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ABSTRACT 
The Rijndael cipher, designed by Joan Daemen and 
Vincent Rijmen and recently selected as the official 
Advanced Encryption Standard (AES) is well suited 
for hardware use. This implementation can be 
carried out through several trade-offs between area 
and speed.  
This paper presents an 8-bit FPGA implementation 
of the 128-bit block and 128 bit-key AES cipher. 
Selected FPGA Family is Altera Flex 10K. The 
cipher operates at 25 MHz and consumes 470 clock 
cycles for algorithm encryption, resulting in a 
throughput of 6.8 Mbps. The design target was 
optimisation of area and cost.   
Keywords: AES, cipher, cryptography, FPGA, 
VHDL. 
 

1. INTRODUCTION 
The Rijndael Algorithm, developed by Joan Daemen 
and Vincent Rijmen [1], has been approved by the 
U. S. National Institute of Standards and Technology 
(NIST) as the was the new Advanced Encryption 
Standard (AES). It became official in October 2000, 
replacing DES [2]. As this block cipher is expected 
to be widely used in an extensive variety of 
products, its efficient implementation becomes a 
significant priority. It is a private-key symmetric 
block cipher, [16], [17], operating on a block size of 
128 bits. It comprises 10, 12 or 14 rounds when the 
key size is 128, 192 or 256 bits respectively. The 
intermediate cipher result is called the state [1]. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 – Input to, and output from, the cipher state 
array.  
 
 It is an array of 4 rows and Nc columns, where Nc is 
the input sequence length divided by 32. In this state 
array, denoted by the symbol s, each individual byte 
has two indexes: its row number r, in the range 0 ≤ r 

< 4, and its column number c, in the range 0 ≤ c < 
Nc, hence allowing it to be referred as s[r, c]. For 
AES the range for c is 0 ≤ c < 4, since Nc has a fixed 
value of 4. At the start (end) of an encryption or 
decryption operation the bytes of the cipher input 
(output) are copied to (from) this state array in the 
order shown in Fig. 1. The four bytes in each 
column of the state can be thought of as an array of 
four bytes indexed by the row number r or as a 
single 32-bit word (bytes within all 32-bit words will 
always be enumerated using the index r). The state 
can hence be considered as a one-dimensional array 
of words where the column number c provides the 
array index.  
The round function is parameterised using a Round 
Key that consists of a Nc word sub-array from the 
key schedule. In general the length of the cipher 
input, the cipher output and the cipher state, Nc, 
measured in multiples of 32 bits, is 4, 6 or 8 but the 
AES standard only allows a length of 4. The length 
of the cipher key, Nk, again measured in multiples of 
32 bits, is also 4, 6 or 8, all of which are allowed by 
both Rijndael and the AES standard. 
Each encryption round is composed of four 
operations: SubBytes, ShiftRows, MixColumns and 
KeyExor. The last round is slightly different because 
MixColumns is not present.  
SuBytes transformation is a non-linear byte 
substitution where each byte of the state is inverted 
over GF(28) followed by an affine transformation. 
The overall operation is known as the S-Box and can 
be performed through a look up table as depicted by 
Fig. 2 [12], [13]. 
 
 
 
 
 
 
 
 
 
Figure 2 – SubBytes Transformation 
 
ShiftRows transformation operates on a whole state 
(128 bits).  Rows of the state are cyclically shifted to 
the left as shown in Fig. 3.  
MixColumn transformation acts independently on 
every column of the state and treats each column as 
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in2 in6 in10 in14 
in3 in7 in11 in15 
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a four-term polynomial. The columns of the state are 
considered as polynomials over GF(28) and 
multiplied modulo (x4+ 1) with a fixed polynomial 
c(x), coprime to x4+ 1 and therefore invertible [14]. 
This operation can be written as a matrix 
multiplication and is represented in Fig. 4. 
 
 
 
 
 
 
 
Figure 3 – ShiftRows Transformation  
 
 
 
 
 
 
 
 
 
 
 
Figure 4 – MixColumns Transformation 
 
 

2. GENERAL ASPECTS 
As is the case with software, hardware 
implementations can be optimized in speed and size. 
However, size usually translates much more directly 
into cost in hardware when compared to software. 
Doubling the size of an encryption program may 
make little difference on a general-purpose computer 
with a large memory, but doubling the area used in a 
hardware device will likely more than double the 
cost of the device. 
A promising alternative for implementation consists 
of reconfigurable hardware devices such as Field 
Programmable Gate Arrays (FPGAs) [4], [5], [8]. 
FPGAs comprise an array of uncommitted circuit 
elements, called logic blocks, and interconnected 
resources. FPGAs configuration is performed by the 
end user, facilitating design changes. This new 
technology offers many advantages for designers of 
cryptographic equipment due to its high flexibility, 
low development costs and physical security.  
The FPGA family selected For the present 
implementation is Altera Flex 10K, in particular 
EPF10K20. It is well suited for memory functions 
and complex logic functions such as digital signal 
processing and data transformation. The EPF10K20 
device contains an embedded array to implement 
memory functions and a logic array to implement 
general logic functions. The device has 1152 logic 
elements (LEs) and 6 embedded array blocks 
(EABs). Each LE consists of a 4-input look up table 
(LUT), a programmable flip-flop, and dedicated 
signal paths for carry and cascade functions. LEs are 

grouped into 144 LABs. These LABs are arranged 
into 6 rows and 24 columns. The embedded array 
consists of a series of EABs, each of which provides 
2048 bits of memory, and can be used to create 
RAM or ROM or to contribute 100 to 300 gates 
toward combinatorial logic functions. Each I/O cell 
contains a bi-directional I/O buffer and a flip-flop 
that can be used as either an input or output register.  
In this case, the device is part of the UP1 
Educational Board of the University Program 
Design Laboratory Package from Altera. 
MAX+PLUS II Version 7.21 Student Edition is the 
software used to synthesise a VHDL implementation 
of the AES algorithm. This tool is also used to 
perform behavioural and timing simulations.  
 

 
3. ARCHITECTURE OPTIONS 

Rijndael is a block cipher with a basic looping 
architecture whereby data is iteratively passed 
through a round function. There are several 
architectural options to yield optimised 
implementations [3].  
When examining AES principal aspects, it is 
obvious that an implementation of the fully 128 data 
path stream could encrypt 128 bits per cycle. 
Assuming a 25 MHz clock, this translates into a 
throughput of 3.2Gps. Such an implementation will 
also consume too many resources in terms of area. It 
will require a large amount of I/O pins and will not 
fit on low target FPGA. Since the EPF10k20 is 
available in 240-pin RQFP package, it is not suitable 
for this type of architecture.  
On the other hand, in a minimum configuration, the 
cipher should use as few memory blocks as possible 
and a basic interface with a host system as to allow 
its adaptation to a wide range of proposals. Since 
one byte is the basic data unit for the Rijndael 
operations, the architecture selected to implement 
the cipher is an 8 bit basic one.  
After defining the bit-width of the architecture, the 
next problem is determining a set of operation types 
that will define the functional units. A first analysis 
of the algorithm identifies primary operations, which 
leads to the development of the functional units 
needed. This design strategy is a hierarchical one, 
where the basic blocks are implemented and then 
composed to obtain the cipher.  
In the encryption core, only one round is 
implemented and the cipher must iterate ten rounds 
to perform an encryption. Iterative looping (LU-1) is 
a subset of loop unrolling (LU-i) where only one 
round is unrolled. This approach usually minimizes  
the hardware required for the implementation and an 
effort is made to maximize the speed.  
Thus, one round is implemented with combinatorial 
logic supplemented with registers, memories and 
multiplexers. First, input block of data is fed to the 
circuit via the 8-bit input interface and the initial 
round is executed. In this round the input data is 

s0,0 s0,1 s,0,2 s0,3 
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s2,0 s2,1 s2,2 s2,3 
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XORed with the Cipher Key and the result stored in 
a RAM memory.  Then the encryption unit evaluates 
ten rounds of the algorithm and the result is 
temporarily stored in the RAM. A control unit 
generates control signals for the other units, 
answering the question of the separation between 
control and data path logic. 
The provided embedded RAM is used to replace the 
round key and S-Box hardware. As a result, there is 
no key scheduling unit; instead a memory for storing 
the internal keys and the circuitry necessary to 
distribute these keys is included in the encryption 
unit.  
The mode of operation is very simple: electronic 
codebook (ECB). The basic architecture in 
conjunction with the non-feedback mode of 
operation is easy to implement and will likely result 
in smaller circuit area.  
The cipher was designed keeping in mind the 
amount of resources shared between encryption and 
decryption, so that a modified version will support 
both types of operation [10].  
The simulations verify the ability to operate at the 25 
MHz system clock frequency of the UP1 
Educational Board. The design choice is a compact 
one, optimized for area and cost. 
  

4. FPGA IMPLEMENTATION 
The round transformation data path is shown in 
Fig.5.  
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Figure 5 – The 8-bit round transformation data path. 
 
It consists of two 16x8 RAMs (RAM0 and RAM1), 
one 256x8 ROM (SROM), one block to perform 
MixColumns operation with interfaces for the 8 bit 
bus (reg32mix8x8), another component to perform 

the shift operation (shift), one 8-bit exor and three 
multiplexers (mux2x4_0, mux2x4_1 and mux3x8). 
Round Keys for encryption are loaded via the input 
interface and are stored in the 256x8 RAM 
(ramkey). All keys are loaded before encryption 
begins. The control unit is a finite state machine. It 
provides multiplexer select signals and generates 
control signals for the previously mentioned round 
components. 
RAM0 receives the 128 bit input data from initial 
round. It also stores the results of intermediate 
rounds and the 128 bits final encrypted block. It is 
accessible via an 8-bit data bus in a sequential 
manner, acting like a 128-bit register. The 
encryption process starts after reception of the forth 
128 data bits. 
SROM performs byte substitution and acts as one S-
Box, storing the overall transformation needed in 8 x 
256 bits. It is implemented using one EAB block.  
An 8-bit address is the data input and an 8-bit data 
value is the output.  
The results from the SubBytes operation are 
temporarily stored in RAM1. This memory is 
written so that SubBytes and ShiftRows operations 
are combined. The component mux2x4_1 presents 
the appropriate address bus to the RAM1 memory. 
The execution of these transformations modifies the 
address coming from the control unit via the shift 
component as it is depicted in Fig. 6.  
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Figure 6 –  Shift Component. 
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Byte 0 Address 0 Byte 8 Address 8 
Byte 1 Address D Byte 9 Address 5 
Byte 2 Address A Byte 10 Address 2 
Byte 3 Address 7 Byte 11 Address F 
Byte 4 Address 4 Byte 12 Address C 
Byte 5 Address 1 Byte 13 Address 9 
Byte 6 Address E Byte 14 Address 6 
Byte 7 Address B Byte 15 Address 3 

 
Table 1. ShiftRows Transformation. 
  



The shift component generates the addresses in 
RAM1 to be written to. Table 1 presents the order in 
which the successive bytes from the SubBytes 
operation are written to RAM1 [9]. The control unit 
generates the addresses in RAM1 to be read from. 
The reading process is a direct one. 
The MixColumn transformation previously 
described can be written as a matrix multiplication, 
where the matrix is a circular one: 
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As a result, the four bytes in the column can be 
replaced by the following expressions: 
 

c3,c2,c1,co,co, ss)({03}.s)({02}.ss' ⊕⊕⊕=
  

ccccc sssss ,3,2,1,0,1 )}.03({)}.02({' ⊕⊕⊕=
  

)}.03({)}.02({' ,3,2,1,0,2 ccccc sssss ⊕⊕⊕=
  

)}.02({)}.03({' ,3,2,1,0,3 ccccc sssss ⊕⊕⊕=
  
 
Four inputs cs ,0 , cs ,1 , cs ,2 , cs ,3 , are multiplied 
with fixed constants. Multiplication by a constant in 
GF(28) will result in XOR the bits of the input byte 
in a particular way [6], [7]. 
Multiplication by x (i.e. 00000010 or {02}) can be 
implemented at the byte level as a left shift and a 
subsequent conditional XOR with {1B}. This 
operation on bytes is denoted by xtime() and it can 
be easily implemented in FPGA as it is depicted in 
Fig. 7.  
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Figure 7 – Xtime Operation 
 
Multiplication by higher powers of x can be 
implemented by repeated application of xtime(). 
Multiplication by (1+x) (i.e. 00000011 or {03}) can 

be thought as multiplication by ({01}⊕ {02}).  Fig. 
8 presents a circuit that implements this operation. 
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Figure 8 – X3 Operation 
 
Fig. 9 shows the basic block to perform 
MixColumns operation, multcolumn. Four 
components like those shown in Fig. 9, each with its 
entries consistent with Eq (1) or its equivalent 
expressions, are needed to process 32-bit data 
simultaneously. As it can be seen from this figure, 
the critical path through this transformation includes 
four XORs and one multiplexer. To generate four 
bytes in one operation, reg32mix8x8 accepts four 
bytes from input via a serial to parallel converter 
register. The result, one column of the state 
generated from each input column, must be 
converted to the serial form to fit in the original 8-bit 
data path.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 – MixColumn basic block: multcolumn.  
 
Each 8-bit word from the input is processed as 
follows. The initial round performs the XOR 
operation between the 128-bit data and the original 
128-bit key. The result is stored in RAM0.  
Every round starts by reading this memory and 
presenting every byte out to the address input of the 
SROM. One cycle later the result of the SubBytes 
transformation for every byte of the State is 
presented at the output of the SROM. These 16 bytes 
are written in RAM1 as shown in Table 1. Another 
16 cycles are taken to read the result of the 

s0,c s1,c s2,c s3,c 

xtime    x3 

s’0,c 



ShiftRows operation. At the same time the 
MixColumns operation is performed on every 4-
bytes word of this stream. This transformation 
results in a latency of 10 cycles because of the initial 
serial to parallel and final parallel to serial 
conversions needed to preserve the 8-bit data path. 
The stream of bytes resultant from this last operation 
is XOR with the appropriate bytes of the round key. 
The result is stored in the RAM0, ready to initiate 
another round of the cipher.  
 
5. RESULTS FOR THE ALTERA 10K FAMILY 
The parameters used for evaluating the quality of the 
implementation are: number of logic cells (LCs), 
number of bits of embedded memory, latency, clock 
frequency and throughput.  
The process previously explained involves 48 clock 
cycles to complete one round of encryption, except 
for the last one that consumes 38 cycles because it 
does not include the MixColumn operation. These 
numbers translate into 470 total cycles, resulting in a 
throughput of 6.8 Mbps.  
The results of the implementation in terms of area 
are summarized in Table 2. All the results come 
from simulations and reports generated by Altera 
tools. 
 

Component Memo 
Bits 

Memo 
Used

% 

LCs LCs 
Used% 

I/O interface ------ ------ 62 10 
ROM 256x8 2048 33 ------ ------ 
RAM 16x8 128 2 ------ ------ 
Mux 3x8 ------ ------ 24 4 
Mux 2x4 ------ ------ 4 0 
Mux 2x8 ------ ------ 8 1 
Control Unit ------ ------ 305 52 
Shift ------ ------ 4 0 
Reg32mix8x8 ------ ------ 160 27 
AES cipher 4480 36 581 50 
 
In terms of complexity, the operation that requires 
more hardware resources as well as computation 
time is the MixColumns multiplication. Fast 
operations such as bit-wise XOR and ShiftRows are 
constructed from simple hardware elements.  
The S-Box is implemented by 256x8 ROM. Round 
Keys are stored in 256x8 RAM. Additional memory 
is used to store partial results of intermediate 
operations. 36% of memory blocks are used  to 
cover the whole 128-bit data processing,.  
 

6. CONCLUSIONS 
When implementing block ciphers, the designer 
must choose between several strategies. He or she 
has to decide whether to optimize for area, 
throughput or latency. Each design choice imposes 
different restrictions on the final implementation. 
This paper presents a low area, cost-effective 
Rijndael cipher for encryption using a basic 8-bit 

iterative architecture, targeted towards the Altera 
Flex 10 K family of FPGAs.   
The cipher has been synthesised using Altera. 
MAX+PLUS II Version 7.21 Student Edition [19], 
[20]. The algorithm is implemented in VHDL, which 
led to the use of bottom-up design and test 
methodology [15], [18]. This choice also insures 
portability of the code to the devices of other 
vendors. 
The VHDL code was simulated using the test 
vectors provided in the AES submission package. 
The results are functionally correct.  
The architecture needs fewer logic cells than other 
ciphers and uses as few memory blocks as possible 
[11]. It has 6.8 Mbps throughput. The critical path 
includes the components previously mentioned. The 
minimum clock period depends on the access time to 
memories used and the frequency of the external 
clock.  
Future work should concentrate on speed 
performance and the introduction of pipelines in the 
architecture. 
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