry necessary to
distribute these keys is included in the encryption
unit.
The mode of operation is very simple: electronic
codebook (ECB). The basic architecture in
conjunction with the non-feedback mode of
operation is easy to implement and will likely result
in smaller circuit area.
The cipher was designed keeping in mind the
amount of resources shared between encryption and
decryption, so that a modified version will support
both types of operation [10].
The simulations verify the ability to operate at the 25
MHz system clock frequency of the UP1
Educational Board. The design choice is a compact
one, optimized for area and cost.

4. FPGA IMPLEMENTATION
The round transformation data path is shown in
Fig.5.

reg32mix8x8

RAM1mux2x4_1

SROM
shift

RAM0

data input

I/O
interface

mux3x8

q ramout

mux2x4_0

ram key

ramout

q

address
round 1-10

address
roundini

control
unit

Figure 5 – The 8-bit round transformation data path.

It consists of two 16x8 RAMs (RAM0 and RAM1),
one 256x8 ROM (SROM), one block to perform
MixColumns operation with interfaces for the 8 bit
bus (reg32mix8x8), another component to perform

the shift operation (shift), one 8-bit exor and three
multiplexers (mux2x4_0, mux2x4_1 and mux3x8).
Round Keys for encryption are loaded via the input
interface and are stored in the 256x8 RAM
(ramkey). All keys are loaded before encryption
begins. The control unit is a finite state machine. It
provides multiplexer select signals and generates
control signals for the previously mentioned round
components.
RAM0 receives the 128 bit input data from initial
round. It also stores the results of intermediate
rounds and the 128 bits final encrypted block. It is
accessible via an 8-bit data bus in a sequential
manner, acting like a 128-bit register. The
encryption process starts after reception of the forth
128 data bits.
SROM performs byte substitution and acts as one S-
Box, storing the overall transformation needed in 8 x
256 bits. It is implemented using one EAB block.
An 8-bit address is the data input and an 8-bit data
value is the output.
The results from the SubBytes operation are
temporarily stored in RAM1. This memory is
written so that SubBytes and ShiftRows operations
are combined. The component mux2x4_1 presents
the appropriate address bus to the RAM1 memory.
The execution of these transformations modifies the
address coming from the control unit via the shift
component as it is depicted in Fig. 6.

out1
out2

out3
out4

shift

in1
in2
in3
in4

Figure 6 – Shift Component.

Reading
from
SROM

Writing
RAM1

Reading
from
SROM

Writing
RAM1

Byte 0 Address 0 Byte 8 Address 8
Byte 1 Address D Byte 9 Address 5
Byte 2 Address A Byte 10 Address 2
Byte 3 Address 7 Byte 11 Address F
Byte 4 Address 4 Byte 12 Address C
Byte 5 Address 1 Byte 13 Address 9
Byte 6 Address E Byte 14 Address 6
Byte 7 Address B Byte 15 Address 3

Table 1. ShiftRows Transformation.

The shift component generates the addresses in
RAM1 to be written to. Table 1 presents the order in
which the successive bytes from the SubBytes
operation are written to RAM1 [9]. The control unit
generates the addresses in RAM1 to be read from.
The reading process is a direct one.
The MixColumn transformation previously
described can be written as a matrix multiplication,
where the matrix is a circular one:







































=





















c3,

c2,

c1,

c0,

c3,

c2,

c1,

c0,

s
s
s
s

02010103
03020101
01030201
01010302

s'
s'
s'
s'

 Eq.(1)

As a result, the four bytes in the column can be
replaced by the following expressions:

c3,c2,c1,co,co, ss)({03}.s)({02}.ss' ⊕⊕⊕=

ccccc sssss ,3,2,1,0,1)}.03({)}.02({' ⊕⊕⊕=

)}.03({)}.02({' ,3,2,1,0,2 ccccc sssss ⊕⊕⊕=

)}.02({)}.03({' ,3,2,1,0,3 ccccc sssss ⊕⊕⊕=

Four inputs cs ,0 , cs ,1 , cs ,2 , cs ,3 , are multiplied
with fixed constants. Multiplication by a constant in
GF(28) will result in XOR the bits of the input byte
in a particular way [6], [7].
Multiplication by x (i.e. 00000010 or {02}) can be
implemented at the byte level as a left shift and a
subsequent conditional XOR with {1B}. This
operation on bytes is denoted by xtime() and it can
be easily implemented in FPGA as it is depicted in
Fig. 7.

1B

b7

b6..b0

8

8

7inxtime outxtimes

xtime

Figure 7 – Xtime Operation

Multiplication by higher powers of x can be
implemented by repeated application of xtime().
Multiplication by (1+x) (i.e. 00000011 or {03}) can

be thought as multiplication by ({01}⊕ {02}). Fig.
8 presents a circuit that implements this operation.

1B

b7

b6..b0

8

8

7xtime

outx3

inx3 8

8

Figure 8 – X3 Operation

Fig. 9 shows the basic block to perform
MixColumns operation, multcolumn. Four
components like those shown in Fig. 9, each with its
entries consistent with Eq (1) or its equivalent
expressions, are needed to process 32-bit data
simultaneously. As it can be seen from this figure,
the critical path through this transformation includes
four XORs and one multiplexer. To generate four
bytes in one operation, reg32mix8x8 accepts four
bytes from input via a serial to parallel converter
register. The result, one column of the state
generated from each input column, must be
converted to the serial form to fit in the original 8-bit
data path.

Figure 9 – MixColumn basic block: multcolumn.

Each 8-bit word from the input is processed as
follows. The initial round performs the XOR
operation between the 128-bit data and the original
128-bit key. The result is stored in RAM0.
Every round starts by reading this memory and
presenting every byte out to the address input of the
SROM. One cycle later the result of the SubBytes
transformation for every byte of the State is
presented at the output of the SROM. These 16 bytes
are written in RAM1 as shown in Table 1. Another
16 cycles are taken to read the result of the

s0,c s1,c s2,c s3,c

xtime x3

s’0,c

ShiftRows operation. At the same time the
MixColumns operation is performed on every 4-
bytes word of this stream. This transformation
results in a latency of 10 cycles because of the initial
serial to parallel and final parallel to serial
conversions needed to preserve the 8-bit data path.
The stream of bytes resultant from this last operation
is XOR with the appropriate bytes of the round key.
The result is stored in the RAM0, ready to initiate
another round of the cipher.

5. RESULTS FOR THE ALTERA 10K FAMILY
The parameters used for evaluating the quality of the
implementation are: number of logic cells (LCs),
number of bits of embedded memory, latency, clock
frequency and throughput.
The process previously explained involves 48 clock
cycles to complete one round of encryption, except
for the last one that consumes 38 cycles because it
does not include the MixColumn operation. These
numbers translate into 470 total cycles, resulting in a
throughput of 6.8 Mbps.
The results of the implementation in terms of area
are summarized in Table 2. All the results come
from simulations and reports generated by Altera
tools.

Component Memo
Bits

Memo
Used

%

LCs LCs
Used%

I/O interface ------ ------ 62 10
ROM 256x8 2048 33 ------ ------
RAM 16x8 128 2 ------ ------
Mux 3x8 ------ ------ 24 4
Mux 2x4 ------ ------ 4 0
Mux 2x8 ------ ------ 8 1
Control Unit ------ ------ 305 52
Shift ------ ------ 4 0
Reg32mix8x8 ------ ------ 160 27
AES cipher 4480 36 581 50

In terms of complexity, the operation that requires
more hardware resources as well as computation
time is the MixColumns multiplication. Fast
operations such as bit-wise XOR and ShiftRows are
constructed from simple hardware elements.
The S-Box is implemented by 256x8 ROM. Round
Keys are stored in 256x8 RAM. Additional memory
is used to store partial results of intermediate
operations. 36% of memory blocks are used to
cover the whole 128-bit data processing,.

6. CONCLUSIONS
When implementing block ciphers, the designer
must choose between several strategies. He or she
has to decide whether to optimize for area,
throughput or latency. Each design choice imposes
different restrictions on the final implementation.
This paper presents a low area, cost-effective
Rijndael cipher for encryption using a basic 8-bit

iterative architecture, targeted towards the Altera
Flex 10 K family of FPGAs.
The cipher has been synthesised using Altera.
MAX+PLUS II Version 7.21 Student Edition [19],
[20]. The algorithm is implemented in VHDL, which
led to the use of bottom-up design and test
methodology [15], [18]. This choice also insures
portability of the code to the devices of other
vendors.
The VHDL code was simulated using the test
vectors provided in the AES submission package.
The results are functionally correct.
The architecture needs fewer logic cells than other
ciphers and uses as few memory blocks as possible
[11]. It has 6.8 Mbps throughput. The critical path
includes the components previously mentioned. The
minimum clock period depends on the access time to
memories used and the frequency of the external
clock.
Future work should concentrate on speed
performance and the introduction of pipelines in the
architecture.

7. REFERENCES
[1] J. DAEMEN, V. RIJMEN, AES Proposal:

Rijndael. Document version 2. Date: 03/09/99.
NIST´s AES home page,
http://www.nist.gov/aes.

[2] FEDERAL INFORMATION PROCESSING

STANDARDS PUBLICATION (FIPS) 197.
Specification for the Advanced Encryption
Standard (AES). November 26, 2001. NIST´s
AES home page, http://www.nist.gov/aes.

[3] E. BIHAM, A note on Comparing the AES
Candidates. Second AES conference, 1999.

[4] K. GAJ, P.CHODOWIEC, Comparison of the
hardware performance of the AES candidates
using reconfigurable hardware. Proceedings of
RSA Security Conference - Cryptographer's
Track, San Francisco, CA, 2001 April 8-12, pp.
84-99.

[5] A. ELBIRT, W. YIP, B. CHETWYND, C.
PAAR, An FPGA Implementation and
Performance Evaluation of the AES block
cipher candidates algorithm finalists. IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, August 2001, pp. 545-557.

[6] T. KERINS, A. PPOPOVICI, A. DALY, W.
MARNANE, Hardware encryption engines for
e-commerce. Proceedings of Irish Signals and
Systems Conference, 2002, pp 89-94.

[7] J. SHIM, D. KIM, Y. KANG, T. KWON, J.
CHOI, Inner-pipelining Rijndael
cryptoprocessor with on-the-fly key scheduler.
http://www.ap-sic.org/2002/proceedings/2B/2B-
3.PDF.

[8] V. FISCHER, Realization of the round 2 AES
candidates using Altera FPGA.

http://csrc.nist.gov/encryption/aes/round2/conf3
/aes3papers.html. March 2000.

[9] R. KARRI, Y. KIM, Field Programmable Gate
Array implementation of Advanced Encryption
Standard. http://www.eeweb.poly.edu/dream-
it/publications/Rijndael.pdf

[10] R. ASHRUF, G. GAYDADJIEV, S.
VASSILIADIS, Reconfigurable implementation
for the AES algorithm. Computer Engineering
Laboratory, Electrical Engineering Department,
Delft University of Technology, http://ce-
serv.et.tudelft.nl/~molen/publications/2002/ash/
ash_prorisc2002.pdf.

[11] P. MROCZKOWSKI, Implementation of the
block cipher Rijndael using Altera FPGA.

http://csrc.nist.gov/encryption/aes/round2/comm
ents/200 00510-pmroczkowski.pdf (Aug. 2001).

[12] A. RUDRA, K. DUBEY, C. JUTLA, Efficient
implementation of Rijndael encryption with
composite field arithmetic. Workshop on
Cryptographic Hardware and Embedded
Systems, CHES 2001, May 13-16, Paris,
France.

[13] V. RIJMEN, Efficient Implementation of the
Rijndael S-Box. CHES 2003, LNCS 2779, pp
334-350.

[14] S. MURPHY, M. ROBSHAW, Essential
Algebraic Structure within AES. Second
NESSIE. New European Schemes for Signature,
Integrity and Encryption Workshop. September
2001.

[15] An Introductory VHDL Tutorial.
http://www.gmvhdl.com/VHDL.html.

[16] STALLINGS W., Cryptography and Network
Security, 2nd Edition, 1999. Prentice Hall.

[17] SCHNEIER B., Applied Cryptography, John
Wiley & Sons, Inc., second edition, 1996.

[18] F. PARDO, J. BOLUDA, VHDL. Lenguaje
para síntesis y modelado de circuitos. Editorial
Ra-Ma. Edición 1999.

[19] L. TERÉS, Y. TORROJA, S. OLCOZ, E.
VILLAR. VHDL. Lenguaje Estándar de Diseño
Electrónico. Editorial Mc Graw
Hill/Interamericana de España, S.A.U. 1997.

[20] MAX+PLUS II. Programmable Logic
Development System. VHDL. Altera
Corporation. 1996.

	MINIMUM AREA, LOW COST FPGA IMPLEMENTATION OF AES
	ABSTRACT
	The Rijndael cipher, designed by Joan Daemen and Vincent Rijmen and recently selected as the official Advanced Encryption Standard (AES) is well suited for hardware use. This implementation can be carried out through several trade-offs between area an...
	This paper presents an 8-bit FPGA implementation of the 128-bit block and 128 bit-key AES cipher. Selected FPGA Family is Altera Flex 10K. The cipher operates at 25 MHz and consumes 470 clock cycles for algorithm encryption, resulting in a throughput ...
	Keywords: AES, cipher, cryptography, FPGA, VHDL.
	1. INTRODUCTION
	The Rijndael Algorithm, developed by Joan Daemen and Vincent Rijmen [1], has been approved by the U. S. National Institute of Standards and Technology (NIST) as the was the new Advanced Encryption Standard (AES). It became official in October 2000, re...
	Figure 1 – Input to, and output from, the cipher state array.
	It is an array of 4 rows and Nc columns, where Nc is the input sequence length divided by 32. In this state array, denoted by the symbol s, each individual byte has two indexes: its row number r, in the range 0 ≤ r < 4, and its column number c, in th...
	The round function is parameterised using a Round Key that consists of a Nc word sub-array from the key schedule. In general the length of the cipher input, the cipher output and the cipher state, Nc, measured in multiples of 32 bits, is 4, 6 or 8 but...
	Figure 2 – SubBytes Transformation
	ShiftRows transformation operates on a whole state (128 bits). Rows of the state are cyclically shifted to the left as shown in Fig. 3.
	MixColumn transformation acts independently on every column of the state and treats each column as a four-term polynomial. The columns of the state are considered as polynomials over GF(28) and multiplied modulo (x4+ 1) with a fixed polynomial c(x), c...
	Figure 3 – ShiftRows Transformation
	Figure 4 – MixColumns Transformation
	2. GENERAL ASPECTS
	As is the case with software, hardware implementations can be optimized in speed and size. However, size usually translates much more directly into cost in hardware when compared to software. Doubling the size of an encryption program may make little ...
	A promising alternative for implementation consists of reconfigurable hardware devices such as Field Programmable Gate Arrays (FPGAs) [4], [5], [8]. FPGAs comprise an array of uncommitted circuit elements, called logic blocks, and interconnected resou...
	The FPGA family selected For the present implementation is Altera Flex 10K, in particular EPF10K20. It is well suited for memory functions and complex logic functions such as digital signal processing and data transformation. The EPF10K20 device conta...
	In this case, the device is part of the UP1 Educational Board of the University Program Design Laboratory Package from Altera. MAX+PLUS II Version 7.21 Student Edition is the software used to synthesise a VHDL implementation of the AES algorithm. This...
	When examining AES principal aspects, it is obvious that an implementation of the fully 128 data path stream could encrypt 128 bits per cycle. Assuming a 25 MHz clock, this translates into a throughput of 3.2Gps. Such an implementation will also consu...
	On the other hand, in a minimum configuration, the cipher should use as few memory blocks as possible and a basic interface with a host system as to allow its adaptation to a wide range of proposals. Since one byte is the basic data unit for the Rijnd...
	4. FPGA IMPLEMENTATION
	5. RESULTS FOR THE ALTERA 10K FAMILY
	6. CONCLUSIONS
	J. DAEMEN, V. RIJMEN, AES Proposal: Rijndael. Document version 2. Date: 03/09/99. NIST´s AES home page, http://www.nist.gov/aes.
	FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION (FIPS) 197. Specification for the Advanced Encryption Standard (AES). November 26, 2001. NIST´s AES home page, http://www.nist.gov/aes.
	E. BIHAM, A note on Comparing the AES Candidates. Second AES conference, 1999.
	K. GAJ, P.CHODOWIEC, Comparison of the hardware performance of the AES candidates using reconfigurable hardware. Proceedings of RSA Security Conference - Cryptographer's Track, San Francisco, CA, 2001 April 8-12, pp. 84-99.
	A. ELBIRT, W. YIP, B. CHETWYND, C. PAAR, An FPGA Implementation and Performance Evaluation of the AES block cipher candidates algorithm finalists. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, August 2001, pp. 545-557.
	T. KERINS, A. PPOPOVICI, A. DALY, W. MARNANE, Hardware encryption engines for e-commerce. Proceedings of Irish Signals and Systems Conference, 2002, pp 89-94.
	J. SHIM, D. KIM, Y. KANG, T. KWON, J. CHOI, Inner-pipelining Rijndael cryptoprocessor with on-the-fly key scheduler. http://www.ap-sic.org/2002/proceedings/2B/2B-3.PDF.
	V. FISCHER, Realization of the round 2 AES candidates using Altera FPGA. http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html. March 2000.
	R. KARRI, Y. KIM, Field Programmable Gate Array implementation of Advanced Encryption Standard. http://www.eeweb.poly.edu/dream-it/publications/Rijndael.pdf
	R. ASHRUF, G. GAYDADJIEV, S. VASSILIADIS, Reconfigurable implementation for the AES algorithm. Computer Engineering Laboratory, Electrical Engineering Department, Delft University of Technology, http://ce-serv.et.tudelft.nl/~molen/publications/2002/a...
	P. MROCZKOWSKI, Implementation of the block cipher Rijndael using Altera FPGA.
	http://csrc.nist.gov/encryption/aes/round2/comments/200 00510-pmroczkowski.pdf (Aug. 2001).
	A. RUDRA, K. DUBEY, C. JUTLA, Efficient implementation of Rijndael encryption with composite field arithmetic. Workshop on Cryptographic Hardware and Embedded Systems, CHES 2001, May 13-16, Paris, France.
	V. RIJMEN, Efficient Implementation of the Rijndael S-Box. CHES 2003, LNCS 2779, pp 334-350.
	S. MURPHY, M. ROBSHAW, Essential Algebraic Structure within AES. Second NESSIE. New European Schemes for Signature, Integrity and Encryption Workshop. September 2001.
	An Introductory VHDL Tutorial. http://www.gmvhdl.com/VHDL.html.
	Stallings W., Cryptography and Network Security, 2nd Edition, 1999. Prentice Hall.
	Schneier B., Applied Cryptography, John Wiley & Sons, Inc., second edition, 1996.
	F. Pardo, J. Boluda, VHDL. Lenguaje para síntesis y modelado de circuitos. Editorial Ra-Ma. Edición 1999.
	L. Terés, Y. Torroja, S. Olcoz, E. Villar. VHDL. Lenguaje Estándar de Diseño Electrónico. Editorial Mc Graw Hill/Interamericana de España, S.A.U. 1997.
	MAX+PLUS II. Programmable Logic Development System. VHDL. Altera Corporation. 1996.

