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Abstract 

This work presents preliminary results of a method for semi-automatic detection of fat and 
hematopoietic cells as well as trabecular surfaces in bone marrow biopsies, in order to calculate the 
percentage of each type of tissue or cell area in relation to the whole area. 
 
Experimental results using selected clinical cases are presented. Twenty six biopsies were used, 
presenting varied distributions of cellularity and trabeculae topography. The approach is based on 
Digital Image Processing techniques and a Neural Network used for classification using textural 
features obtained from biopsies images. Results were improved with Mathematical Morphology 
filters. 
 
The algorithm produces highly satisfactory results. The method was shown to be faster and more 
reproducible than conventional ones, like region growing, edge detection, split and merging. 
 
The results from this computer-assisted technique are compared to others obtained by visual 
inspection by two expert pathologists, and differences of less than 9 % are observed. 
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1. Introduction 

One of the most interesting fields in Digital Image Processing is the segmentation of an image into 
its different objects (Gonzalez and Woods, 1993). Segmentation plays a vital role in numerous 
biomedical imaging applications, such as the quantification of tissue volumes, diagnosis, 
localization of pathologies, study of anatomical structures and others (Glasbey 1995). The 
segmentation techniques can be divided into two groups: techniques based on contour detection 
which search for local grey level discontinuity in the image and those involving region growing 
which seek homogeneous image parts according to statistical measurements such as grey level and 
texture. The segmentation process of medical images is a difficult task to be accomplished in digital 
image processing (Chalama 1997). 
 
Histopathology is an area normally considered in purely descriptive terms. However, a quantitative 
approach may bring it to more solid grounds. This is definitely true for bone pathologies (Frisch 
1985). Changes in the amount of total bone and osteoid, together with the activity of fat and 
hematopoietic cells as well as trabecular surfaces, are probably the most important features in 
metabolic bone disease (Bullough 1990). The manual analysis of bone marrow is tedious and a 
time-consuming task that can be simplified by means of an automatic method (Revell 1983). With 
this automation better statistical information can be obtained (Clermonts 1985). 
 
The goal of this work is the building of a tool to support pathology reports generation where the 
quantification and classification biopsies items are present. The use of a computational method to 
achieve classification and cell counting is very useful to help in qualitative and quantitative aspects 
of final diagnosis. 
 
Numerous segmentation methods for cell images have been proposed, most of them trying to detect 
and separate different types of cells (Wu 1999, Sobrevilla 1999, De Medeiros 2001, Park 1997). 
Although they are useful antecedents of this work, the advantage of the method we propose is that it 
also produces good results for segmentation of trabecular surfaces. 
 
The method consists in the application of a semi-automatic simple pattern classification algorithm 
based on the texture that images present. 
 
Texture segmentation is a long established research field in image processing (Russ 1995). Texture 
means the subjective impression of the appearance of a surface. The classification based on texture 
feature values has become the essential technique for the treatment of some medical images (Baeg 
1998, Serón 2002, Kneitz 1996, Nasser Esgiar 1998). Main research fields search for well-suited 
texture feature calculation methods and appropriate classification techniques. 
 
For texture recognition, the image is divided into small sub-images. From the gray levels of each 
sub-image, textural features are computed. Many methods for the computation of these have been 
proposed so far (Singh 2001, Singh 2002). These methods can be divided into some main groups, 
such as statistical features, frequency-domain based features, fractal features and those derived from 
Wavelets and Gabor decomposition. 
 
The results obtained with statistical features and frequency-domain based features are presented in 
this work (Haralick 1973). Fractal analysis using the Hurst exponent and fractal dimension (Cross 



1994, Cross 1993, Dougherty 2001) was tried in an earlier stage, but the preliminary segmentation 
obtained was not successful in the marrow biopsies images. 
 
Classical automatic schemes for classification like K-means and Fuzzy-C-means did not give 
satisfactory results when applied to marrow biopsies images. Consequently we propose a semi – 
automatic mapping process achieved with Generalized Regression Neural Networks (GRNN). 
 
This work compares the results obtained using statistical (Gray level co-occurrence matrix) and 
frequency-domain (spectral power density) based features. 
 
In a second stage of the method, morphological filters, derived from Mathematical Morphology 
theory, were used to improve the segmentation. Mathematical Morphology refers to a branch of 
nonlinear image processing and analysis, which focuses on the geometric structures within an image 
(Serra 1982). It emerged as a general theory to providing a unified approach in order to deal with 
problems in Medicine, Biology, and many other fields and can be applied in a satisfactory way to 
the resolution of fat cells segmentation problems (Dougherty 1992). 
 
The proposed method is described in the next sections. 
 

2. Materials and Methods 
 
2.1. Image Acquisition 
 
The images were obtained from bone marrow biopsies. They were chosen among normal samples 
and bone marrow biopsies that showed different disorders. 
 
This work is based on twenty-six images. These were obtained from an Optic Microscope Medilux-
12 with a TC Plan Achromat 4X objective, N.A. 0.10 and digitized with a CCD Hitachi KP-C550 
color camera. This camera has an effective pixel dimension of 682 (H) x 492 (V) and a wavelength 
range of 400 to 700 nm. It supports a video resolution of 430 TV scan lines which was sufficient to 
capture biopsy images of 640 x 480 pixels from the live video by a PC. After selecting the area of 
interest, a single image is recorded in each case. 
 
The images were saved on Windows Bitmap format and converted to 8-bit gray scale. 
 
2.2. Generalized Regression Neural Networks 
 
The mapping process is achieved using the Generalized Regression Neural Networks (GRNN) 
proposed by Specht (Specht 1991). The GRNN architecture is rather similar to the Probabilistic 
Neural Networks, also known as Radial Basis Network Functions (RBF). 
 
The GRNN trains faster than other multilayer architectures and they model arbitrary non – linear 
functions efficiently. However they demand larger computational availabilities and a longer recall 
lapse than the wide known multilayer perceptron. 
 
The GRNN learning process is built within a hybrid paradigm, since it incorporates supervised and 
not supervised algorithm. The GRNN architecture presents three forward connection layers: a first 
layer of input cells, a hidden layer and an output layer. The neurons of the input layer send the 



information to the intermediate layer, the cells of the hidden layer are activated with a function of 
the distance between the input pattern and the synaptic weights, stored in each cell (called centroid) 
via a radial gaussian function. 
   
Each neuron j of the hidden layer stores a vectorial cji, the centroid, whose distances rj it is 
calculated as the euclídean distance that separates to the vector of entrance xi of the centroid: 
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where xi = net inputs and  yi = hidden layer outputs 
   
The output of the neuron yj is calculated applying a radial function, term that is applied to 
symmetrical functions, usually the gaussian: 
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The output of the hidden neuron j is shown in Equation 3. 
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Each node of the hidden layer specializes on an input region space and the whole set of input cells 
must totally cover the interest region. 
 
The outputs of the hidden neurons, each corresponding to a space region pattern are weighted and 
normalized previously to be fed to the output layer. The transfer functions of the output layer 
neurons are lineal, and they calculate the pondered and normalized sum of the hidden layer output 
(Equation 4). 
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The learning process consists of two stages, given that the different layers of this network perform 
different tasks, so ties reasonable to separate the optimization of the hidden and output layer by 
using different techniques. The training process of the hidden layers is performed via a self-
organized fashion, whereas the linear weights of the output layer are computed using a supervised 
learning rule. The network undergoes a hybrid leaning process. The self organized component of 
the leaning algorithm serves to allocate network resources in a meaningful way by placing the 
centers of the radial-basis functions in only those regions of the space where significantly data are 
present. To select the hidden unit’s centers the standard k-nearest-neighbor rule is used. For the 
supervised learning operation to compute the linear weights of the output layer, the error-correcting 
learning rule as the leas mean square algorithm is commonly applied (Haykin, 1999). 
 



2.2. Segmentation Process 
 
The different types of tissues regions to identify are shown on Figure 1. 
 

 
 

Figure 1: Typical image of a bone marrow biopsy. 
 
The expert chooses N pixels, at least three, which correspond to each texture class to detect. The 
goal is to detect three classes corresponding to trabeculae surface, hematopoietic and fat cells. 
 
Once the sample pixels are chosen, texture features corresponding to the region that surrounds each 
pixel are calculated. The size of the analysis region should be chosen appropriately, as it will be 
explained later on. The method was developed experimenting with two types of features: 
 

• Statistical Features: they are based on different operations on Gray Level Co-occurrence 
Matrix (GLCM). After evaluating several feature combinations the vector was constructed 
as: H = [cnth cntv cntd engh engv engd eph epv epd maxh maxv maxd mean], where: 
 
- cnth, cntv, cntd: Contrast at GLCM in horizontal (0º), vertical (90º) and diagonal (45º) 
direction respectively. 
- engh, engv, engd: Energy (order 0 differential moment) at GLCM in the same directions. 
- eph, epv, epd: Entropy at GLCM in the same directions. 
- maxh, maxv, maxd: Maximal Probability at GLCM in the same directions. 
- mean: Ratio of gray mean value to maximum of the range. 

 
• Frequency Features: the vector in this case is composed by the values obtained after 

application of Fourier Transform and the later Spectral Density Power calculation. The 
values of the first and fourth quadrants of the transform are arranged in a vector. 

 
A vector of features for each selected pixel is obtained, without any normalization applied. These 
are the input patterns that the GRNN requires in order to be created and trained. Its respective 
outputs will be the values of gray that will be shown for each class: 1, 127 and 256. 
 



Subsequently, the image is processed by regions of the same size. The successive regions could be 
overlapped. The same type of texture features used at the sample pixels are calculated for each 
region. 
 
Let x  be the feature vector of the region that is being analyzed. This vector will be the input of the 
trained GRNN. The output given by the network will be a number in the range [1, 256] which 
indicates the gray level for the classification image. 
 
Thus the classification image is created. This image will be processed to have only three gray 
values, making a simple transformation: the values in [1, 64] will be transformed to 1, the values in 
[65, 192] will be transformed to 127 and the values in [193, 256] will be transformed to 256. The 
final image is obtained, with 3 gray intensities. 
 
Parameters are chosen empirically using the set of images: 
 

• Amount of sample pixels: The number of prototypes patterns characterizing every class to 
segment. 

• Region size: The size of the window where texture features are calculated. 
• Region Overlapping: It defines the window displacement. 
• Features Vector: It can be calculated by Fourier Transform of the region or by statistical 

analysis (co-occurrence matrix). 
• The spread value: an internal parameter of the GRNN. 

 
2.3. Post-processing 
 
The segmented image may contain wrongly identified regions. This error is mainly due to the fact 
that in some regions more than one texture may be present. To improve the accuracy of the 
segmentation it is useful to apply some Mathematical Morphology filters. 
 
The application of the different Morphological filters should be interactively indicated by the user, 
always matching the segmentation image with the original image. 
 
The options are: 
 

• Dilation of one of the classes: it allows enlarging some of the segmented regions without 
losing their shape. 

• Erosion of one of the classes: it achieves the opposite effect to the dilation, diminishing the 
area covered by the class that is indicated. 

• Closing: if during the detection erroneous holes appear within one of the classes, this 
operation will close them. 

• Elimination of small areas: it is made by combination of morphological filters to eliminate 
objects of a certain connectivity whose area is smaller than a given threshold. 

 
2.4. Area Calculation 
 
Once the segmentation image is obtained, the calculation of relative areas is made according to the 
number of identified pixels of each class. User intervention is allowed again to select a region of 



interest (ROI) of the image where there are not artifacts, and the segmentation has been satisfactory. 
The ROI have a polygonal shape. 
 
Given the region of interest, the class area percentages are calculated (trabecular tissue, fat cells, 
hematopoietic tissue), according to the next expression: 
 

Amount of class i pixels% Class i Area   100
Amount of ROI pixels

= ×  

 
2.5. Implementation 
 
The proposed technique was implemented on MatLab© 6.5. The Morphological Filters was 
extracted from the SDC Morphology Toolbox©. 
 
To facilitate the test stage and to have an appropriate way to interact with pathologists, a user–
friendly interface was constructed. This shows the original image, the segmentation image and the 
results of the application of every filter. 
 
The pathologist observes morphological filters with appropriate medical sentences that are easily 
understood by the operator such as “Close of holes the trabeculae region”, “Increase fat area” and 
“Decrease cellularity area”. 
 
3. Results 
 
Figure 2 shows the step sequence of the proposed method for one sample image. Figure 2 (a) shows 
the original image, with the pixels of three classes selected by a user. Figure 2 (b) shows the 
segmented image using frequency texture features. Figure 2 (c) presents the improvement achieved 
by morphological methods. Figure 2 (d) shows the chosen region for the calculation of areas. The 
numerical results obtained for this example are: 

Trabeculae Tissue  = 19 % 
Hematopoietic Tissue  = 50 %  
Fat Cells    = 31 % 

 

  
 

(a) Original image and sample pixels. 
 

 
(b) Segmented image using frequency 

texture features. 



 

  
 

(c) Improvement achieved by 
morphological methods. 

 
(d) Chosen region for calculation of areas. 

 
Figure 2: Steps sequence of the proposed method. 

 
The same process was applied to a whole set of images. Table I shows the obtained values by the 
proposed method and the results that the pathologists have reported. For comparison, the average of 
the quantities they gave is taken, since these quantities varied as much as 35 %, which shows the 
subjectivity of the visual analysis.  
 
To make a comparison between the results of the pathologists, the ones obtained using statistical 
features and the ones obtained using frequency features, three vectors were constructed for each 
image, where its components are the percentages obtained for each class (trabeculae, fat and 
hematopoietic cells). 
 
In order to evaluate the difference between the pathologists results vector and the results obtained 
with the presented method, Euclidean vectorial distances were calculated. To make this value a 
significant index, it was necessary to normalize it. The normalization was calculated as: 
 

P SF

Min Max

(V , V )% %
(V ,V )
dSE
d

=  

 
P FF

Min Max

(V , V )% %
(V ,V )
dFE
d

=  

where: 
 

PV  = Vector of results suggested by the pathologist. 

SFV  = Vector of results obtained using statistical features. 

FFV  = Vector of results obtained using frequency features. 

MinV  = Vector of minimal values of the range (0, 0, 0). 

MaxV  = Vector of maximal values of the range (100, 100, 100). 
 



The errors are shown in the last two columns in Table I. Empty cells indicate that the method didn’t 
work suitably. 
 

  Pathologist Statistical
Features 

Frequency 
Features SE % FE % 

Trabeculae 11 16 17 
Fat 87 80 80 Image 1 
Hematopoietic 2 4 3 

5% 5% 

Trabeculae 18 26 24 
Fat 79 73 73 Image 2 
Hematopoietic 3 1 3 

6% 5% 

Trabeculae 18  24 
Fat 77  71 Image 3 
Hematopoietic 5  5 

 5% 

Trabeculae 33  32 
Fat 60  63 Image 4 
Hematopoietic 7  5 

 2% 
 

Trabeculae 70 54 75 
Fat 5 4 5 Image 5 
Hematopoietic 25 42 20 

13% 4% 

Trabeculae 64 49 66 
Hematopoietic 6 3 2 Image 6 
Fat 30 48 32 

14% 3% 

Trabeculae 60 57  
Hematopoietic 8 10  Image 7 
Fat 32 33  

2%  

Trabeculae 35 36 38 
Hematopoietic 35 39 39 Image 8 
Fat 30 25 23 

4% 5% 

Trabeculae 26 22 27 
Hematopoietic 54 57 51 Image 9 
Fat 20 21 22 

3% 2% 

Trabeculae 24 17 23 
Hematopoietic 52 62 52 Image 10 
Fat 24 21 25 

7% 1% 

Trabeculae 26  15 
Hematopoietic 53  33 Image 11 
Fat 21  52 

 22% 

Trabeculae 19 15 22 
Hematopoietic 47 46 47 Image 12 
Fat 34 39 31 

4% 2% 

Trabeculae 20 32 17 
Hematopoietic 57 48 51 Image 13 
Fat 23 20 32 

9% 6% 

Trabeculae 21 24 20 
Hematopoietic 39 49 50 Image 14 
Fat 40 27 30 

10% 9% 

Trabeculae 17 18 15 
Hematopoietic 41 50 46 Image 15 
Fat 42 32 39 

8% 4% 

Trabeculae 19 19 12 
Hematopoietic 27 47 39 Image 16 
Fat 54 34 49 

16% 9% 

Trabeculae 15  20 
Hematopoietic 45  49 Image 17 
Fat 40  31 

 6% 

Trabeculae 19 16 16 
Hematopoietic 35 44 38 Image 18 
Fat 46 40 46 

6% 2% 

Trabeculae 12 21 30 
Hematopoietic 20 31 27 Image 19 
Fat 68 48 43 

14% 18% 

Trabeculae 10 18 15 
Hematopoietic 18 29 21 Image 20 
Fat 72 53 64 

13% 6% 

 



Trabeculae 30 35 37 
Hematopoietic 15 29 34 Image 21 
Fat 55 36 29 

14% 19% 

Error Mean 8.7% 6.8% 

 
Table I: Numerical results 

 
 
4. Discussion 
 
The automatic bone marrow microscope analysis presents several difficulties due to the diversity of 
elements appearing in this kind of images (Baak 1991). The different types of tissues and cells 
frequently are overlapped and the presence of artifacts complicates the problem. In most situations, 
this difficulty forces the use of very specific segmentation algorithms for each task. This makes 
bone marrow image segmentation a difficult and challenging problem (Liu 1999). 
 
The accuracy of segmentation mainly depends on the selection of good parameters. After 
experiencing with images, some criteria can be determined for the choice of parameters. 
 

• Amount of sample pixels: It is chosen keeping in mind that a big quantity of sample pixels 
possibly improves the classification, but it will increase the processing time. 

• Size of the region: if it is small, processing time will decrease, but it is risky in the sense 
that different textures can not be segmented correctly. On the other hand, if it is too big, 
apart from increasing the calculation time considerably, the probability of the analysis 
region containing more than one texture increases, surely leading to classification errors. 

• Region Overlapping: if the window of analysis is moved in a single pixel step manner, a 
lengthy processing time will be required, and the result will not be notably better than the 
result obtained using bigger displacements. For example, moving the window by two pixels 
decreases calculations by one half, and the classified regions will have a size of 2 x 2 pixels, 
what allows an equally successful segmentation. 

• Calculated Features: features calculated in the frequency domain leads to a noisier 
segmentation, but after a simple post-processing, acceptable results are achieved. The 
unquestionable advantage of the frequency domain is the fact that processing time decreases 
drastically if compared with co-occurrence features. The statistical features based on gray 
level co-occurrence matrix results in a clearer classification, but processing time increases 
considerably. 

 
As mentioned before, the results obtained were compared to the reports obtained by visual 
inspection performed by two pathologists. The discrepancy between the two pathologists’ reports 
justifies the use of the method we propose which gives differences smaller than 9 % if compared 
with the average of the results given by experts. 
 
A method for texture segmentation using two different features vectors was proposed. This method 
improves considerably the efficiency in the recognition of the quantity of trabecular tissue, fat and 
hematopoietic cells present in microscopic images from biopsies. The method has been evaluated 
on twenty-six images collected from a Pathology Laboratory. The obtained results showed a good 
level of accuracy in the 81 % of them. 
 



A tool providing such capabilities can reduce counting error produced by a subjective analysis and 
can shorten the time taken by manual counting. Besides that, it avoids inter and intra observer 
variability. 
 
A need for automation is evident. But once optimized the sequence to follow for the processing of 
an image, a quick segmentation and area calculation process is obtained. It would facilitate the 
professional's work, decreasing diagnosis errors and minimizing subjectivity in bone marrow 
analysis. 
 
For future work, it will be of interest to make new comparisons applying the presented method to 
images obtained at different magnifications and stained with different techniques. 
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