
STALlion: A Simple Typed Assembly Language for Static

Analysis ∗

Mart́ın Nordio,1, Francisco Bavera1 Ricardo Medel,1,3,

†

Jorge Aguirre1, Gabriel Baum1,2

(1) Universidad Nacional de Ŕıo Cuarto, Departamento de Computación

Ŕıo Cuarto, Argentina

{nordio,pancho,jaguirre}@dc.exa.unrc.edu.ar

(2) Universidad Nacional de La Plata, LIFIA

La Plata, Argentina

gbaum@sol.info.unlp.edu.ar

(3) Stevens Institute of Technology,

New Jersey, EE.UU.,

rmedel@cs.stevens-tech.edu

2004

Abstract

Typed assembly languages have the goal of providing security guarantees, for example, for

the limited use of resources in a host machine or the detection of autoupdate code. This work

presents a simple typed assembly language which allows us to perform various kinds of static

analysis tasks with the purpose of detecting flaws in the code security. The security policy we

use guarantees type and memory safety. Moreover, wa can ensure that non-initialized variables

are not read, and that there is no out-of-bound array accesses. The language we present, called

STALlion, was designed in order to interpret a particular kind of imperative programs, more

specifically abstract syntax tree.

Keywords: Mobile Code, Proof-Carrying Code, Security Properties, Programming Lan-

guages.

∗This work was supported through grants from the SECyT-UNRC, the Agencia Córdoba Ciencia, and the NSF.
†This author’s work was supported by the NSF project CAREER: A Formally Verified Environment for the

Production of Secure Software–#0093362.

1 Introduction

Typed assembly languages are assembly languages that preserve the types of the registers. They
have the goal of providing security guarantees, for example, for the limited use of resources in a
host machine or the detection of autoupdate code. This kind of assemblies have received increasing
attention since the invention of Proof-Carrying Code (PCC). PCC is a technique developed by Necula
and Lee [9] whose aim is guaranteeing the safety of untrusted mobile code. Since its conception in
1998, this technique generated several active lines of research [1, 2, 3, 6, 8, 9, 11, 12, 15, 17], but
there are still some open problems.

With the goal of resolving some open problems of PCC, we developed the framework Proof-

Carrying Code based on Static Analysis (PCC-SA) [13], that guarantees the safe execution of mobile
code based on PCC and static analysis techniques. This framework uses a high-level intermediate
language in order to verify the code security. Moreover, we implemented a prototype to study the
applicability of our approach in practice. This framework uses an abstract syntax tree (AST) with
type annotations. These intermediate representations enable us to use static analysis techniques
in order to generate and verify this type information and also to apply several code optimization
techniques. The AST is then used by the code consumer, both to prove that the code complies
with the security properties, and to generate object code.

AST resulted to be a suitable vehicle for performing some analysis on the code, since it allows
for linear-time evaluation (as opposed to the typical exponential-time complexity of standard PCC

techniques). This is achieved at the expense of overloading the code consumer with the job of
generating the object code before executing it. One way to solve this problem is by means of the
use of a typed assembly language, as well as the AST. The AST represents only the proof that
the code verifies the consumer’s security policies and does not contain the executable code. In this
way, the code consumer only verifies that the AST satisfy the security policy and it “matches” the
assembly.

Another important feature of a typed assembly is that it can be used to make security checkers.
If we combine the assembly language with the AST we can obtain a hybrid system where certain
proofs are made on the AST and other proofs can be made by a type checker on the assembly.
Some proofs are made on the AST because either they cannot be made on the assembly or they
are more efficient on the AST.

With the aim of implementing the above described idea, we designed a typed assembly language
named STALlion. In contrast with other proposed assembly languages, STALlion interprets ASTs,
and allows for various static analysis tasks. Furthermore, we can obtain an abstract syntax tree

from a program written in the STALlion typed assembly language efficiently. Due to the relation
between both, the algorithm which verifies that a program written in STALlion matches an AST is
simple and efficient.

This paper is structured as follows: in section 2 we present the STALlion assembly language. We
describe the abstract syntax tree in section 3. The compilation function from the AST to a STALlion

program is presented in section 4. The related work are analysed in section 5. The last section is
devoted to the conclusions of our work and some proposals of future work.

2 The STALlion Typed Assembly Language

A program P consists of a sequence l : I of labels and instructions. Each register of the language
has a certain type. The types of registers are int, arrayint and [int]. The int type represents
integer type, the arrayint represents integer array type and [int] pointer to an integer. Arrays are
formed by an integer which it represents bound array and the corresponding set of integers. For
example, if we have an array of five elements, this is formed by the constant 5 (which it cannot
be updated by the programmer) and five elements of int type (figure 2). The integer pointers are
composed of the memory address which contains the value and the account of registers (of type
integer pointer) that points to this memory address. This last information is used to make different
kinds of alias analysis.

The language types are defined by the following grammar:

Types T ::= intw | array intw | [int]w

w ::= + | −

Figure 1: Types of STALlion

The types are tagged with an initialization flag, z which can be either + or − indicating
an initialized or an unitialized value, respectively. We say that the array int type is initialized
(array int+) if all its constituent elements are initialized, otherwise it is unitialized (array int−).

Figure 2: Example of a lenght-five array structure.

Program P ::= <> | L: I ; P
Registers R ::= ri, where i ∈ N
Labels L ::= li, where i ∈ N
Instructions I ::= B | J | E
BasicInstruc B ::= Mov r1 ← r2 | Mov r1 ← n where n ∈ N

| Add r1 ← r2 + r3 | Sub r1 ← r2 − r3

| Mul r1 ← r2 ∗ r3 | Div r1 ← r2 / r3

| Comp r1 ← r2 r3

| bez if r l1 l2 | bnz while r l1
| LoadArray r ← r2[r3] | StoreArray r[r2]← r3

| MemoryRead r ←M [r2] | MemoryWrite M [r2]← r
JumpInstruc J ::= Jump up l | Jump down l
ExtendedInstruc E ::= Call l | Ret l

| LoadPointer r ← r2 | StorePointer r ← r2

| Salloc r | Sfree r

Figure 3: The STALlion Typed Assembly Language

The language has a set of basic instructions, two unconditional jump instructions and a set of
extended instructions. The basic instructions are Mov, Add, Sub, Score, Times, bez if, bez while,

LoadArray, StroreArray, MemoryRead, MemoryWrite y StackPointer.
The Mov instruction moves the contents of a r2 register to r1 register. Given two registers

r2 and r3, the Add, Sub, Div, Mul instructions add, subtract, multiply and divide the values
stored in r2 and r3 respectively and store the result in the r1 register. Given a register r, the
bez if instruction jumps to either the label l1, if r is equal to 0, or, label l2, otherwise. The Comp

instruction compares the r2 and r3 registers and if r2 is smaller than r3 store the zero constant
in r1, otherwise, store the constan 1. Given a register r, the bez while instruction jumps to the
label l1, if r is equal to 0. Although the bez if instruction can be replace by the use of bnz while

instruction, we use both to easily and efficiently determine the presence of a loop or the presence

of a conditional sentence. The LoadArray, StroreArray instructions allow us to load the contents of
a position of an array to a register and to store the contents of a register to an array, respectively.
Furthermore, MemoryRead allows us to read from a memory position and to store its value to an
r register and MemoryWrite allows us to store the contents of a r register in a memory position.
Finally, the extended instructions allow us both to use pointers and to invoke functions.

2.1 Typing Rules

Own typing rules define a judgement Γ ⊢ P meaning that P is a well-typed assembly program in
context Γ. The STALlion typing rules are defined as follows:.

Γ ⊢ P n ∈ N

Γ, rj : int+ ⊢Mov rj ← n; P
mov n inst

Γ, ri : int+ ⊢ P

Γ, rj : int+ ⊢Mov rj ← ri; P
mov inst

Γ, ri : int+, rj : int+ ⊢ P

Γ, rk : int+ ⊢ Add rk ← ri + rj ; P
add inst

Γ, ri : int+, rj : int+ ⊢ P

Γ, rk : int+ ⊢ Sub rk ← ri − rj ; P
sub inst

Γ, ri : int+, rj : int+ ⊢ P

Γ, rk : int+ ⊢Mul rk ← ri ∗ rj ; P
mul inst

Γ, ri : int+, rj : int+ ⊢ P

Γ, rk : int+ ⊢ Div rk ← ri / rj ; P
div inst

Γ, ri : int+, rj : int+ ⊢ P

Γ, rk : int+ ⊢ Comp rk ri rj ; P
comp inst

Γ, ri : array int+, rj : int+ ⊢ P rj < ri.lenght

Γ, rl : int+ ⊢ LoadArray rl ← ri[rj]; P
loadArray inst

Γ, ri : array int+, rj : int+ ⊢ P rj < ri.lenght

Γ, rl : int+ ⊢ StoreArray ri[rj]← rl; P
storeArray inst

Figure 4: Basic Rules of The Type System.

The LoadArray, StoreArray rules impose the property of constraint that non-existent array
positions are not read and not written, respectivelly. We want to remind that the array int type is
made up by two fields: its lenght and r′is elements. If ri is of array int type, then ri.lenght contains
its lenght. Therefore, LoadArray rl ← ri[rj] instruction is safe if rj is smaller that the lenght of
the array.

Γ ⊢ P ; l1 : I1 Γ ⊢ l2 : I2 l1, l2 ∈ Σ(Labels) f labels(l1) = f labels(l2) + 1

Γ ⊢ P ; l1 : I1; l2; I2

r labels

Γ ⊢ P l1, l2 ∈ Σ(Labels) f labels(l1) > f labels(l2)

Γ ⊢ l1 : Jump up l2; P
jump up inst

Γ ⊢ P l1, l2 ∈ Σ(Labels) f labels(l2) > f labels(l1)

Γ ⊢ l1 : Jump down l2; P
jump down inst

Γ ⊢ P l1, l2, l3 ∈ Σ(Labels) f labels(l1) < f labels(l2) < f labels(l3)

Γ ⊢ l1 : bez if r l1 l2; P
bez if inst

Γ ⊢ P l1, l2 ∈ Σ(Labels) f labels(l1) < f labels(l2)

Γ ⊢ l1 : bnz while r l1; P
bnz while inst

Figure 5: Labels Rules of the Type System.

Let f labels be a function that given a label returns a natural number that represents the
label number. Let Σ(Labels) be the set of all labels of a STALlion program. The r labels rule

determines that a program is well-typed, which among other things, ensures that label numbers
are increasingly ordened.

Γ ⊢ P r2 : [int]+

Γ ⊢ LoadPointer r ← r2

load pointer inst

Γ ⊢ P r : [int]+ r2 : int+

Γ ⊢ StorePointer r ← r2

store pointer inst

Γ ⊢ P r : [int]+ r.num pointer = 0

Γ ⊢ Sfree r
free inst

Figure 6: Pointer Rules of the Type System.

The load pointer inst rule determines when is safe to load a pointer r2 in the r register.
The associated semantics of load pointer inst is: r2.nun pointers = r2.num pointers + 1 and
r.nun pointers = r.num pointers− 1. In words, r2.num pointers contains the information of how
pointers are pointed to this memory address. Then , in order to perform the LoadPointer operation,
the account of pointers pointing to the address held in r2 is increased by 1, and its account pointed
by r2 is decreased by 1, since r2 has changed its contained value. The free inst rule determines
that is safe to free a memory address if there is no pointer pointing to it (r.num pointer=0).

3 The Abstract Syntax Tree

The abstract syntax tree (AST) is an abstract representation of a subset of C called Mini. This
representation enables us to apply several static analysis, such as control flow and data flow analysis.
Also, it can be used to apply code optimizations.

The prototype’s abstract syntax trees are similar to a traditional AST, but the former include
code annotations. These annotations show the status of the program objects, and they contain
information about variable initializations, loop invariants, and variable ranges.

Each sentence of a program is represented by an AST. The nodes in an AST contain a label,
information or references to the sub-sentences that compose the sentence, and a reference to the
next sentence.

Each expression is represented by a graph. Two different labels are used when an array is
accessed: unsafe and safe. These labels mean that it is not safe to access to such element of that
array and that it is safe to access, respectively. By modifying the node label we avoid the necessity
of include run-time checks.

The figure 7 presents the AST of the following example writted on Mini:

int ArraySum (int index(0,0)) {

int [10] data; /* Define an array */

int value=1; /* Define an initialization variable */

int sum=0; /* Define the summatory variable */

while (index<10) { /* Initialize the array */

data[index]=value;

value=value+1;

index=index+1;

}

while (index>0) { /* Calculate the summatory */

sum=sum+data[index-1];

index=index-1;

}

return sum;

}

Figure 7: AST of the program example.

The circles in Figure 7 represent sentences, while the hexagons represent variables and the
rectangles represent expressions. Arrows show the control flow, and straight lines join sentences
with their attributes. The label DECL is used for declarations, ASSIGN for assign sentences, UN-

SAFE ASSIG ARRAY for array assign sentences, WHILE for loops, and RETURN for function re-
turn sentences. For example, note that the AST of the first loop includes the logic condition
(index < 10) and the body of the loop. The AST of the body includes three assign sentences,
the first of them assigns the value value to the element index of the array data. So, it is labeled
UNSAFE ASSIG ARRAY.

4 Compilation Function

In the following table, we present the compilation function. In the first column, we present the
example written in Mini [5], in the second, the corresponding AST and finally we present the
STALlion program.

Mini Program AST STALlion Program

variable=5 l1 : Mov rvar ← 5

variable=expresion l1 : Mov rvar ← rexpr

a array[expresion]=value
l1 : StoreArray
rarr[rexpr]← rval

a array[expresion]=value

l1 : MemoryRead
ri ←M [rarr]

l2 : Comp r← ri rind

l3 : bez if r l4 l6
l4 : StoreArray

rarr[rind]← rval

l5 : jump down l6
l6 : ARRAY ERROR
l7 : ...

var x=a array[expresion]
l1 : LoadArray

ra ← rarr[rexpr]
l2 : Mov rx ra

if (var x>var y) {
Body Then

}
else

Body Else
Sentences

l1 : Comp r rx ry

l2 : bez if r l3 l5
l3 : Basic Body Then
l4 : jump down l5
l5 : Basic Body Else
l6 : Instructions

Mini Program AST STALlion Program

while (var x>var y) {
Body W

}
Sentences

l1 : Comp r rx ry

l2 bez while r l5
l3 : Basic Body While
l4 : jump up l1

l5 : Instructions

The expresions are compiled by the following way:

Mini Expresions AST STALlion Program

var x+ Expresion l1 : Add raux ← ry + rexpr

var x − Expresion l1 : Sub raux ← ry − rexpr

var x ∗ Expresion l1 : Mul raux ← ry ∗ rexpr

var x / Expresion l1 : Div raux ← rx / rexpr

The figure 8 shows the generated STALlion code for the example of the figure 7.

5 Related Work

TAL is an extension of a non-typed assembly language with code annotations, primitives of memory
handling and a set of typed rules [14]. The goal of TAL is to provide a static typed object language

l1 : Mov rindex ← 0
l2: Mov rvalue ← 1
l3 : Mov rsum ← 0
l4: Comp r ← rindex 10

l5 : bez while r l10
l6 : StoreArray rdata[rindex]← rvalue

l7 : Add rvalue ← rvalue 1
l8 : Add rindex ← rindex 1
l9 : Jump up l4

l10 : Comp r2 ← rindex 0
l11 : bez while r2 l17
l12 : Add rindex2 ← rindex 1
l13 : LoadArray ra ← rdata[rindex2]
l14 : Add rsum ← rsum ra

l15 : Sub rindex ← rindex 1
l16 : Jump up l10

l17: ...

Figure 8: STALlion code for the AST of the figure 7

more suitable than Java bytecodes to support a great variety of source languages and an important
number of optimizations. At the moment, TAL is implemented in the Intel IA32 architecture (32-bit
80x86 flat model), and is called TALx86.

A TAL program contains assembly code together with type annotations and TAL pseudo-
intructions, which are used to check the assembly language program with the type checker.

The typed rules guarantee memory security, control flow security and type security of the TAL

programs. TAL is an ideal platform for compilers pointed by types that want to produce safe
code for the use of mobile code applications or extending operative systems kernels. The compiler
developers can use the TAL program security to “purify” tranformations of sophisticated program.
Types help us to check the soundness of the transformations and optimizations that are very
difficult to make without types. The TAL applets, similar to java applets, can be downloaded from
non-trusted servers from internet, to verify and then execute without damaging of the host security.

DTAL is a dependently typed assembly language [18]. Its type system supports the use of
dependent types, obtaining some advantages of dependent type assembly level. DTAL is better
than TAL, allowing for important optimizations in the compilers, such as array bound checking.
DTAL addresses formally the problem of sum type representation in an assembly level, doing this
handling not only data types in ML but also dependent data types in dependent ML (DML).

HBAL is a typed assembly language oriented to ensure that each program of a valid type is
executed in a heap bounded memory [4, 7] . If the type of a program HBAL is verifiable, it is
executed in a safe form in any memory that satifies the initiated type conditions. In order to
guarantee the safe execution, a program P must:

1. check the type of P once,

2. before each execution, check that the memory satisfies the type assumption of initial context

Others TALs (Typed Assembly Languages) base their type systems on a particular configuration
of memory, as long as the program type is checked before each execution. The HBAL language
ensures, by means of static analysis, that the heap bounded spaces assigned to the program are
respected (it is not allowed to change arbitrary places in memory), no reading of not initiated
addresses (is not allowing reading of ”garbage”) and no reading of addresses that the program has
not written before(it is not allowed the round of free memory and there are not lose of private
information).

HBAL distinguishes explicitly between addresses devoted to store code and devoted to store
datas by means of an appropriate discipline of types. It can also eliminate the possibility of re-
writing addresses where the code is stored. By adding to this the restriction of control flow by
typing the label, is eliminated the danger of execution of hidden instructions on the addresses
where dates are stored. As for the verification of non-interference property, it enforces that in the
execution of a program, the public information does not depend confidencial information.

6 Conclusions and Future Work

We developed a typed assembly language that allows us to make various kinds of static analysis
for the purpose of ckecking security properties. This is a preliminary approach to a mixed check
system of security policies, which allows us to verify security properties based on flow analysis and
data analysis over a formal type system. The security verifications made on STALlion are pointer
alias analysis, array bound checking, initialized values and label checking.

An interesting future work is to define an isomorphism between Mini, AST and STALlion. Fur-
thermore, it could be interesting to continue researching in the typed assembly language area. This
should allow us to extend STALlion incorporating new instructions but also defining a memory
space that only contains data and another space that only contains instructions. In this way, we
should prevent many security violations, for example, the violations done by buffer overflow. We
plan to define a classification of which security properties can be done efficiently over STALlion and
which over the AST.

Another future work is the incorporation of STALlion to the implemented prototype of safe
mobile code environment [13].

References

[1] A. Appel, A. Felty, “A Semantic Model of Types and Machine Instructions for Proof-Carrying
Code”, in Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL’00), pp. 243–253, ACM Press, Boston, Massachusetts (USA),
January 2000.

[2] A. Appel, “Foundational Proof-Carrying Code”, in Proceedings of the 16th Annual Sympo-

sium on Logic in Computer Science, pp. 247–256, IEEE Computer Society Press, 2001.

[3] A. Appel, E. Felten, “Models for Security Policies in Proof-Carrying Code”. Princeton Uni-
versity Computer Science Technical Report TR-636-01, March 2001.

[4] D. Aspinall, A. Compagnoni, “Heap Bounded Assembly Language”, March 2001, Journal of
Automated Reasoning, 2003, vol. 31, iss. 3-4, pp. 261-302(42). Kluwer Academic Publishers.
Special issue on Proof-Carrying Code. 2004.

[5] F. Bavera, M. Nordio, J. Aguirre, M. Arroyo, G. Baum, R. Medel, “CCMini: A prototypy
of Certifying Compiler”. Submitted for publication. 2004.

[6] A. Bernard, P. Lee, “Temporal Logic for Proof-Carrying Code”, in Proceedings of Automated

Deduction (CADE-18), Lectures Notes in Computer Science 2392, pp. 31–46, Springer-Verlag,
2002.

[7] A. Compagnoni, M. Lucotte, R. Medel, “Implementing a Typed Assembly Language and
its Machine Model”, in Proceedings of the CACIC’02 (Argentinean Conference of Computer
Science), Buenos Aires (Argentina), October 2002.

[8] C. Colby, P. Lee, G. Necula, F. Blau, M. Plesko, K. Cline, “A certifying compiler for Java”,
in Proceedings of the 2000 ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’00), pp. 95–105, ACM Press, Vancouver (Canada), June 2000.

[9] G. Necula “Compiling with Proofs” Ph.D. Thesis School of Computer Science, Carnegie
Mellon University CMU-CS-98-154. 1998.

[10] G. Necula, P. Lee, “The Design and Implementation of a Certifying Compiler”, in Proceedings

of the 1988 ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation (PLDI’98), pp. 333–344, ACM Press, Montreal (Canada), June 1998.

[11] G. Necula, R. Schneck, “Proof-Carrying Code with Unstrusted Proof Rules”, in Proceedings

of the 2nd International Software Security Symposium, November 2002.

[12] G. Necula, R. Schneck, “A Sound Framework for Untrusted Verification-Condition Gener-
ators”, in Proceedings of IEEE Symposium on Logic in Computer Science (LICS’03), July
2003.

[13] M. Nordio, F. Bavera, R. Medel, J. Aguirre, G. Baum, “ A Framework for Execution of Secure
Mobile Code based on Static Analysis”. To be published at XXIV International Conference
of the Chilean Computer Science Society. IEEE-CS PRESS. 2004.

[14] G. Morrisett, K. Crary, N. Glew and D. Walker, “Stack-Based Typed Assembly Language”.
In Second International Workshop on Types in Compilation. Kyoto, pp. 95-117. Published in
Xavier Leroy and Atsushi Ohori, editors, Lecture notes in Computer Science, volume 1473,
pages 28-52. Springer-Verlag, 1998.

[15] M. Plesko, F. Pfenning, “A Formalization of the Proof-Carrying Code Architecture in a
Linear Logical Framework”, in Proceedings of the FLoC Workshop on Run-Time Result Ver-

ification, Trento (Italy), 1999.

[16] Fred B. Scheneider, “Enforceable security policies”. Computer Science Technical Report
TR98-1644, Cornell University, Computer Science Department, September 1998.

[17] R. Schneck, G. Necula, “A Gradual Aproach to a More Trustworthy, yet Scalable, Proof-
Carrying Code”, in Proceedings of International Conference on Automated Deduction

(CADE’02), pp. 47–62, Copenhagen, July 2002.

[18] H. Xi and R. Harper, “A Dependently Typed Assembly Language”. Technical Report OGI-
CSE-99-008, Oregon Graduate Institute of Science and Technology. 1999.

