
Generic Communication in Parallel Computation

F.Piccoli M.Printista
C.González

Universidad Nacional de San Luis.

Ejército de los Andes 950, San Luis, Argentina.

Centro Superior de Informática.

Universidad de La Laguna, Tenerife, Spain.

e-mail: {mpiccoli@unsl.edu.ar, casgl@deioc.ull.es}

Abstract

The design of parallel programs requires fancy solutions that are not present in sequential
programming. Thus, a designer of parallel applications is concerned with the problem of ensuring
the correct behavior of all the processes that the program comprises.

There are different solutions to each problem, but the question is to find one, that is general.
One possibility is allowing the use of asynchronous groups of processors. We present a general
methodology to derive efficient parallel divide and conquer algorithms. Algorithms belonging to
this class allow the arbitrary division of the processor subsets, easing the opportunities of the
underlying software to divide the network in independent sub networks, minimizing the impact of
the traffic in the rest of the network in the predicted cost. This methodology is defined by OTMP
model and its expressiveness is exemplified through three divide and conquer programs.

Keywords: Division Function, Dynamic Polytope, Hypercubic Communication, Programming Model.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

When compared parallel computing with that
of sequential computing, the current situation is
different. No single model of parallel computa-
tion has yet come to dominate developments in
parallel computing in the way that von Neumann
model has dominated sequential computing. The
aims of parallel computing model are: to de-
scribe classes of architectures in simple and real-
istic terms and, to propose the design methodol-
ogy of parallel algorithm. It provides an abstract
view of both the technologies and applications.
An abstract model defines as the algorithms are
designed and analyzed in the abstract model, and
coded in programming model [7].

The Bulk Synchronous Parallel (BSP) model
is a generalization of the widely researched PRAM
model that was initially proposed by Valiant [9]
[10] [15]. The initial formulation of BSP consid-
ered the possibility of machine decomposition.
Careful attention was paid to this feature, and
the BSP library [4] standard document men-
tion this, but in the absence of any clear solu-
tion it was decided to exclude it from the stan-
dard. In this paper, we present a division func-
tion of processors(machine decomposition): poly-
tope, and a parallel programming model: One
Thread Multiple Processor Model (OTMP) that
implements it. In the OTMP model [13], pro-
cessor sets is automatically divided through sen-
tences belong programming models what we call
parallel clauses. Furthermore of computation and
remote memory accesses, processors can perform
group operations implying all the processors in
the set.

The remainder of the paper is organized as
follows: section 2 introduces the needed propri-
eties that every division functions have to hold.
The third section introduces a reduced and ide-
alistic version of the model, considering the sim-
plified case where the number of available pro-
cessor is larger than the number of processors
required by the algorithm. Additionally, the sec-
tion introduces load balancing issues, mapping
and scheduling policies, and the laws that drive
the time-cost of program execution under the
model. Finally, the last section shows several
OTMP algorithms and some important results.

2 Strategies for the Implemen-
tation of Division Functions

Although the need of division functions appears
in a wide class of algorithms, there is no doubt
Divide and Conquer algorithms [1] constitute a
motivation for the introduction and formaliza-
tion of division functions [5]. The OTMP Com-
puting Model makes easier the implementation of
Divide and Conquer algorithms. The divide and
conquer approach presented in Figure 1 to find
the solution of a problem x proceeds by dividing
x in subproblems x0 and x1 (function divide in
line 6) and applying recursively the same resolu-
tion scheme. This recursive procedure ends when
the subproblems are small enough, in which case,
another procedure (conquer) is used to solve the
problem.

1 procedure DC(x: Problem; r: Result);

2 begin

3 if trivial(x) then conquer(x, r)

4 else

5 begin

6 divide(x, x0, x1);

7 DC(x0,r0);

8 DC(x1,r1);

9 combine(r, r0, r1);

10 end;

11 end;

Figure 1: General frame for a D&C algorithm

These typical problems are good to solve in
parallel. The calls in lines 7 and 8 can be done
in parallel, the figure 2 shows how it is made.

1 procedure pDC(x: Problem; r: Result);

2 begin

3 if trivial(x) then conquer(x, r)

4 else

5 begin

6 divide(x, x0, x1);

7 PARALLEL(pDC(x0,r0), pDC(x1,r1));

8 combine(r, r0, r1);

9 end;

10 end;

Figure 2: General frame for a parallel D&C algorithm

The call to function PARALLEL in line 7
produces the parallel activation of two tasks (pDC)
to solve each of the two subproblems in which
the original problem has been divided. PARAL-
LEL divides the actual set of leaf processors in

two subsets. Each of the subsets solve in par-
allel a subproblem xi, and at the end of the di-
vision process, all the processors in the original
set achieve the solution r combining the partial
solutions r0 and r1. This procedure is applied
recursively until there is only one processor in
the leaf set. In this case, two sequential calls to
pDC are made. Functions trivial(), conquer(),
divide() and combine() in Figures 1 and 2 must
be free of side-effects.

The code in Figure 2 is an example of the
wide class of problems where the implementa-
tion of functions or sentences to divide the pro-
cessors can be made efficiently using only local
information to the set of processors executing the
function.

2.1 A Division Function Scheme

The underlying idea in our proposal for the im-
plementation of division functions is the estab-
lishment of a relation among processors in the
different sets produced by the division. Each
processor q in a processor set Qi produced by
the division settles a partnership relation with
one or more processors in the other subsets. This
partnership relation determines the communica-
tion of the results produced by the parallel task
Ti performed by processor set Qi. The struc-
ture of divisions produced by the division func-
tions and the partnership relation among proces-
sors give place to communication patterns among
processors that are topologically similar to a hy-
percube. The number of divisions produced de-
termines the dimension while the degree in each
dimension is the number of parallel tasks (i.e.
the number of subsets) created by the division
function. Similarly with what occurs in a con-
ventional k-ary hypercube a dimension divides
the set in k subsets communicated through the
dimension. Nevertheless, opposite subsets in a
dimension may have not the same cardinality.
We have named the resulting structures Dynamic
Polytopes. The following paragraph, formally in-
troduces this concept in order to settle the condi-
tions that guarantee the correctness of the trans-
lation of the division functions.

2.2 Dynamic Polytopes

Let be Γ = Q0, .., Qm−1 a partition of a set Q.
We will name complementary sets of Qi to the
sets Qj with j 6= i. Let be P (A) the set of all
subsets of set A.

For any q ∈ Qi we will name Gj(q) ⊆ Qj to
the set of processors in Qj to which processor q
will send its results.

A partnership relation in Γ is any correspon-
dence G = (Gi)i∈{0,...,m−1} where

G : Q → Πi=0,...,m−1P (Qi)

Gj : Q → P (Qj)

In a conventional binary hypercube, the neigh-
bor or partner of a node in a fixed dimension is
unique, while in a partnership relation G a node
may have more than one partner in one dimen-
sion. This is the reason why functions Gj take
their values in P (Qj) instead of Qj .

We will say that the pair (Γ, (Gi)i∈{0,...,m−1})
is a neighborhood if the following conditions are
fulfilled:

• Exhaustivity: for any i, j ∈ {0, ...,m − 1},
any element in Qj has a partner in Qi:

∀i, j ∈ {0, ..., m− 1} :
[

q∈Qi

Gj(q) = Qj

This condition guarantees that, in the al-
gorithm to be presented in Figure 5, any
processor q in Qj receive the result of the
execution of task Ti performed by the pro-
cessors in Qi.

• Injectivity: ∀i, j ∈ {0, ..., m− 1}, i 6= j

∀q, q′ ∈ Qj , q 6= q′ it holds Gi(q)
\

Gi(q
′) = ∅

This condition imposes that each processor
q in a set Qi receives the results of task Tj

only from one of the processors in Qj .

If q ∈ Gj(q′) we say that q is a partner of q′ in the
neighborhood defined by (Γ, (Gi)i∈{0,...,m−1}).

A tree or hierarchy of neighborhoods H con-
stitute a Dynamic Polytope iff it holds that:

1. The root of the tree is the trivial neigh-
borhood (Γ, G) where Γ = Q and G is the
identity function.

2. If node T is labeled with the neighborhood
(Γd, (Gd

i)i ∈ {0, ..., r − 1}) such that Γd =
{Qd

0, .., Q
d
r−1} is a partition of Qd, then the

children nodes of T are labeled with neigh-
borhoods that partition the sets Qd

i of Γd.
Eventually, some of the sets Qd

i of Γd may
remain without division (in which case they
are leaves in the tree).

We will name dimension of H to the depth of
the neighborhood tree. The nodes at the same
level d of the hierarchy H constitute what we
will call a dimension of the Dynamic Polytope. A
dimension is generically designated by the value
of its level minus one, and therefore, the first
trivial dimension (Γ, G) is dimension (-1).

If k is a natural number, a k-ary d-dimensional
hypercube is a graph with p = kd nodes. Dimen-
sion 0 defines a partition Γ0 = {Q0

0, ..., Q
0
k−1}

of the set Q = {0, 1, ...kd − 1} in k subsets Q0
s.

Nodes whose least significant k-ary digit is s be-
long to Q0

s. In general, each dimension (in the
classical sense of the term) i ∈ {0..d − 1} deter-
mines a partition Γi = {Qi

0, ..., Q
i
k−1}, where

Qi
s = {n ∈ Q/ ith digit of n is s} with s ∈ {0..k − 1} (1)

Node q is connected in dimension i ∈ {0..d−
1} to nodes whose k-ary representation differs
from q in the ith k-ary digit. For any n ∈ Q let
be nd−1...no the k-ary representation of n, then:

Gi : Q → Πs = 0, .., k − 1Qi
s

Gi
s : Q → Qi

s

Gi
s(nd−1...n0) = nd−1...ni+1sni−1...n0

Observe that in any dimension i of a k-ary
hypercube the degree is | Γi |= k.

It is easy to see that (Γi, (Gi
s)s∈{0,...,k−1}) obey

the conditions that characterize the neighbor-
hood concept in any dimension i.

Figure 3(a) shows a 2-dimensional ternary
hypercube. This hierarchy of neighborhoods could
be created by two nested calls to a division func-
tion. In this example, the first call has created
three parallel tasks, and the second recursive call
has divided again each subset in three new sub-
sets. Each node in the tree represents a neighbor-
hood, while processor subsets assigned to each
task are represented by the shadowed nodes. The

lines represent the partnership relations. Solid
lines correspond to dimension zero while dotted
lines correspond to dimension one. Observe that
in this example, each node has two neighbors in
each dimension. Each node has two solid and
two dotted edges. Notice that the definition of
Dynamic Polytope Dimension we have provided
matches with the classical concept of dimension
in a k-ary hypercube.

Figure 3(b) represents a hierarchy of neigh-
borhoods, (Γd, (Gd

s)) defined by the partitions Γd

(different regions) and the partnership relations
(Gd

s) (edges connecting processor nodes) for a 3-
dimensional Dynamic Polytope.

Solid lines correspond to the first dimension
(first level in the hierarchy), fine dotted lines to
the second dimension and coarse dotted lines to
the third dimension. In the example of the fig-
ure, the nodes are always divided in two subsets,
although not necessarily of the same size. This
polytope would be produced by a binary division
function if the amount of processors assigned to
each task varies.

Precisely speaking, accepting | Qi
o |≥| Qi

1 |
and that | Qi

o | is multiple of | Qi
1 |, partnership

functions Gi are given by the following expres-
sions:

Gi
1(n) = {n− first(Qi

0))/ | Qi
1 | +first(Qi

1) for n ∈ Qi
0}

(2)

Gi
0(n) = {j/such that (j − first(Qi

0)), | Qi
1 | +first(Qi

1) = n}

and analogously for the other case | Qi
1 |≥| Qi

0 |.
As we can observe in Figure 3(a) for the case

of a regular Hypercube, fixing a dimension, there
is only one partner for each node in any comple-
mentary set. This is not true for the general
case of a Dynamic Polytope, Figure 3(b). For
example, for the first dimension, both nodes 4
and 5 have two partners (partners(4)=0, 1; part-
ners(5)=2, 3) in the complementary set.

2.3 Translation Scheme

Lets go back to the general frame of a divide
and conquer introduced in Figure 2. In gen-
eral, each time a processor set is divided by the
execution of a division function, a new dimen-
sion (Γdim, Gdim) is created. The creation of the
neighborhood can be accomplished in time pro-
portional to the number of tasks demanded (de-
gree) using, for example, the policy described for

6
1 2 4
 50 7
 8
3

8

2

5

1

4

76

0

3

7

3

6

2

1

5

8
0

4
5

8
0

43

2

1

76

(a) Ternary Hypercube

1 2 3 4
 50

4

5
0

2

1

3

0

2

1

3

4

5

0 1 2 3

0

2

1

3

4

5

(b) Dynamic Polytope

Figure 3: Types of Hypercubes

a k-ary hypercube (equation 1). With such pol-
icy, the initial set of processors, Q is divided in
two subsets Γdim = {Q0, Q1} of equal size us-
ing constant time. Processors in Q0 perform
the task pDC(x0, r0) and those in Q1 execute
pDC(x1, r1). However, the optimal partition min-
imizing load unbalance is the one satisfying:

| Q0 |
n0

=
| Q1 |

n1

where ni is the number of leaves in the tree of
calls produced by the call to pDC(xi, ri). We
propose the use of division functions having as
additional parameters weights, wi, either pro-
vided by the user or by an heuristic function that
estimate the quotient |Qi|

ni
.

Each of the processors q in Q0 will hold in
variable r0 the result of pDC(x0, r0). At the end
of the execution of the parallel tasks, each pro-
cessor q ∈ Q0 sends the result r0 to its partner
processors in G1(q). Symmetrically, each proces-
sor q′ ∈ Q1 sends r1 to its partners in G0(q′).

Since the injectivity conditions of the dynamic
polytope holds, only one message is received by
each processor. On the other side, the exhaus-
tivity condition guarantees that at the end all
processors in Qi get a copy of the result rl − i.

The cost of the code in lines 10-26 is domi-
nated by the communication time:

D ∗max{| r0 | ∗max q(| G1(q) |), | r1 | ∗max q(| G0(q) |}

where | ri | represents the size of the results,
| Gi(q) | denotes the cardinal of Gi(q) and D
is a constant. The partnership relation G that
maximizes the communication balance would be
any that minimizes the number of partners each
processor has. A solution is the policy exposed
in equation 2 also used by the division functions
of OTMP model.

The time invested in a call to pDC(x, r) obeys
the recursive expression:

Φ(pDC(x, r), N) = W (divide(x, x0, x1)) + W (parallel)+

+ max{Φ(pDC(x0, r0), N0), Φ(pDC(x1, r1), N1)}+ L+

+ g ∗max{| r0 | ∗max q(| G1(q) |), | r1 | ∗max q(| G0(q) |))}

where Ni =| Qi | and N =| Q |.

3 OTMP Model

The OTMP (One Thread Multiple Processors)
model, enables to express parallelism over any
machine, sequential or parallel computer, adding
only parallel clauses to sequential code. The
OTMP model being introduced, extends the clas-
sic sequential imperative paradigm with new con-
structs: parallel loops and global communica-
tion. In contrast with OpenMP [12], the model
works fine for both distributed and shared mem-
ory architectures. The implementation on the
last can be considered the “easy part” of the task.

A simplified version of the current syntax of
parallel loops appears in the next code. The pro-
grammer states that the different iterations i of

the loop can be performed independently in par-
allel. The results of the execution of the ith it-
eration are stored in the memory area (r[i],s[i]),
where r[i] points to first positions and s[i] is the
size in bytes.

forall(i= first;i<= last;(r[i],s[i]))
compound_statement_i

How does forall work? To establish the se-
mantic, let us imagine a machine composed of
a number of infinite processors, each one with
its own private memory and a network interface
connecting them. The processors are organized
in sets or groups. At any time, the memory state
of every processors in the same group is identi-
cal. An OTMP computation assumes that all
processors in the same set have the same input
data and the same program in memory. The
only difference among the processors is an in-
ternal register, NAME, containing the name or
number of the processor in the group.

When any computation begins, every infinite
processors in the machine belong to same group,
they execute the same thread and have identical
values stored in their local memories. When all
processors in the set reaching the former forall
loop, the set is divided in subsets and each pro-
cessor decides in terms of its NAME to which
subset it will belong. In how many subgroups
will be divide the original group depends of the
particular parallel clause. Each independent
thread compound statement i is executed by a sub-
group. When the execution of a parallel clause
finishes, every processors in every subsets are
joined in the original set.

Each time a forall loop is executed, the mem-
ory of the group up to that point contains exactly
the same values. At such point the memory is di-
vided in two parts: the one that is going to be
modified and the one that is not changed inside
the loop. Variables in the last set are available
inside the loop for reading. The others are par-
titioned among the new groups.

The last parameter in the forall has the pur-
pose to inform the new “ownership” of the part
of the memory that is going to be modified. It
announces that the group performing thread i
“owns” (and presumably is going to modify) the
memory areas delimited by (r[i], s[i]). r[i] + j is
a pointer to the memory area containing the jth

result of the ith thread.

To guarantee that the processors in the fa-
ther group have a consistent view of the memory,
after returning to the previous group, it is nec-
essary the exchanging of the variables that were
modified inside the forall loop among neighbors.
Let us denote the execution of the body of the
ith thread (compound statement i) by Ti.

The semantic imposes two restrictions:

1. Given two different independent threads Ti
and Tk and two different result items r[i]
and r[k], it holds:

[r[i], s[i]]
T

[r[k], s[k]] = ∅ ∀i, k

2. For any thread Ti and any result j, all the
memory space defined by [r[i] + j, s[i]] has
to be allocated previously to the execution
of the thread body. This makes impossible
the use of non-contiguous dynamic memory
structures.

The programmer has to be specially conscious
of the first restriction: it is mandatory that the
address of any memory cell written during the
execution of Ti has to belong to one of the inter-
vals in the list of results for the thread.

Summaring, to have the same memory at the
end of the parallel clauses, every local memories
of subsets have to be communicated. The com-
munication among processors is sorted, any send
or receive is executed by the infinite couples in-
volved. Still, the two aforementioned constraints
have to be true. Any variable modified inside
the loop and non local to the loop has to be al-
located before the loop and has to appear inside
the memory area to be modified.

In OTMP, the fundamental clause is the par-
allel iteration forall. This parallel iteration is a
general loop, the number of independent task is
determined by the number of iteration needed
when the loop is sequential.

A forall structures the current group accord-
ing as a M-ary hypercube, where M is the num-
ber of iterations in the parallel loop, M = last−
first+1, and each processors is mapping to sub-
group i subgroup, i = first + NAME % M .
Then, a forall produces “the face” of a M-ary
hypercubic dimension, where every corner has
a neighbor. The neighborhood relationship is
given by the formula

for (j = 1; j < M; j++)

neighbour[j] = Φ + (NAME + j) % M

where Φ is given by: Φ = M × (NAME / M)

The OTMP’s clauses can be nested and, in con-
sequence, generate multiple level parallelism. Mul-
tiple level parallelism enables the generation of
work from different simultaneously executing
threads. The figure 4 shows two level of par-
allelism, the outer forall divides the processors
group in three subgroups. The second nested
forall at line 3 requests for different number of
threads in the different groups. This nested forall
structures the current subgroup according as a
i+1-ary hypercube,

1 forall(i=1; i<=3; (ri[i], si[i]))

2 { ...

3 forall(j=0; j<=i; (rj[j], sj[j])){
4 f(j);

5 }
6 ...

7 }

Figure 4: Two nested foralls

The OTMP forall can be extended. An co-
herent extension is the reduction clause. This
clause has syntax and semantic similar to the
above forall R, but its difference is: when all is
done, each processor reduces the results through
f r. The result of f r has to belong to the mem-
ory that is going to be modified in the clause.
The f r can be any function, but it is mandatory
that it has to be commutative and associative.

Other OTMP clauses are the global commu-
nication clauses: result and result P. Their func-
tion is to communicate partial results among ev-
ery processors belonging to distinct groups. These
clauses are similar to functions gather and scatter
in standards library such as MPI [11], but they
differing the established communications, in the
neighborhood relationship. Every clauses apply
dynamic polytopic communication.

3.1 Load Balancing

Unfortunately, the real scenario is different that
the theoretical scenario. In the last one, there are
always processors available to resolve some task
in parallel, the theoretical machine has infinity
processors. The situation is so different when
the parallel machine is a real machine, when a
set of processors reaches a parallel clause, two
situations are possibles: the number of proces-
sors, NUMPROCESSORS, is larger or is smaller

than the number of tasks. If there are more task
than available processors, the set of processors
is divided in as subset such as processors exist
(each subset has only one processor) and each
subset will compute several tasks. This case has
been extensively studied as flat parallelism. The
main problem that arises is the load balancing
problem.

Other situation, there are more processors
than tasks to make was detailed in previous sec-
tion. When the number of available processors
is larger than the number of threads or tasks, it
introduces several additional problems: the first
is load balancing. The second is that, not any-
more, the groups are divided in subgroups of the
same size.

If a measure of the work wi per thread Ti is
available, the processors distribution policy es-
tablished in the previous section can be modified
to guarantee an optimal mapping [3]. The syntax
of the forall is revised to include this feature:

forall(i= first; i<= last; w[i]; (r[i], s[i]))

compound_statement_i

If there are not weight specifications, the same
work load is assumed for every task. The se-
mantic is similar to that proposed in [2]. There-
fore, the mapping is computed according to a
policy similar to that sketched in [3] [13]. There
is, however, the additional problem of stablish
the neighborhood relation. This time the sim-
ple one− to− (M − 1) hypercubic relation of the
former section does not hold. Instead, the hyper-
cubic shape is distorted to a polytope holding the
property that each processor in every group has
one and only one incoming neighbor in any of the
other groups.

4 Examples

Many examples have been chosen to illustrate
the use of the OTMP model: Matrix Multipli-
cation, QuickSort and Parallel Sort by Regular
Sampling. Finally, we show some interesting re-
sults. The results are obtained over several ma-
chines and we use the current software system
that consists of a C compiler and a run time li-
brary, built on top of MPI.

4.1 Matrix Multiplication

The problem to solve is to compute tasks matrix
multiplications (Ci = Ai×Bi i = 0, . . . tasks−
1) [14]. Matrix Ai and Bi have respectively di-
mensions m × qi and qi × m. Therefore, the
product Ai × Bi takes a number of operations
w[i] proportional to m2 × qi. Figure 5 shows
the algorithm. Variables A, B and C are ar-
rays of pointers to the matrices. The loop in line
1 deals with the different matrices, the loops in
lines 5 and 7 traverse the rows and columns and
finally, the innermost loop in line 8 produces the
dot product of the current row and column. Al-
though all the for loops are candidates to be con-
verted to forall loops, we will focus on two cases:
the parallelization of only the loop in line 5 and
the one shown in figure 5 where additionally, the
loop at line 1 is also converted to a forall. This

1 forall(i = 0; i < tasks; w[i]; (C[i], m * m))

2 {
3 q = ...;

4 Ci = C+i; Ai = A+i; Bi = B+i;

5 forall(h = 0; h < m; (Ci[h], m))

6 {
7 for(j = 0; j < m; j++)

8 for(r = &Ci[h][j], *r=0.0, k=0; k<q; k++)

9 *r += Ai[h][k] * Bi[k][j]

10 }
11 }

Figure 5: Exploiting 2 levels of parallelism

example illustrates one of the common situation
where you can take advantage of nested paral-
lelism: when neither the inner loop (lines 5-10)
nor the external loop (line 1) have enough work
to have a satisfactory speedup, but the combina-
tion of both does. We will denote by SPR(A) the
speedup of an algorithmA with R processors and
by TP (A) the time spent executing algorithm A
on P processors.

4.2 QuickSort

The well-known quicksort algorithm (QS) [6] is
a divide-and-conquer sorting method. As such,
it is amenable to a nested parallel implementa-
tion. This example is specially interesting, since
accept several solutions applying OTMP model
and different parallelism paradigms. One of these
is showed in figure 6. It shows how solve QS us-
ing the reduction clause: forall R. The reduction

function is merge of list. This function satisfies
whit the necessary condition to reduction func-
tion, it is commutative and associative.

1 void qs(int *v, int first, int last) {
2 int i, j, S;

3 int *pos f,*pos l,*s, *R;

4

5 S= last-first+1;

6 s[0]=(S/NUMPROCESSORS)+(S%NUMPROCESSORS);

7 pos f[0]=0;

8 for (i=1;i<NUMPROCESSORS;i++){
9 s[i] = (S/NUMPROCESSORS);

10 pos f[i]=s[i-1]+pos f[i-1];

11 pos l[i-1]=pos f[i]-1;

12 };
13 pos l[NUMPROCESSORS-1]=Size-1;

14 forall R(i=0; i<NUMPROCESSORS;

(v+pos f[i]),s[i]);(R,S))){
15 QSseq(v,pos f[i],pos_l[i]);

16 merge(R,S,v+pos f[i],s[i]);

17 }
18 memcpy (v, R, S*sizeof(int));

19 }

Figure 6: QSReduc OTMP

In this particular solution, we don’t use nested
parallelism, the problems is divided in NUMPRO-
CESSORS subtask.

4.3 Parallel Sorting by Regular Sam-
pling

Parallel Sorting by Regular Sampling(PSRS) is
a parallel sorting algorithm proposed by Li et all
[8]. It is an example of simple and synchronous
algorithm, and has been shown effective for a
wide variety of MIMD architecture.

PSRS works with p processes and assumes
that the input list has n unsorting elements. It
arises in four synchronous phases:

• Phase 1
Each process applies the sequential quick-
sort algorithm over local elements and se-
lects a sorted list of sample among these
sorted data.

• Phase 2
A process gathers, sorts every samples and,
finally, selects p−1 pivots over samples and
sends them to others processes. Each pro-
cess divides its sorted data into p disjoint
pieces. Each pivot values is the separators
between the pieces.

• Phase 3
Each process i keeps its ith partition and
assigns the jth partition to processor j.

• Phase 4
Each process merges its p partition into a
single list.

OTMP algorithm to PSRS is shown in figure
7. To solve the problem, it uses the global com-
munication constructors, line 14 and 23. This
algorithm is different to the original propose, ev-
ery processes have every samples and don’t need
extra communications to know the final pivots.

1 void PSRS(int i,int *v,int s,int *V,int *s_V){
2 int j, k;

3 int *Samples, sample st;

4 int *Pivots, pivot st;

5 int *to task;

6 int *res o task, *from s;

7

8 int v Loc; /*Data list of local process*/

9

10 /* ================== Phase 1 =================*/

11 quicksort(v, s);

12 for ((k=0,j=i*NTASK); k<NTASK; (k+=sample st,j++))

13 Samples[j]= v[k];

14 result(i,Samples+(i*NTASK),NTASK*sizeof(int));
15

16 /* ================== Phase 2 ================*/

17 Samples= merge(Samples, Samples, NTASK, NTASK);

18 for(k=0,j=1;j<=(NTASK-1);k++,j++)

19 Pivots[k]=Samples[(j*NTASK + pivot st)-1];

20 divide list(v, Pivots, to task);

21

22 /* ================== Phase 3 ================*/

23 result P(i,v,to_task,res o task,from s);

24

25 /* ================== Phase 4 ===============*/

26 V= merge list(v Loc, res o task, from s, s V);

27 }

Figure 7: The OTMP implementation of the PSRS

The figure 8 shows the main function. The
problem is solved by NUMPROCESSORS pro-
cesses or tasks. Each task works in parallel over

SIZE
NUMPROCESSORS data. V is the output vector,
it is sorted. After the forall is not necessary any
data combination, every processes have the total
sorted vector.

The OTMP PSRS is an algorithm easy to
understand and follow. This algorithm is an ex-
amples of flat parallelism, even if there are nest-
ing of clauses, forall and the global communica-
tion result and result P.

1 void main(argc, argv){
2 initialization phase;

3

4 forall(i=0; i<=NUMPROCESSORS-1; (V[i],new size[i]))

5 PSRS(i,v,size[i],(V[i]),&(new size[i]))

6 }

Figure 8: The OTMP main function of PSRS

4.4 Some Computation Results

The figure 9 shows the corresponding results of
the algorithm showed in 5, the parallelization
of only the loop in line 5 is labeled FLAT and
the nested parallelization is label NESTED. Both
matrix have dimensions 45× 45. The number of
task is 8, and to when the number of processors
is 2 and 4, there are processor virtualization. In
all case and to different architectures, the nested
parallelism works better.

Moreover, when the size of the problems to
solve is large, the speedup grows to be quasi-
lineal. We check that the speedup reached is lin-
ear as it shows figure 10.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

No. of processors

Matrix N=500 Tasks=4 Cray T3E

Large Size

Figure 10: Speedup reached for large size prob-
lems

5 Conclusions and Future Work

In this work we introduce the OTMP model whose
main elements are division functions. In this
work we have focused our attention in the ef-
ficient implementation of this functions applied
to a class of algorithms: divide and conquer al-
gorithms. Every algorithms resolved by OTMP
have principal characteristic, all processors in-
volved in the computation have identical memory
state, both the initial input data and the solution

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 2 4 6 8 10 12 14 16

T
im

e
(s

ec
s.

)

No. of processors

Matrix N=46 Tasks=4 Cray T3E

FLAT
NESTED

(a) CrayT3E

2 3 4 5 6 7 8

0.4
0.5

0.6
0.7

0.8
0.9

1.0

NP

Tim
e

Flat

Nested

(b) Origin 2000

Figure 9: Nested versus Flat parallelism

have to be stored in all the processors. This fact
limits the maximum speedup achievable. Since
the data have to be stored in all the processors,
the size of the data constitute a lower bound of
the time of any parallel algorithm.

In our proposal for the implementation of di-
vision functions, we have managed two main as-
pects: how many processors to attach to each of
the parallel tasks created by the function, and
the design of the partnership relation among the
processors. The cardinality of the subsets cre-
ated influences the workload of the algorithm,
while the partnership relations act on the effi-
ciency of the communications. The formalization
of these factors led us to the concept of Dynamic
Polytope.

We have stated the conditions for the part-
nership relations to ensure the correctness of the
implementation of any division function. For the
case divide and conquer algorithms, we have pro-
posed partnership functions that guarantee not
only the correct behavior of the algorithm but
also its efficiency.

The hypercubic division function is imple-
mented in every clauses of parallel iteration pro-
posed by OTMP programming model. These
clauses allow the arbitrary mapping of the pro-
cessors in the division phase, easing the group
work and minimizing the impact of the commu-
nication in the performance of application.

OTMP has several differences with most cur-
rent versions of OpenMP . One is that the par-

allel programming model introduced has a com-
plexity model that allows the analysis and pre-
diction of performance. The other is that it al-
lows to exploit any nested levels of parallelism,
taking advantage of situations where there are
several small nested loops: although each loop
does not produce enough work to parallelize, their
union suffices. Perhaps the most paradigmatic
example of such family of algorithms are recur-
sive divide and conquer algorithms.

The OTMP model has different characteris-
tics: guarantees the portability to any platform,
the implementation benefits strongly from the
simplicity of the model, the quality of results is
good in shared and distributed memory architec-
ture, and does not only extend the sequential but
the MPI programming model.

We have a prototype for the model. Many is-
sues can be optimized. Even incorporating these
improvements, the gains for distributed memory
machines will never be equivalent to what can
be obtained using raw MPI. Results obtained
prove the feasibility of exploiting nested paral-
lelism with the model. However, the combination
of every its properties makes worth the research
and development of tools oriented to this model.

Acknowledgments

We wish to thank the Universidad Nacional de
San Luis and the ANPCYT from which we re-

ceive continuous support. Also to the european
centers: EPCC, CIEMAT, CEPBA and CESCA.

References

[1] Aho, A. V. Hopcroft J. E. and Ullman J.
D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mas-
sachusetts, (1974).

[2] Ayguade E., Martorell X., Labarta J, Gon-
zalez M. and Navarro N. Exploiting Multi-
ple Levels of Parallelism in OpenMP: A Case
Study Proc. of the 1999 International Con-
ference on Parallel Processing, Aizu (Japan),
September 1999.

[3] Blikberg R., Sørevik T.. Nested parallelism:
Allocation of processors to tasks and OpenMP
implementation. Proceedings of The Second
European Workshop on OpenMP (EWOMP
2000). Edinburgh, Scotland, UK. (2000).

[4] Bonorden, O., Huppelshauser, N., Juurlink,
B., Rieping, I.. PUB library, Release 6.0 -
User guide and function reference. University
of Paderbon, Germany. (1998)

[5] Gonzalez,J.A., Leon,C., Piccoli,M.F., Print-
ista, M., Roda, J.L., Rodŕıguez, C., Sande,
F.. Groups in Bulk Synchronous Parallel
Computing. Euromicro Workshop on Paral-
lel and distributed Processing. IEEE. Rodas,
Grecia. Pp 224-251. (January 2000)

[6] Hoare, C. A. R.. Quicksort. Computer Jour-
nal. Vol 5 number 1. Pp 10-15. (1962)

[7] Leopold, C.. Parallel and Distributed Com-
puting: A survey of models, paradigms, and
approaches. John Wiley & Sons inc. (2001)

[8] Li, X. Lu, P. Schaeffer, J. Shillington, J.
Wong, P. Shi, H.. On the Versatility of Paral-
lel Sorting by Regular Sampling. Tech. Report
TR 91-06. University of Alberta, Edmonton,
Alberta, Canada. (1992)

[9] McColl, W.F.. General purpose parallel com-
puting. Gibbons and Spirakis. Pp: 337-
391.(1993)

[10] Mccoll, W.F.. BSP Programming. DIC-
MACS Series in Discrete Mathematics and
Theorical Computer Science. (May 1994).

[11] MPI Forum. MPI-2: Extensions to the
Message-Passing Interface. http://www.mpi-
forum.org/docs/mpi-20.ps.Z (1997).

[12] OpenMP Architecture Review Board.
OpenMP Specifications: FORTRAN 2.0.
http://www.openmp.org/specs/
mp-documents/fspec20.ps (2000).

[13] Piccoli, F., Printista, M., González, J.,
Rodriguez Leon, C., Rodriguez, G., de
Sande, F. OTMP: A Parallel Programming
Model. International Conference on Com-
puter Science, Software Enginering, Infor-
mation Technology, e-Business, and Applica-
tions 2003(CSITeA’03). ISBN: 0-9742059-0-
7. Rio de Janeiro, Brasil. Pp 218-223.(June
2003)

[14] Quinn, M.. Parallel Computing. Theory and
Practice. Second Edition. McGraw-Hill Inc.
(1994)

[15] Valiant, L.G.. A Bridging Model for Parallel
Computation. Communications of the ACM.
Vol. 33, number 8. Pp 103-111. (1990)

