
Building Domain Specific languages upon the
Dbject Constraint language (DCl)

Extended abstraet

Antonio Dominguez

antonio@ultra.sig.uvigo.es

Universidade de Vigo

Abstract

The paper aim is to demonstrate how to extend oel, both with new data
struetures and operations, in order to use it as a domain specific specification
language. This data structures and operations are domain specific, and identified as a
result of a domain analysis process. In conjunction with appropriate transformation
techniques it will be possible togenerate code directly from system specifications.

1. Introduction

Software Information Systems Engineering has usually three phases: system
specification, system design and system implementation. The first phase is probably the
most important and also the most difficult. In this initial stage, software analysts must
understand the business process and produce a system speeification. However it is only
possible to verify the specification correctness when the final system is built and was up
and running for a long time.

Most approaches on improving software quality, redueing software production and
operation costs, and time to market, are centered on various software reuse techniques.
This implies moving to a dual software engineering process, the first of that is called
domain engineering, and the second one is the traditional software systems engineering
process. Domain Engineering[1] has three main phases: domain analysis[2], [3], domain
design and domain implementation .

Although with the dual software development approach it is possible to achieve
improvements in software engineering, it· is difficult to achieve these improvements in
some domains 1, mainly beca use each reusable software component must be reused
several times in different systems in order to return the initial investment.

Clearly using a specification language, common both to software engineers and
system users, can improve the software engineering process. This paper describes an
approach for using OCl as a base to obtain domain specific languages, that can be used
to build system specifications. And those specifications maybe .. transformed in final

1A domain is se en as a set ofrelated systems[4], [5], [6], [7]

systems.

2. Domain Specific Specification Languages.

Generic specification languages traditionally are seen difficult, and definitely not
user oriented. Specification languages common to software engineers and systems users
must be easy and useful. A good approach to obtain specification languages more user
friendly is restricting its generality to a very known domain[8].

In many cases those languages are seen as a lateral product of the domain
analysis, and used to ease the process of documenting the domain components, and
domain structure. Although the most of the domain analysis techniques refer in same way
to this kind of languages, there is no a known and formalized process to obtain DSl in a
given domain. .

The approach of considering this languages as specification languages, that can
be used in the given domain to build specifications of new information systems can be
improved if specifications written with these languages can be transformed in several
steps into final code, using transformational approaches[9], [10], [11], [12].

3. The Object Constraint Language as a specification language.

The Dbject Constraint language is a formal language that has been developed as
a business modeling language within the IBM Insurance division, and adopted as part of
UMl(Unified Modeling language)[13], [14], [15]. Useful on writing system constraints, can
be used associated with UMl models or any other modeling language. It is not a
programming language, so it is not possible to write program logic or flow control[16]. OCl
expressions, when evaluated simply return a value. So it can be used as a query
language, to write queries that return the values satisfying the constraint specified by the
query.

A constraint is basically an abstract representation of the possible values a data
element or system function can take, can manipulate, or may return. Constrains refer only
to a relevant aspect of the component being described, so it is possible to use a set of
constraints to describe each component. Using a constraint language is an important step
in order to formalize the system specification process??

DCl can be used as a base to implement domain specific languages, if some of
his limitations are removed, and additional funcionalities are added. As a query language 2

DCl has several Iimitations. DCl includes. as primitive operations union, intersection and
difference. Selection can be expressed in DCL. But it has problems when dealing with
cartesian product, projection, quotient and join. Definitely it is no a good language for data
manipulation, but it can be easily extended to do so and to express domain functionality,
as showed in the nest section.

2Query languages, proposed initialIy by Codd are those that can sirnulate tuple calculus or
the equivalent relational algebra or dornain calculus. Predicate calculus languages are those
languages where queries describe a desired set oftuples by spifying a constraint they rnay satisfy.

2

11 •.

..""
11,

II.!

.. ""
"l

..~

.J
'I~¡

.. "'"

..)

.. :t
lit.

" ,¡

11.
...1

.. ~

.J

.}

. .)

..)
'"
~)

..)

..)

.. l

..)

..)

. .:l
11 •

•• 11

4. Extending DCL for Business Domain Modeling

A domain model is the result of a domain analysis process. Obtaining in this
process a domain specific specification language is an additional effort that can bring us
many useful advantages, that can be improved in case of having a transformer, that were
able to generate systems automatically.

Using Oel as a base for a formal domain specific language is based in the two
following assumptions:

1. As constraint language can be easily extended with new constraint clauses. The
new clauses are identified in the domain analysis process. Examples of this kind
of clauses can be:

-Temporal constraints, and or real time constraints.

-Order constraints and arquitechtonic constraints ...

-Data flow constraints, and so on.

2. It is possible to implement automatic generation of code, using transformation
techniques. So using appropriate transformations, different system versions can
be obtained by changing system specifications and/or system infrastructure,
simple by doing a new (very low costly)code generation process.

In doing the first it is necessary to consider business domains as having certain
abstract structure. First there are domain data elements, second there are domain actors,
internal and external of the domain, a finally there are domain activities or funcionalities.
There is not the objective of languages being discussed there to deal with domain data of
with interactions between activities. The main objective is to de al with the description of
doma in activities or funcionalities. In doing that, it is necessary to include in the language
clauses useful to describe easily this funcionalities, to build an appropriate transformation
mechanism.

5. Conclusions

Obtaining as products of domain analysis a Domain Specific Specification
language, and an appropriate set of transformers will allow automatic code generation of
systems from systems specifications, users and systems engineers can communicate
using common tools. If necessary different versions of the same system can be easily
obtained, thus facilitating the construction of families of systems.

References

[1] M. Simos. 1987 (oct). The Domain-Oriented Software Lite Cycle: Towards an Extended
Process Model tor Reusability, trom Proceedings of the Workshop on Software Reuse. Boulder,
CO.

[2] G. Arango and R. Prieto-Diaz. 1991. Domain Analysis and Software Systems Modeling IEEE
Computer Society Press. Chapo Domain Analysis Concepts and Research Directions:,' pages 9-

3

33.

[3] G. Arango. 1993. Domain Analysis Methods, from Software Reusability., ed. W. Shaefer and R.
Prieto-Diaz and M. Matsumoto Ellis Horwood.

[4] Yellamraju V. Srinivas. 1991. Domain Analysis and Software Systems Modeling IEEE
Computer Society Press. Chapo Algebraic specification fo Domains, pages 90-119.

[5] M. Natori and A. Kagaya and S. Honiden. 1996 (apr). Reuse of Design Processes Based on
Domain Analysis, from Proceedings of the Fourth International Conference on Software Reuse.
Pages 31-40.

[6] 1996. Organization Oomain Modeling (OOM) Guidebook, Version 2.0. Software Technology for
Adaptable, Reliable Systems (STARS), Technical Report STARS-VC-A025/001/00.

[7] M. Simos. 1997. Lateral Domains: Beyond Product-Line Thinking, from Proceedings of the Eight
Workshop on Institutionalizing Software Reuse

[8] Valeri N. Agafonov. 1997. Reuse of General Specification Notions and Specification
Languages, from Proceedings of the Eight Workshop on Institutionalizing Software Reuse.

[9] J. do Prado Leite and M. Sant'Anna and F. de Freitas. 1994. Draco-PUC: a Technology
Assembly for Domain Oriented Software Development, from Proceedings of the Third
International Conference on Software Reuse. Pages 94-100.

[10] James Neighbors. 1981. Software Construction Using Componets. PhD thesis. University of
California at Irvine.

[11] J. Neighbors. 1984 (sep). The Draco Approach to Constructing Software from Reusable
Components. IEEE Transactions on Software Engineering, 10(5), pages 564-573.

[12] J. Neighbors. 1991. Domain Analysis and Software Systems Modeling IEEE Computer Society
Press. Chapo DRACO: A Method for Engineering Reusable Software Systems, pages 34-52.

[13] UML. 1997. UML Summary. Technical reporto Rational Software Corporation.

[14] UML. 1997. UML Notation Guide. Technical reporto Rational Software Corporation.

[15] UML. 1997. UML Semantics. Technical reporto Rational Software Corporation.

[16] UML. 1997. Object Constraint Language Specification v1.1. Technical reporto Rational
Software Corporation.

4

