

Taking Advantages of Ontology and Contexts to Determine Similarity of
Data*

Agustina Buccella, Alejandra Cechich
Departamento de Ciencias de la Computación

Universidad Nacional del Comahue, Neuquén, Argentina
{abuccell, acechich}@uncoma.edu.ar

and

Nieves Rodríguez Brisaboa

Departamento de Computación
Universidade de A Coruña, España

brisaboa@udc.es

Abstract
Data integration is the process of unifying data sharing some common semantics but are originated from
unrelated sources. In our work we consider these sources are autonomous, heterogeneous and they are physically
distributed. These three characteristics make the integration task more difficult as there are several aspects to
bear in mind. In this work we only focus on one of these aspects, the semantic heterogeneity, which deals with
the meaning of the concepts within the information sources. As each source contains a specific vocabulary
according to its understanding of the world, terms denoting same meaning can be very difficult to find. In this
paper we will briefly explain our method to find similarities using ontologies and contexts. We will propose
some improvements in the similarity functions in order to take advantages of the information the ontologies
provide.
Keywords: Semantic Heterogeneity, Ontology, Context, Similarity

1. Introduction

The semantic heterogeneity is one of the most complex problems within data integration tasks. Each
information source included in the integration has its own interpretation and assumptions about the
concepts involved in the domain. Therefore, it is very difficult to determine when two concepts
belonging to different sources are related. Some relations among concepts that semantic heterogeneity
involves are: synonymous, when the sources use different terms to refer to the same concept;
homonymous, when the sources use the same term to denote completely different concepts; hyponym,
when one source contains a term less general than another in another source; and hypernym, when one
source contains a term more general than another in another source; etc.

In order to deal with some semantic heterogeneity problems, in recent works [4,5,6,7] we have
proposed the combination of two useful tools: ontologies and contexts. In our works an ontology
includes the conceptual vocabulary (terms and relationships) and the rules and axioms relating terms
within the vocabulary.

This work is partially supported by the CyTED (Ciencia y Tecnología para el Desarrollo) project VII-J-RITOS2, and the UNComa project 04/E048
(Modelado de Componentes Distribuidos Orientados a Objetos).

According to [23] an ontology is defined as a 5-tuple O =< C,R,F,I,A > in which C is a set of
classes, R a set of relations, F a set of functions, I a set of instances, and A a set of axioms. This
definition is based on the Ontolingua language specification [15], however in this paper, we will use
the Web Ontology Language (OWL) [21,1] to represent the ontologies due to its widespread use in the
Semantic Web [3]. So, the 5-tuple definition is reduced to 3-tuple O =<C,P,R> in which C is a set of
classes as before, P is a set of properties and R is a set of restrictions applied to the classes and
properties.

On the other hand, the contexts are useful to model concepts which are in conflict with one
another, that is, a concept can vary its meaning according to the context it is in. In our works, a context
is a set of classes and properties indicating a specific role of the database, which provides semantic
knowledge that can be used to integrate several data sources. For example, the sold cars can be a
context involving the car and buyer classes and the buy property. The use cases of a UML specification
[10] might be the source to obtain some of the contexts.

In [5] we have described our method especially built to integrate different ontologies. Besides, an
approach based on the hybrid ontology approach [24] has been defined in order to simplify the
integration. Figure 1 shows this approach. As we can see, one source ontology is built for each
information source. The OCM (Ontology and Context Mapping) component deals with the
relationships among the contexts and concepts of the different source ontologies, and with the
information flow between the source ontologies and the shared vocabulary. The shared vocabulary
component is composed of the generic concepts and contexts that will be used to query the system.

Figure 1. Our approach to data integration

The construction of each component is based on a method with three main stages (Figure 2):

building the source ontology, building the mappings between source ontology and shared vocabulary
and modifying the OCM and shared vocabulary. This method proposes a guide in order to do this
activity more consistent and correct. To achieve each stage, a set of steps should be performed. We
briefly explain each stage in order to make the process clearer.

The first stage, building the source ontology, contains three main steps: generating the OWL initial
ontology, adding semantics and defining contexts.

The first step, generating the OWL initial ontology, takes as input an Entity-Relation model (ER) and a
relational model [8,9] and automatically generates an initial ontology. In order to do the initial
ontology, we use the semantic information provided by the ER model. By a series of rules we
transform this model into an ontology. The ontology will be represented by using OWL [21,1]. As we
have indicated before, in our examples, we have chosen OWL due to its widespread use in the
Semantic Web [3]. Besides, OWL allows formalizing a domain by defining classes and properties of
those classes, defining individual’s asserting properties, and reasoning about these classes and
individuals to the degree permitted by the formal semantics of the OWL language. OWL can be
(partially) mapped to a description logic [2] making possible the use of existing reasoners such as
FACT [17] and RACER [16].
The second step, adding semantics, allows the expert (for example, using an ontology editor as Protégé
[12] with the OWL plug- in) to add restrictions, classes and/or properties to the initial ontology.
Knowing the domain of the information source and understanding the structures, the user is able to
provide more semantics to the ontology. Finally, the last step, defining contexts, implies the definition
of the several contexts within an ontology. Besides, the expert user will have to determine the concepts
that are included in these contexts.

Figure 2. A method for data integration

The second stage, building the mappings between the source ontology and the shared vocabulary,
contains two main steps: relating contexts and searching for similarities.
The first step implies defining the relationships between the contexts of the source ontology, built in
the previous stage, and the shared vocabulary. The shared vocabulary has already defined its contexts,
and the expert user must relate them with the user-defined contexts for the source ontology.
The second step, search for similarities, implies searching for similarities between the related contexts.
In previous works [4,5] we have shown the use of two similarity functions proposed in [19,20] in order
to find similarities among the classes and properties included in the related contexts.

The third stage, modifying the OCM and the shared vocabulary, contains two main steps: adding
mapping in the OCM and adding the new information in the shared vocabulary. Both are automatic
steps, that is, we will create a system that implements these steps without user intervention.
The former step is achieved by using the similarities found in the last stage. The OWL ontology
mapping constructors will be used to store the mappings in the OCM component.
The latter step, adding the new information in the shared vocabulary, adds the information the shared
vocabulary does not contain but it is provided by the source ontology. Thus, the shared vocabulary will
make available all the information the sources ontologies offer.

Focusing on the second stage, building the mappings among source ontologies, we will divide this
paper into two sections. Section 2 will explain in detail this stage and the similarity functions used in
the process. These similarity functions have been defined by Rodriguez & Egenhofer in [19,20] and we
have applied them to our method. Other related works can be found in [11,13,14]. For example, in [11]
the similarity measure is not defined directly by a formula. Rather, it is derived from a set of
assumptions about similarity. Another example can be found in [14] where the context becomes
important for similarity assessment, because it affects the determination of the relevant features. The
main advantage of the formulas presented in [19,20] is the combination of two different approaches to
similarity assessment – the feature-matching process and the semantic distance. However, there is
information required by the formulas that is not easy to obtain from the ontologies.

In section 3, we will show our proposal to improve the Rodriguez & Egenhofer’s formulas in order
to take advantages of the semantic information provided by the ontologies. Conclusions and future
work will appear in the last section.

2. Searching Similarities

The Ontology and Context Mapping (OCM) component makes the mapping between the source
ontologies and the shared vocabulary. To do so, the OCM relates the contexts defined in one ontology
with the contexts defined in other ontologies. These relationships can be equality, inclusion,
intersection, etc. Each context contains a set of concepts. Only the concepts included in the related
contexts will be compared. In this way, we avoid comparing every concept in one ontology with every
concept in one another. For instance, Figure 3 shows a part of two ontologies about animals using the
OWL syntax.

Ontology 1 defines a has_part property relating the Animal class with the Organ class. As the
Animal class is the domain and the Organ class is the range of the property, it indicates the organs of an
animal. Besides, the Animal and Organ Classes are also defined and particularly the Animal class has a
minimal cardinality restriction indicating that the animal has at least one organ. Ontology 2 has similar
classes and properties, but it represents the has_part property with a Creature class.

Next, as we can see, in Figure 3, each ontology has defined one specific context: c11 and c21. These
contexts represent a specific query within the databases and include the concepts showed in the figure.
The concepts included in these contexts will be compared between them. For example, we can relate
the contexts as follow:

(O1,Context1) (c11) = (O2,Context2) (c21)

In previous works [5,6], to find similarity values between two concepts within related contexts, we
have used the similarity functions defined in [19,20]. These functions are useful to assess similarity
because the concepts are analyzed in terms of their distinguished features together with their semantic
relations.

PART OF THE ONTOLOGY 1

<owl:Class rdf:ID="Animal">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has_part"/>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#
int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment>A living creature, not a
plant</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Organ">
 <rdfs:comment>A part of an animal that has a
special purpose</rdfs:comment>
</owl:Class>

<owl:ObjectProperty rdf:ID="has_part">
 <rdfs:comment>The organs of an
animal</rdfs:comment>
 <rdfs:domain rdf:resource="#Animal"/>
 <rdfs:range rdf:resource="#Organ"/>
</owl:ObjectProperty>

PART OF THE ONTOLOGY 2

<owl:Class rdf:ID="Creature">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has_part"/>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#
int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment>A living creature, not a
plant</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Organ">
 <rdfs:comment>A part of an creature that has
a special purpose</rdfs:comment>
</owl:Class>

<owl:ObjectProperty rdf:ID="has_part">
 <rdfs:comment>The organs of a
creature</rdfs:comment>
 <rdfs:domain rdf:resource="#Creature"/>
 <rdfs:range rdf:resource="#Organ"/>
</owl:ObjectProperty>

CONTEXTS

Ontology1 = O1
Context 1 = animal_planet

c11 = organs_of_an_animal
……..

(O1,Context 1) (c11) = { animal, organ, has_part}
………………….

CONTEXTS

Ontology2 = O2
Context 2 = creature_planet

c21 = organs_of_a_creature
……..

(O2,Context 2) (c21) = { creature, organ, has_part}
………………….

Figure 3. Part of the two ontologies

The (1) and (2) functions show the formulas where a and b are concepts of two ontologies (O1 and
O2 respectively).

10,,),(),(.),(.),(21212121 =++≥++= afpafp
OO

aa
OO

ff
OO

pp
OO wwwandwwwforbaSwbaSwbaSwbaS

10
\1B\

≤≤
−++

= afor
A|a(a,b))|B(|a(a,b)|AB||A

B||A
S(a,b)

I
I

(1)

(2)

The function (1) is a sum of products (value times weight (w)) where w represents the parts, the
functions and the attributes (wp, wf, and wa respectively). This model is called feature matching, where
parts (Sp) are structural elements of a concept (or class), such as roof and floor of a building, function
(Sf) represent the purpose of the concept, and attributes (Sa) correspond to additional characteristics of a
concept. The function (2) is based on the Tversky’s model [22] where A and B correspond to
description sets of a and b (i.e., synonym sets, sets of distinguishing features, etc). The parts, functions
and attributes are compared using this function. For example, if we compare the parts, |A∩B| represents
the amount of equal parts between two concepts, |A\B| represents the amount of parts of A that are not
in B and α(a,b) is a function that calculate the depth of the concept in a hierarchy. We refer the reader
to [5] for more details.

Now, if we compare the animal concept in the Ontology 1 with the creature concept in the
Ontology 2, the similarity values will be high because the parts, the function and the attributes are very
similar. Figure 4 shows these elements for the Animal class and the Creature class of our example. We
have used WordNet [18] in order to obtain the parts and functions of each concept.

If we applied the functions (1) and (2) to these classes, we obtain the following values, because all
the elements are the same:

1),(1),(

1),(,1),(

21 =⇒=

==

OO
a

fp

creatureanimalScreatureanimalS

andcreatureanimalScreatureanimalS

As we can see, we have compared these concepts without thinking of the underlying ontologies
because the parts, functions and attributes are difficult to obtain from the ontologies. For example, the
parts of a thing (class) in an ontology can be divided into several properties as well as attributes.
Besides, there are abstract classes and properties that do not have parts. So, these similarity functions
only capture some of the information the ontologies provide. For example, the instances of a concept
are not represented, an attribute can be also a class with more attributes and so on, etc.

CLASS ANIMAL

Parts = {eyes, organ, mouth, … }
Function = {a living organism characterized by
voluntary movement}
Attributes = {age, weight, ...}

CLASS CREATURE

Parts = {eyes, organ, mouth ,…}
Function = {a living organism characterized by
voluntary movement}
Attributes = { age, weight, ...}

Figure 4. Parts, functions and attributes of two classes

In this paper, we will propose a guideline to recover all the information the ontologies provide without the need of
consulting other sources. These sources as WordNet are used to obtain information, which is very difficult to extract from
the ontologies. In the next section we will introduce changes on these similarity functions in order to take advantages of the
ontologies and make the use of all data easier.

3. Improvements to the Similarity Functions

The similarity functions (1) and (2) described above, compare two concepts using their parts, functions
and attributes. Besides these three elements, an ontology contains more information. For instance, one
ontology may have the parts (in the way of relations or functions) of the car concept, but also other
properties such as capacity, owner, etc, which can be represented by other attributes.

The extraction of attributes within an ontology can be a hard task because it is very difficult to
determine which elements are attributes and which correspond to the parts of the concept. Therefore,
we propose to modify the function (1) in order to use all the necessary information. Function (2) will
remain unchanged and it will be used by all the next functions.

To make an easier comparison among the concepts, Figure 5 shows how the different elements of
an ontology are divided. When we talk about concepts, we refer to any element of the ontology.

The first division in Figure 4 refers to the comparison of different elements. On one branch, we
have the classes and on the other branch, the properties.

Firstly we analyze the class branch, which is divided into two new branches: common classes and
attribute classes. Both are classes defined in the ontology to represent things about the world. A class is
a unary relation, a set of tuples (lists) of length one. Each tuple contains an object which is said to be an
instance of the class. An individual, or object is any identifiable entity in the universe of discourse,
including classes themselves. The specific role defined in the ontology is the difference between them.
The common classes have the role of representing things about the domain and the attribute classes
have the role of representing information about a common class (attribute). Both roles exist because the
ontologies do not have the concept of attribute. For example, if an information source has represented
the datum name as a string of 20 characters, this name is an object in the ontology with many
properties, it is not a string because the classes and object are about the world and not about data
structures.

Figure 5. Proposed division to compare concepts

On the other branch, Figure 5 shows properties. A property is a set of tuples that represents a

relationship among objects in the universe of discourse. Each tuple is a finite, ordered sequence (i.e.,
list) of objects. A property is also an object itself, namely, the set of tuples.

Figure 6 shows the example of the Ontology 1 defined in OWL with classes and relations, and it
specifies the common classes and the attribute classes according to the way they are defined. The
has_part property is enough to classify organ as an attribute class because it denotes a property about
the animal class. Then, according to this classification, we can define the similarity functions for each
element in Figure 5. Given two related contexts, the common classes within one context (of one

ontology) and the common classes within another context (of another ontology) will be compared using
the similarity function:

10,,),(),(.),(.),(21212121 =++≥++= aeiaei

OO
aa

OO
ee

OO
ii

OO wwwandwwwforbaSwbaSwbaSwbaS

Similarly to the function (1), the function (3) is a sum of products (value times weight (w)) where w
represents the individuals, the explanation and the attributes (wi, we, and wa respectively). The
individuals (Si) are objects of a class/es. An object is an individual of a class if it is a member of the set
denoted by that class. The explanation (Se) is the comment part expressed in natural language within
the OWL definition. For example, a living creature not a plant is the explanation of the animal concept.
The attributes (Sa) correspond to additional characteristics of a concept.

PART OF THE ONTOLOGY 1

<owl:Class rdf:ID="Animal">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#has_part"/>
 <owl:minCardinality
rdf:datatype="http://www.w3.org/2001/XMLSchema#int"
 >1</owl:minCardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:comment>A living creature, not a
plant</rdfs:comment>
</owl:Class>

<owl:Class rdf:ID="Organ">
 <rdfs:comment>A part of an animal that has a special
purpose</rdfs:comment>
</owl:Class>

<owl:ObjectProperty rdf:ID="has_part">
 <rdfs:comment>The organs of an animal</rdfs:comment>
 <rdfs:domain rdf:resource="#Animal"/>
 <rdfs:range rdf:resource="#Organ"/>
</owl:ObjectProperty>

Animal plays the role of a common class
because it defines a thing about the universe of
discourse.

Organ plays the role of an attribute class
because it exists to describe a characteristic
about a common class (animal).

has_part is the property denoting that organ
plays the role of an attribute class.

Figure 6. An example of a common and attribute class and a relation

In our example, we should use the function (3) if we want to compare the Animal and Creature

classes. Figure 7 shows the individuals of the Animal and Organ classes and Creature and Organ
classes, for Ontology 1 and Ontology 2 respectively. These individuals are necessary to calculate the
similarity values.

Note that the Animal class in the Ontology 1 contains both mammal and not mammal animals. But
the Creature class in the Ontology 2 only contains not mammal animals. This difference is not taken
into account in the similarity functions of Section 2 because the individuals are not involved.
Therefore, when we apply the function (3) we will obtain different values.

Firstly, we will apply the function (2) to the attributes. In this case, for both ontologies the only
attribute is the Organ class. Then the function is:

(3)

1

0).1(0.1
1

),(=
−++

=
αα

creatureanimalSa

where α is equal to 0.5 because both classes are in the same hierarchical level (see [19,20] for more
details).
The function applied to the explanation is also equal to 1, 1),(=creatureanimalSe

But the function applied to the individuals will return a different value because the individuals are
different:

67.0
0).1(2.2

2
),(=

−++
=

αα
creatureanimalSi

Then, the function (3) returns the following value:

88.0))67.0()(()1)(()1)((),(21 =++= xwxwxwcreatureanimalS iea
OO

This result denotes that the Animal and Creature classes are not exactly equal as the function (1)
indicated in the previous section. This new value is consistent with the domains because the individuals
in this case denote a little difference in the meaning of the concepts. In this way we make use of all the
information the ontologies provide.

INDIVIDUALS OF THE ONTOLOGY 1

<Organ rdf:ID="mouth"/>
<Organ rdf:ID="udder"/>
<Organ rdf:ID="eyes"/>

<Animal rdf:ID="fish">
 <has_part rdf:resource="eyes"/>
 <has_part rdf:resource="mouth"/>
</Animal>

<Animal rdf:ID="bird">
 <has_part rdf:resource="eyes"/>
</Animal>

<Animal rdf:ID="dog">
 <has_part rdf:resource="mouth"/>
 <has_part rdf:resource="eyes"/>
 <has_part rdf:resource="udder"/>
</Animal>

<Animal rdf:ID="cat">
 <has_part rdf:resource="mouth"/>
 <has_part rdf:resource="udder"/>
 <has_part rdf:resource="eyes"/>
</Animal>

INDIVIDUALS OF THE ONTOLOGY 2

<Organ rdf:ID="mouth"/>
<Organ rdf:ID="eyes"/>

<Creature rdf:ID="fish">
 <has_part rdf:resource="eyes"/>
 <has_part rdf:resource="mouth"/>
</Creature>

<Creature rdf:ID="bird">
 <has_part rdf:resource="eyes"/>
</Creature>

Figure 7. Some individuals of the two ontologies

Now, for the attributes and given two related contexts, the attribute classes within one context (of
one ontology) and the attribute classes within another context (of another ontology) will be compared.
But we will only compare attribute classes of common classes that have already been compared (in the
previous step) and have obtained a high similarity value. The similarity function used is the same; only
the attribute product is deleted because these types of classes do not have attributes. Note that the
function (1) does not provide a way of comparing attribute classes. The attribute does not contain parts
or other attributes. Therefore, our similarity function for the attributes is:

10,),(.),(.),(212121 =+≥+= eiei

OO
ee

OO
ii

OO wwandwwforbaSwbaSwbaS

This function must be applied to the Organ classes of the two ontologies because they do not have
attributes. So, the similarity values are:

83.0),(

67.0
0).1(1.1

1
),(

,1),(

21

21

21

=

⇒=
−++

=

=

OO

OO
i

OO
e

organorganS

organorganS

organorganS

αα

If any class in one ontology plays the two roles (common class and attribute) the function (3) should be
used because the),(. 21 OO

aa baSw will be different from zero.
Finally, another change in the similarity function is applied when we need to compare properties.

The function (1) cannot compare properties as a whole because there is no way to put the domain and
range together in the same function. Therefore, the similarity function applied to the attributes will be
replaced by the comparison of the domain and range into two separate values. Probably, the domain
and range classes have been compared previously and we only must use the resultant values, and not
recalculate them. The similarity function applied to the explanation and to the individuals does not
change. Therefore, our similarity function for the properties is:

5.05.0

),(),())(,)((.))(,)((.),(2121212121

=+=+

+++=

eird

OO
ee

OO
ii

OO
r

OO
d

OO

wwandwwfor

baSwbaSwbrangearangeSwbdomainadomainSwbaS

This function must be applied to the has_part properties of both ontologies. If we assume that the
individuals of these properties are the logical combination between the Animal (or creature) classes and
the Organ classes (for example, one individual can be Dog-Mammals for the Ontology 1, another Cat-
Mammals, etc.) as Figure 7 shows, we obtain the following similarity values:

80.01.5.0.83.0.88.0.)_,_(.)_,_(.

),(.),(.)_,_(

2121

212121

=+++=+

++=

eird
OO

ee
OO

ii

OO
r

OO
d

OO

wwwwparthasparthasSwparthasparthasSw

organorganSwcreatureanimalSwparthasparthasS

Note that the w values are used to give more o less weight to the different elements within the
functions. For simplicity, in this paper we have always used the same weight values. But in some
situations changing these values can be useful. For example, a low value of the individual weight (wi)
would be more appropriated when domains are different.

(4)

(5)

4. Conclusion and Future Work

Based on the use of ontologies and contexts we have briefly presented an introduction of our approach
to deal with semantic heterogeneity problems. We have focused on the second stage of our method in
which the process to find similarities is done. Firstly, we have shown the application of the similarity
functions defined by Rodriguez & Egenhofer using WordNet as another source of information, because
recovering this information from the ontologies is very difficult. Then, we performed two new tasks:
classifying the elements of an ontology and making improvements in the similarity functions. This
classification is useful to retrieve the information the ontologies provide and to use it in the improved
similarity functions. Also, we have created new similarity functions based on the previous functions in
order to compare more detailed components such as classes and relations.

Our proposal depends exclusively on the information provided by the ontologies generating
incorrect results when we work with incomplete ontologies or when some information is not used in the
formulas. Note that our example defines two ontologies with enough information to find a minimum
difference between the concepts. We include the whole information in the formulas.

As future work, we are building an automated tool to assist in the similarity process including all
the information. Besides, we will build empirical proofs to show that our formulas are more effective in
the search of similarity process. Finally, the approach and their extensions need be validated by using
more complex examples and real cases for study.

References

1. Antoniou, G., Harmelen F. Web Ontology Language: OWL. Handbook on Ontologies in Information Systems. Staab &
Studer Editors. Springer-Verlag, 2003.

2. Baader, F., Calvanese, D., McGuiness, D., Nardi, D. and Patel-Schneider, P. editors. The Description Logic Handbook -
Theory, Implementation and Applications. Cambridge Un iversity Press, ISBN 0-521-78176-0, 2003.

3. Berners-Lee, T. Weaving the Web. Texere Publishing Ltd. ISBN: 0752820907. June 2001.
4. Buccella A., Cechich A. and Brisaboa N.R. An Ontology Approach to Data Integration. Journal of Computer Science

and Technology. Vol.3(2). Available at http://journal.info.unlp.edu.ar/default.html, pp. 62-68, 2003.
5. Buccella A., Cechich A. and Brisaboa N.R. An Ontological Approach to Federated Data Integration. 9° Congreso

Argentino en Ciencias de la Computación, CACIC’2003 , La Plata, October 6-10, pp. 905-916, 2003,.
6. Buccella A., Cechich A. and Brisaboa N.R. A Context -Based Ontology Approach to Solve Explanation Mismatches.

Jornadas Chilenas de Computación. JCC 2003. Chillán, Chile, November 3-9, 2003.
7. Buccella A., Cechich A. and Brisaboa N.R. An Ontology-based Environment to Data Integration. VII Workshop

Iberoamericano de Ingeniería de Requisitos y Desarrollo de Ambientes de Software. IDEAS 2004, pp. 79-90, 3-7 May,
2004.

8. Chen, P. The Entity-Relation model- Toward a unified view of data. ACM Transaction on database systems, Vol.1(1), pp. 9-36,
March 1976.

9. Codd, E. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM , Vol.13(6), pp. 377-
387, 1970.

10. Fowler, M. and Scott, K . UML distilled , Addison-Wesley 1997.
11. Lin, D. An Information-Theoretic Definition of Similarity. Int’l Conf. Machine Learning (ICML’98), 1998.
12. Gennari, J., Musen, M. A., Fergerson, R. W., Grosso, W. E., Crubézy, M., Eriksson, H., Noy, N. F., Tu, S. W. The

Evolution of Protégé: An Environment for Knowledge-Based Systems Development. Technical Report, SMI-2002-
0943, 2002.

13. Goldstone, R. Similarity, Interactive Activation and Mapping. Journal Experimental Psychology: Learning, Memory
and Cognition. Vol. 20, pp. 3-28, 1994.

14. Goldstone, R., Medin, D., Haberstadt, J. Similarity in Context. Memory and Cognition, Vol. 25(2), pp.237-255, 1997.
15. Gruber T. Ontolingua: A Mechanism to Support Portable Ontologies. Knowledge Systems Laboratory, Stanford

University, Stanford, CA, Technical Report KSL 91-66, 1992.

16. Haarslev, V. and Moller, R. RACER system description. In P. Lambrix, A. Borgida, M. Lenzerini, R. Moller, and P.
Patel-Schneider, editors, Proceedings of the International Workshop on Description Logics, number 22 in CEUR-WS,
Linkoeping, Sweden, July 30-August 1 1999.

17. Horrocks, I. The FaCT system. In H. de Swart, editor, Automated Reasoning with Analytic Tableaux and Related
Methods: International Conference Tableaux'98, number 1397 in Lecture Notes in Artificial Intelligence, pages 307--
312. SpringerVerlag, Berlin, May 1998.

18. Richardson, R. and Smeaton, A. Using WordNet in a Knowledge-Based Approach to Information Retrieval. Technical
Report CA-0395, Dublin City Univ., School of Computer Applications, Dublin, Ireland, 1995.

19. Rodriguez, A., Egenhofer, M. Determining Semantic Similarity among Entity Classes from Different Ontologies. IEEE
Transactions on Knowledge and Data Engineering, Vol. 15(2), pp. 442-456, March/April 2003.

20. Rodriguez, A., Egenhofer, M. Putting Similarity Assessments into Context: Matching Functions with the User’s
Intended Operations. Context 99, Lecture Notes in Computer Science, Springer-Verlag , pp. 310-323, September 1999.

21. Smith, M.K.,Welty, C., McGuinness, D.L. OWL Web Ontology Language Guide. W3C,
http://www.w3.org/TR/2004/REC-owl-guide-20040210/. 10 February 2004.

22. Tversky, A. Features of Similarity. Psychological Rev., Vol.84, pp. 327-352, 1977.
23. Visser, P., Jones, D., Bench-Capon, T., Shave, M. An Analysis of Ontology Mismatches; Heterogeneity versus

Interoperability. AAAI 1997 Spring Symposium on Ontological Engineering, Stanford University, USA; also appeared
as AAAI Technical Report SS-97-06, 1997.

24. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H. Schuster, G., Neumann, H. and Hübner, S. Ontology-based
Integration of Information - A Survey of Existing Approaches, In Proceedings of IJCAI-01 Workshop: Ontologies and
Information Sharing , Seattle, WA, pp. 108-117, 2001.

