
A New Way to Classify and Retrieve Reusable Components:
the Finder Metaphor

.losé Luís Barros Justo [ibarros@uvigo.es]
Antonio Domínguez Iglesias [antonio@sig.uvigo.es]

LSI Dept.. University ofVigo .
Pontevedra, 36002. Spain

ABSTRACT

Our research group ISRI (InCormation Syslems Reuse
on Internet) is working in a new c1assification scheme
for reusable software (assets) based on the idea oC
hyper-spherical finders. The Finder metaphor deals
with a multidimensional space where the components
are positioned according to its functional description.
and vision fields. hiper-spheres. which can move in
space and see the components. Our approach has
sorne advantages over other techniques and
methodologies, for example: we stan with an empty
space (the universe) and automatically fill it with
reusable assets, which describe the application
domain, but the space itself is dynamically generated
as components are inserted; furthermore, we can
build different finders, alter its radius or its kind of
movement, without the need of reclassifying the
repository, allowing a dynamical c1assification. We
developed and tested a simple but practical method to
compute similarities, allowing to locate assets in this
kind of universe, generating finders and modifying
them, querying the universe and retrieving similar
components. The tested values of recall and precision
were similar or better than other known methods but
ours is by far easier to implement and maintain. An
extensive list of references about reuse and
c1assificationlretrieval problem. where interested
readers can investigate more deeply. is offered.

Keywords: reusable components. repository
organization, classification. retrieval.

INTRODUCTION

Many papers were made about reuse. reusable
components and repositories organization . AII these
works underline the problems related with human
intervention. huge amount of information.
c1assification and retrieval. Perhaps the main
drawback of actual solutions lies in the need of
human intervention, automatic suppon is considered
crucial but non e of the approach offers it. So we
address this problem considering the following two
chal1enges:

l. Automatic generation of the c1assification
space

2. A powerful1 but easy to implement retrieval
technique

InCormation Retrieval (IR) techniques c1aim that they
can automatically extract information about
components (often textual documents) and classify
them. but assets from the software development life
cycle hardly ever resemble text documents in style or
content . Knowledge-based systems (KBS) need a
prcvious (human-dependent) acquisition phase in
order to c1assify components. So we need to address
this problem from another perspective. with
techniques that allow the automatic inclusion of
assets in the repository, automatic generation of a
classification space, easy processes to reclassify or
reorganize the repository, adaptable searching
mechanisms, and so on.

THE FINDER MET APHOR

A finder is a multidimensional sphere with a prefixed
radius. which can contain components. To be capable
of doing this the finder needs to be mobile, their
movement across the space al10ws different
cOl1ections of components to be captured and grouped
according to their similarities. A finder has a center
that represents the average similarity of al1 the
components which are seen by it. the first time this
center is located at the same position of the first
component but. as new components are added to the
space and were captured by the finder, the center
moves according to attraction rules. This dynamical
behaviour of the finder guarantees its representability
of common attributes of components that belong 10 it.
When a finder center moves across the space it can
capture other existing components, we call that
absortion. and can leave others, leaving. causing new
movements. This process iteratively repeats itself
until no new components are captured or left.

Representation of components
We propose a representation technique similar to
those in [18) [21). In our method each component is
represented by a functional description (FD)
consisting in a set of features which in turn were
made oftriplets: <action-object, importance> where:

• action reminds us the functionality of the
component (what it does)

• object mean s where the action applies
• importan ce gives an idea of to what extent

this couple action-object represents the
component with respect to the global set of
features, in other words, the relative
imponance of this action-object within its
FD.

We can sel an imponance scale madc of five values:
VI. (Very Lo\\). 1. (1.0\\'). M (Medium). 11 (lIigh)
and VB (Ve!) lIigh). In this way we have a halanced
scale with two values in each arm and a middle one
as an average. In order to compute similarities hased
in this scalc we use a mapping function between
letters and imponance values:

VL = 1116 L = 1/8 M = 11. H = Y. VH = 1

which really means fuzzy values for this attrihute
(importance).

A sample FD with three features could be the
following:

FD:
open-fi/e.L
sor/~{iIe. I 'H
close~fi/e.L

Thus, our repository will be filled with this kind of
componen/s. functional descriptions as triplets
<ac/ion-object.importance>. We will have meta­
information about the componen!, for example:
author, where the component is really located,
language, adaptation guidelines and so on.

Component classification
Our classification scheme is based in a positional
approach, components are located in a
multidimensional vector space according to its
functionalit)'. In fact we do not work with real
components, instead we use a description of the
components (FD), actually a functional description in
a simple representation language, with restricted
vocabulary, and the help of a thesaurus, allowing an
easy management of sinonyms and homonyms. So,
we can easily modify a description without the need
of manipulating the real component which remains
untouched. Building functional descriptions is a labor
of the repository administrator, who is also
responsible for components insertion, modification
and/or deletion. When a new component is to be
inserted in the repository its functional description is
compared with functional descriptions of other
special elements named reference components, and a
similarity value is computed for each reference
componen!, then we assign the following position to
the new inserted component:

C = (sim(c'RI), sim(C,R2), sim(C,R.,»

Where n is the number of reference components.
Let's suppose we need to know how similar two
components C I and C2 are, then we will need to build
the following matrices:

l. the EQ (Equivalence) matrix expresses the
degree of compatibility between the i-th feature
of C 1 and the j-th feature of C2• So EQ will be an

fC, x .r-C~ matrix. If <action-object,> =

<action-o~iecti> then EQli,il=1. O otherwise.
") the IMP (IMPonance) matrix shows the degree

of satisfaction that FD of C I is compatible (01'

can he replaced) with the FD of C2. It shows the
importan ce betwcen the i-th fcature of el and j­
th of e2, n:mcmher thal EQ do nol consider
impartance jusI <action-object>. This
importance is computed as min(1, importance 01
fC2 .' impor/ance 01 fC,). If EQ[ij]=O then
IMPli.i]=O, because features are not
comparables. 1MP isfC~ xfC,.

3. the SAT (SATisfaction) matrix combines EQ
and IMP. and is computed as EQ x IMP.

4. the I (lmportance) matrix holds the normalized
values ofimportance ofC I .

5. the SIM (SIMilarity) matrix, finally. is the
product SAT x 1. Then. entry SIM[k] represents
a weighted satisfaction index for feature k of C I

with respect to e2•

A working example:

festure C I

number
1 <t<>g-stack. M>
2 <push-element. VH>
3

Aecording to the table aboye, we will have:

EQ= [2x3]
IMP = [3x2]
1= [2xl]
SAT= [2x2]

EQ~(~

(CI x C2)
(C2 x CI)
(CI xl)
(EQ x IMP -7 2x3 X 3x2)

~ ~J
SIM=[2xI] (SATxI 72x2X2xI)

C l

<size-array,M>
<size-aueue.L>
<t~-stack, VL>

IMP[3.1] = min (1. VLlM) = min (1, (1/16)/(1/4» =
min (1, 'l.) = 0,25

IMP=[~ ~oJ 0,25
1[1) = M / (M + VH) = (1/4) / (5/4) = 1/5 = 0,2
1[2] = VH / (M + VH) = 1/ (5/4) = 4/5 = 0,8

1 =(0,2J
0,8

SAT = EQ x IMP, so SAT[1.1] =0,25 and O all
others

o
o

Finally, SIM = SAT x IN. so

The similarity between el and c~ is thcrcli.lre 0.05.
and it is obtained summing up all the e1cmcnts of
SIM.

Component insertion
Once we have the position of e then we nced to
assign it to an existing finder or create a nc,," one.
The process is very simple:

•

•

•

•

compute distance from e to centers of
existing finders (distance is defined as
II-sim!)
if there exist centers which distance is
less that a prefixed threshold Ihen e
will be long to the nearest center, else a
new finder is created with center
coincident with C.
if e was assigned to an existing finder
then. move this finder center
while this movement implies
eapturing or leaving components
move it again

However, the algorithm is a littlc bit more
complicated. Suppose a threshold value U and the
following variables:

l. dim n° of dimensions = nO of reference
components (*initial value = 0*)

2. numvis n° of finders (*initial value =
0*)

3. n n° of components in the repository
(*initial value = 0*)

4. lev list of components assigned to a
finder (*store the value n"')

5. Iv list offinders ("'Iist of lcv"')

then, the algorilhm to insert components will be:

1.

2.

3.

4.

n = n + 1: verify if e" features are alreadv
reference components. •

1.1. No, then (*build reference
components*)

1.1.1. for i = I to numear do
1.1.1.1. dim = dim+l:

~m,=CIII
for i = I to dim do:
2.1. compute sim(e".R¡}. as explained

before
e" (sim(e".R I). sim(e".R2) •••••

sim(e".R,¡¡m»
for i = 1 to numvis do:

5.

6.

7.
8.

9.

4.1. compute distance from e" to
\'IIIml'/.' ("'the center ofV"um",.,)

4.2. if II-sil1(C (1')! < U then
! ,," , • .,"" ¡-

possiblelnumvis] := I-sim
4.3. cisc po'\"siblel numvis:=O
ir not cmpty possible. then
5. l. sort possible in ascending order
5.2. choose the finder closest to en'
e1se: (* build a new finder"')
6'.1 . numvis = numvis + 1
6.2. C""lIm",.\ = e"
6.3. new lev (*Iev number numvis*)
add n to lev (*assing e" to V""m,".' finder"')
verify if VIII,m",., can "see" another
components. if it can, then:
8.1. ror each component e seen by

VII/,mVl.' do:

end

8.1.1. assing e to V""mvi'
("'update lev "')

8.1.2. move (V"uml'l,')

eomponent retrieval
Retrieval of components follows a simple way, we
treat a query as a functional description, then we try
to insert this new component as if it were a normal
component. The process is exactly the same as
insertion but. when a finder is selected to cover this
component instead of inserting it Ihe tool retrieves all
the components that belong to that fin der. If no finder
was selected in the previous process Ihen Ihe tool
issues a warning message: "No similar components
were found, please tr)' another query".

CONCLUSIONS

Recall and prccision values tested were similar or
better than other known methods . One key aspectof
our approach is the easy implementation of a
prototype. this means that algorithms to insert
components. automatic generation of reference
components (space). computation of similarities and
creation of finders were very simple. Movement of
finders were. perhaps, the most difficult part of Ihe
algorithm. due to the consideration of multiple
situations which can happen, such as capturing of
new components or leaving of existing ones. Another
key functionality of our approach is the capability of
modifying the finders width. Ihe repository
administrator can adjust the Ihreshold value (distance
from finder center to farthest components) to generate
a new repository configuration, he or she can do that
to guarantee a good retrieval behaviour, to obtain
more recall the radius is enlarged, to get more
precision is shortened.

When making queries to the repository, the reuser has
to construct a query as a FD. We believe that it would
be quite easy for the reuser to make a query since the
FDs are simple and easy to construct. and the reuser
need not know exact figures to insert as importances.
The simple mapping of the importances into
abbreviations such as H (for high) or L (Iow) to
represent functionalities of various features within

FDs would be easier than to express queries in terms
01' reuse metrics. where sometimes. more exactness is
n:LJuin:o in the ahscm;c of a simple ano non­
CIllllpli\.:atco lIlapping systcm.

In our schclllc the repository is organized
aUlomatically. and places no constraints in the event
that more components are added to the repository.
This is imponant since. software development is a
dynamic process which requires man)' changes in the
syslcms developed throughout the software lifecycle.

A definite advanlage with our classification schemes
is that they are implemented apan from the similarity
computation method. that is. there is very low
coupling between these two subsystems in their
implementation. This implies that one could easil)'
replace the current similarity compulation method
with another similarity computation method. and in
this case. then our classification scheme would still
function with minor modificalions required to the
classilication subsystem. see figure below.

Classilication subsystem I
t t ...

o .,
Similarity retrieval .. t' e
computation ~subsystem .E~

..
.... = subsystem r- .- .c o

~ .. ~
c..'" e .. =
ti: :: o ...

Classilication/retrieval
System

FURTHER ACTIVITIES

More research is needed in knowledge representation
techniques to guarantee an easy comprehension by
the reuser. These techniques must allow automa:tic
extraction from di verse information sources such as
expenso documentation, source code, other
repositories, and so on. We also need to combine
present search tools such as spiders and intelligent
agents. user profiles. visual querying languages.
hypertext navigation, search histories and user
responses (feedback). The faet that many distributed
repositories can be interconnected also implies the
need for a common interface and links between
difTerent abstraction levels of components.

REFERENCES

[1] Abran, A, Maya, M., Measurement of Functional
Reuse. WISR8. Ohio State Universily. Columbus. Ohio,
USA, March 23-26. 1997

[2] Agafonov. V.N., Reuse ofGeneral Specification Notions
and Specification Languages, WISR8, Ohio State
University, Columbus. Ohio. USA. March 23-26. 1997

[3] M. D'A1essandro, P. lachini, and A Martelli. The
generic reusable component: an approach 10 reuse
hierarchical 00 designs. In Proceedings of. Ihe 2nd

Intemational Workshop on Software Reusability. March 24-
26. Lucca.ltaly. pages 39--46.1993.

141 AHemang. D .. Livcr. B .. Functional Reprcsentation li)r
Reusable Compollcnts. WISR7. Andersen Consulting
Center. SI. Charles. lIIinois. USA. August. 1995

[5J Atkinson. S .. A Unilying Model for Retrieval from
Reusable Software Librarics. TR95-41. CS Dept..
University ofQueensland. Australia. Dccember. 1995

161 Atkinson. S .. Examining Behavioural Rctrieval. WISR8.
Ohio State Univcrsity. Columbus. Ohio. USA, March 23-26.
1997

[7] S. Amold and S. Stcpoway. The REUSE system:
Cataloging and retrieval of reusable software. In
Proceedings ofCOMPCON '87. pages 376--379, 1987.

[8] Borstler. J., Feature-Oricnted Classification for Software
Reuse. Proc. of SEKE'95. Rockville. MD. USA pp.: 204-
211., June 22-24. 1995

[9] Browne. S .. Dongarra. J .• Hohn, K .• Niesen, T .• Software
Rcpository Interoperabilit)'. TR UT-CS-96-329. Jul)', 1996

[10] Browne. S.V., Moore, J.W., Reuse Library
Interoperability and Ihe World Wide Web, SSR97, January
2, 1997

[11] Burton, BA, Aragón. R.W .. Bailey, SA,Koehler,
K.D., Mayes, LA, The Reusable Software Library, IEEE
Software. Vol. 4. N° 4. pp.: 25-33, July, 1987

[12] Cheng. B.H.e.. Jeng. J-J., Reusing Analogous
Components, Technical Report MSU-CPS-94-28. April
1994 (revised June 1995), June, 1995

[13] W.G. Cho, Y.W. Kim. and J.H. Kim. CLlS: A software
reuse Iibrary system with a knowledge based information
retrieval model. In Procecdings of the Pacific Rim
Intemational Conference on Al, pages 402-407, 1990.

[14) Ciaccia. P.. PateHa. M.. Zezula. Poo Processing
Complex Similarity Queries with Distance-based Access
Methods. Sept. 15.1997

(15) Cybulski. J.L., Neal. R.D .. Kram. A. Allen, J.e.. Reuse
of Early Life-Cycle Artefacts: Workproducts, Melhods and
Tools. Annals ofSoftware Engineering. Vol 5., 1998

[16) Damiani. E .• Fugini. M.G., Automatic Thesaurus
Construction Supporting Fuzzy Retrieval of Reusable
Components. Proc. of Ihe 1995 ACM Symp. on Applied
Computing. pp. 542-547,26-28 Feb. 1995

(17) Damiani, E., Fugini, M.G., Bellettini, C., A Hierarchy­
Aware Approach to Faceted Classification of Object­
Oriented Libraries, Politecnico di Milano, Dipartimento di
Elettronica e Informazione. Raporto interno 001-97,
Gennaio, 1997

(18) S. Faustle and M.G. Fugini. Retrieval of reusable
components using functional similarity. Technical Repon
ITHACAPOLlMI.E.6.92, University ofPavia. 1992.

[19) Finnigan. P,J., Holt. R.e., Kalas, l.. Kerr, S.,
Kontogiannis, K., el all.. The Software Bookshelf, IBM
Systems Joumal, Vol. 36, N° 4. 1997

(20) Frakes. W.B .. Pole, T. P., An Empirical Study of
Representation Melhods lor Reusable Software
Components. EEE Trans. on Software Engineering, Vol. 20,
N° 8. pp.: 617-630, August, 1994

(21J M. Fugini and S. FaUSllc. Kelrieval of n:usaole
componenls in a devdopmcnl mlimnaliun syslem. In
I>roceedings of Jrd Internaliunal W,'rkshop un Sofiwarc
reusaoilily IWSR-3. pages IN--9!!. 19<).,

(22J Hcnningcr. S.. Supponing lhe Cunslrllcliull and
Evolulion of Componenl Kep()silorie~. Proc. uf 11ll. Cun!"
On Software Engineering. Berlin. FRG. March. 1996

(23) Henninger. S.. An Evollllionary Approach lo
Conslrucling Eflcclive Soliwarc Reusc Reposiloric~. ACM
Trans. On Software Engineering and Melhudulug~. Vol. 6.
N" 2. pp.: 111-140. April. 1997

(24) IsakowilZ. T .. Kauffman. R..I .. Supponing Search for
Reusable Soliware Objecls. IEEE TSE. Vol. 22. N° 6. pp.
407-423,June, 1996

(25) Jeng. J-J.. Gheng, B.H.C.. Using Formal Melhods lo
Construct a Software Componenl Library. Lecturc NOles in
ComputerScience. Vol. 717. pp.: 397-417, Sepl. 1993

(26) Jilani, L.L.. Desharnais. J., Frappier. M .. Mili. R .. Mili.
A., Retrieving Software Componcnts Thal Minimize
Adaptation Effon. Automated Software Enginecring.
ASE'97, 121h IEEE Inll. Conf.. Nevada. USA.. Novemoer 1-
5,1997

(27) Jilani. L.L., Mili. R., Mili, A.. Approximale Component
Retrieval: An Academic Exercise or a Practical Concem?
WISR8, Ohio State University, Columbus, Ohio, USA,
March 23-26, 1997

(28) Jurisica, l., A Similarity-Based Retrieval Tool for
Software Repositories, 3rd Workshop on Al and Software
Engineering, IJCAI-95. Montreal. Quebec. Canada, April
20-21,1995

(29) Jurisica, l., Glasgow, J., Case-Based Classilicalion
Using Similarity-Based Retrieval. 8th IEEE Intl. Conf. On
TooIs with Al. Toulouse, France .. November 16-19, 1996

(30) Jurisica, l., Similarity-Based retrieval for Diverse
Bookshelf Software ReposilOry Users. IBM CASCON
Conference. Toronto, Canada. November 10-13. 1997

(31) Lim, W.C., Applying Cluster Analysis to Software
Reuse, WISR7. Andersen Consulting Center. SI. Charles.
lIIinois, USA, August, 1995

(32) Maarek, Y.S., Berry. D.M.. Kaiser, G.E.. An
Information Retrieval Approach For AUlomatically
Constructing Software Libraries. EEE Trans. on Software
Engineering, Vol. 17, N° 8. pp.: 800-813. Augusl. 1991

(33) Meyer, B., Lessons from the Design of the Eiffel
Libraries, Communicalions of the ACM. Vol. 33, N° 9.
pp.:68-88, Sep!.. 1990

(34) Mili, R., Mili, A., Minermeir, R.T.. Storing and
Retrieving Software ComponenlS: A Relinement Based
System, EEE Trans. on Software Engineering. Vol. 23, N° 7.
pp.: 445-460, July. 1997

(35) Nato Communications and Information Systems
Agency, NATO Standard for Management of a Reusable
Software Component Librllr)', 1991

(36) NolI. J., Scacchi. W., Integrating Diverse Information
Repositories: A Distributed Hypenext Approach. IEEE
Computer, Vol. 24, N° 12. pp.: 38-45. December. 1991

[37] E. Ostenag. J. Hendler, R. Prieto-Diaz. and C. Braun.
Computing similarity in a reuse library system: an AI-based
approach. ACM Transactions on Software Engineering and
Methodology, pages 205--228, July 1992.

13S1 Palhak. P .. A Simulalion Model of Documenl
Infimnation Rclric\'al Syslem ",ilh Rclc\'ancc Feedback.
hit p. /'W" w. umich. cdu/-pra"ccn/n:searchlirmodcl.html

1391Puulin. J.S .. Igh:sias. 1\:.1' .. Experiences with a Faceted
Classi ficalion Schcmc in a Large Reusable Software Library
(RSL). Proc. of COMPSAC'93. Phoenix-AZ. pp. 90-99.,
No\'. 3-5.1993

140) I'oulin. J.S .. Werkman. I\:.J .. Software Reuse Libraries
wilh Mosaic. Proc. of 2nd World Widc Weo Conlerence'94:
Mosaic and the Web. 1994

141) PrielO-Diaz. R .. Implemenling Faeeted Classilication
lor Software Reuse. Communications of the ACM. Vol. 34,
N° S. pp.: SR-97. May, 1991

142) Ribciro. A.N .. Manins. F.M., A Fuzzy Query Language
for a Sollwarc Reuse Environmenl. WISR7, Andersen
Consulting Center, SI. Charles. lIIinois. USA. August, 1995

143) RIG: Reuse Librar)' Inleroperability Group, Standard
Reuse Library Basic Interoperability Data Model (BIDM),
IEEE Slandards Dcpanmenl. January. 1995

144) G. Salton. J. Allan. and C. Buckley. Automatic
slructuring and retrieval of large text files. Communications
ofthc ACM, 37(2), Februllr)' 1994.

145) G. Sindre, E. Karlsson. and T. Staa1hane. Organizing
large libraries of reusable components: the REBOOT
approach. Joumal of Software Engineering and Knowledge
Engineering. April 1992.

[46) G. Sindre. E. Karlsson. and T. Staalhane. A melhod for
software reuse through large componenl libraries. In
Proceedings of the Intemational Conference on Computing
and Information, pages 464--468.1993.

147J Sindre. G .. Sorumgard. S., Terminology Evolution in
Componenl Libraries. Proc. ofTerminology anl! Knowledge
Engineering (TI\:E'93). Cologne-Germany .. August 25-27,
1993

[48) Siven. L.. Sindre. G.. Stokke, F.. Experiences in
Reusable Components Classification. Proc. of 2nd
Intemalional Workshop on Software Reuse (IWSR-2).
Lucca-Italy, March 24-26, 1993

[49J Spanoudakis. G., Constantopoulos, P., Similarity for
Analogical Software Reuse: A Computational Model,
ECAI'94. Edited by A. Cohn, Published by John Wiley &
Sonso Ltd .. 1994

[SO) Spanoudakis, G., Constanlopoulos, P., Measuring
Similarity Between Software Anifacts, SEKE '94, Jurmala,
Latvia. pp. 387-394. June 1994

[SI) Terry, R.H., Pricc, M., Wellon, L., Standardized
Software Classilication in the World Wide Web, WISR7,
Andersen Consulting Center, SI. Charles, lIIinois. USA,
August, 1995

[52) Veerasamy, A., Hudson, S., Navathe, S., Visual
Interface for Textual Informalion Retrieval Systems, Proc.
of the Third IFIP 2.6 Working Conferencc on Visual
Database Syslems. 1995

