A New Way to Classify and Retrieve Reusable Components:
the Finder Metaphor

José Luis Barros Justo [jbarros@uvigo.es]
Antonio Dominguez Iglesias [antonio@sig.uvigo.es]
LSI Dept.. University of Vigo '
Pontevedra, 36002. Spain

ABSTRACT

Our research group ISRI (Information Systems Reuse
on Internet) is working in a new classification scheme
for reusable software (assets) based on the idea of
hyper-spherical finders. The Finder metaphor deals
with a multidimensional space where the components
are positioned according to its functional description.
and vision fields, hiper-spheres. which can move in
space and see the components. Our approach has
some advantages over other techniques and
methodologies, for example: we start with an empty
space (the universe) and automatically fill it with
reusable assets, which describe the application
domain, but the space itself is dynamically generated
as components are inserted; furthermore, we can
build different finders, alter its radius or its kind of
movement, without the need of reclassifying the
repository, allowing a dynamical classification. We
developed and tested a simple but practical method to
compute similarities, allowing to locate assets in this
kind of universe, generating finders and modifving
them, querying the universe and retrieving similar
components. The tested values of recall and precision
were similar or better than other known methods but
ours is by far easier to implement and maintain. An
extensive list of references about reuse and
classification/retrieval problem, where interested
readers can investigate more deeply. is offered.

Keywords: reusable components. repository
organization, classification. retrieval.

INTRODUCTION

Many papers were made about reuse. reusable
components and repositories organization . All these
works underline the problems related with human
intervention. huge amount of information.
classification and retrieval. Perhaps the main
drawback of actual solutions lies in the need of
human intervention, automatic support is considered
crucial but none of the approach offers it. So we
address this problem considering the following two
challenges:

1. Automatic generation of the classification
space

2. A powerfull but easy to implement retrieval
technique

Information Retrieval (IR) techniques claim that they
can automatically extract information about
components (often textual documents) and classify
them. but assets from the software development life
cycle hardly ever resemble text documents in style or
content . Knowledge-based systems (KBS) need a
previous (human-dependent) acquisition phase in
order to classify components. So we need to address
this problem from another perspective. with
techniques that allow the automatic inclusion of
assets in the repository, automatic generation of a
classification space, easy processes to reclassify or
reorganize the repository, adaptable searching
mechanisms, and so on.

THE FINDER METAPHOR

A finder is a multidimensional sphere with a prefixed
radius. which can contain components. To be capable
of doing this the finder needs to be mobile, their
movement across the space allows different
collections of components to be captured and grouped
according to their similarities. A finder has a center
that represents the average similarity of all the
components which are seen by it. the first time this
center is located at the same position of the first
component but. as new components are added to the
space and were captured by the finder, the center
moves according to attraction rules. This dynamical
behaviour of the finder guarantees its representability
of common attributes of components that belong to it.
When a finder center moves across the space it can
capture other existing components, we call that
absortion. and can leave others, leaving, causing new
movements. This process iteratively repeats itself
until no new components are captured or left.

Representation of components

We propose a representation technique similar to
those in [18] [21]. In our method each component is
represented by a functional description (FD)
consisting in a set of features which in tum were
made of triplets: <action-object, importance> where:

e action reminds us the functionality of the
component (what it does)

e object means where the action applies

e importance gives an idea of to what extent
this couple action-object represents the
component with respect to the global set of
features, in other words, the relative
importance of this action-object within its
FD.

We can set an importance scale made of five values:
V1. (Very Low). L (Low). M (Mcedium). H (High)
and VH (Veny High). In this way we have a balanced
scale with two values in each arm and a middle one
as an average. In order to compute similarities based
in this scalc we usc a mapping function between
letters and importance values:

VL=1/16 L=1/8 M=% H='% VH=1

which really means fuzzy values for this attribute
(importance).

A sample FD with three features could be the
following:

FD:
open-file,L
sort-file, 'H
close-file.L

Thus, our repository will be filled with this kind of
components. functional descriptions as triplets
<action-object.importance>. We will have meta-
information about the component, for example:
author, where the component is really located,
language, adaptation guidelines and so on.

Component classification

Our classification scheme is based in a positional
approach, components are located in a
multidimensional vector space according to its
functionality. In fact. we do not work with real
components, instead we use a description of the
components (FD), actually a functional description in
a simple representation language, with restricted
vocabulary, and the help of a thesaurus, allowing an
easy management of sinonyms and homonyms. So,
we can easily modify a description without the need
of manipulating the real component. which remains
untouched. Building functional descriptions is a labor
of the repository administrator, who is also
responsible for components insertion, modification
and/or deletion. When a new component is to be
inserted in the repository its functional description is
compared with functional descriptions of other
special elements named reference components, and a
similarity value is computed for each reference
component, then we assign the following position to
the new inserted component:

C = (sim(C.R,), sim(C,R,), sim(C.R,))

Where n is the number of reference components.
Let’s suppose we need to know how similar two
components C, and C, are, then we will need to build
the following matrices:

1. the EQ (Equivalence) matrix expresses the
degree of compatibility between the i-th feature
of C, and the j-th feature of C,. So EQ will be an

f~C, x f-C, matrix. If <action-object,> =

<action-object> then EQ[i,j]=1. 0 otherwise.

the IMP (IMPortance) matrix shows the degree

of satisfaction that FD of C, is compatible (or

can be replaced) with the FD of C,. It shows the

importance between the i-th feature of C, and j-

th of C,, remember that EQ do not consider

importance just <action-object>. This

importance is computed as min(1. importance of

J~C> 7 importance of f~C;). If EQ[i,j1=0 then

IMP[j.i]=0, becausc features are not

comparables. IMP is /-C, x f~-C,.

3. the SAT (SATisfaction) matrix combines EQ
and IMP. and is computed as EQ x IMP.

4. the I (Importance) matrix holds the normalized
values of importance of C,.

5. the SIM (SIMilarity) matrix, finally. is the
product SAT x 1. Then, entry SIM[k] represents
a weighted satisfaction index for feature & of C,
with respect to C,.

19

A working example:

feature C, C,
number
1 <top-stack. M> <size-array.M>
2 <push-element, VH> <size-queue.L>
3 <top-stack,VL>

According to the table above, we will have:

EQ=[2x3] (CI1xC2)

IMP=[3x2] (C2xCl)

I=[2x1] (Clx1)

SAT=[2x2] (EQxIMP = 2x3 X 3x2)

o~ 0 0 1
o 0 0
SIM = [2x1] (SATx1 = 2x2 X 2x1)

IMP[3.1] = min (1. VL/M) = min (1, (1/16)/(1/4)) =
min (1, %) =0.25

0 0
IMP=| 0 O
0,25 0

I[1}=M/(M+ VH)=(1/4)/ (5/4)=1/5 =0.2
I2]=VH/(M+ VH)=1/(5/4)=4/5 =08

0,2
I =
0,8

SAT = EQ x IMP, so SAT[1.1] =0.25 and 0 all
others

Finally, SIM = SAT x IN. so

0,25 0)0.2 0.0
SIM = = 3
0 0,08 0

The similarity between C, and C, is thercfore 0.05.
and it is obtained summing up all the elements of
SIM.

Component insertion

Once we have the position of C then we need to
assign it to an existing finder or creaitc a new one.
The process is very simple:

e compute distance from C to centers of
existing finders (distance is defined as
|1-sim|)

e if there exist centers which distance is
less that a prefixed threshold then C
will belong to the nearest center, else a
new finder is created with center
coincident with C.

e if C was assigned to an existing finder
then. move this finder center

e while this movement implies
capturing or leaving components
move it again

However, the algorithm 1is a little bit more
complicated. Suppose a threshold value U and the
following variables:

1. dim n° of dimensions = n°® of reference
components (*initial value = 0*)

2. numvis n° of finders (*initial value =
0*)

3. n n° of components in the repository
(*initial value = 0*)

4. lcv list of components assigned to a
finder (*store the value n*)

5. Ivlist of finders (*list of /cv*)

then, the algorithm to insert components will be:

1. n=n+ 1: verify if C, features are already
reference components.
1.1 No, then (*build reference
components*)
1.1.1. fori=1 to numcar do
1.1.1.1. dim = dim+1;
Rdlm =Cw
2. fori=1 1o dim do:
2.1, compute sim(C,.R,). as explained
before
3. C, = (sim(C,.R;). sim(C,.R,).....
Sim(Cdeim))
4. for i =1 to numvis do:

4.1. compute distance from C, to
Vimrs (¥the center of Vyumy)

4.2, if II —sin(C,,.a',,,,,m)} <U then
possible|numvis] == 1-sim
4.3. else possiblelnumvis:=0
5. if not empty possible. then
5.1. sort possible in ascending order
5.2 choose the finder closest to C,.
6. else: (* build a new finder*)
6.1, numvis = numvis +1
6.2. CVpumvay = Cn
6.3. new [cv (*lcv number numvis*)
7. add n to lev (*assing C, 10 Vs finder*)
8. verify if V,ums can “see” another
components. if it can, then:
8.1. for each component C seen by
Vnumw.v do:
8.1.1. assing C t0 V,mis
(*update /cv *)
8.1.2. move (Vumws)
9. end

Component retrieval

Retricval of components follows a simple way, we
treat a query as a functional description, then we try
to insert this new component as if it were a normal
component. The process is exactly the same as
insertion but. when a finder is selected to cover this
component instead of inserting it the tool retrieves all
the components that belong to that finder. If no finder
was selected in the previous process then the tool
issues a warning message: “No similar components
were found, please try another query”.

CONCLUSIONS

Recall and precision values tested were similar or
better than other known methods . One key aspect of
our approach is the easy implementation of a
prototype. this means that algorithms to insert
components, automatic generation of reference
components (space). computation of similarities and
creation of finders were very simple. Movement of
finders were. perhaps. the most difficult part of the
algorithm. due to the consideration of multiple
situations which can happen. such as capturing of
new components or leaving of existing ones. Another
key functionality of our approach is the capability of
modifying the finders width. the repository
administrator can adjust the threshold value (distance
from finder center to farthest components) to generate
a new repository configuration, he or she can do that
to guarantee a good retrieval behaviour, to obtain
more recall the radius is enlarged, to get more
precision is shortened.

When making queries to the repository, the reuser has
to construct a query as a FD. We believe that it would
be quite easy for the reuser to make a query since the
FDs are simple and easy to construct, and the reuser
need not know exact figures to insert as importances.
The simple mapping of the importances into
abbreviations such as H (for high) or L (low) to
represent functionalities of various features within

FDs would be easier than to express queries in terms
of reuse metrics. where sometimes. more exactness is
required in the absence of a simple and non-
complicated mapping system.

In our scheme the repository s organized
automatically. and places no constraints in the event
that more componcnts arc added to the repository.
This is impornant since, software development is a
dynamic process which requires many changes in the
systems developed throughout the software lifecycle.

A definitc advantage with our classification schemes
is that they are implemented apart from the similarity
computation method, that is, there is very low
coupling between these two subsystems in their
implementation. This implics that onc could easily
replace the current similarity computation method
with another similarity computation method, and in
this case. then our classification scheme would still
function with minor modifications required to the
classification subsystem. see figure below.

Classification subsystem

: .

—— , S .
Similarity retrieval e =
computation subsystem Sz
subsystem &'m &

S5 E
0
2 28

Classification/retrieval
System

FURTHER ACTIVITIES

More research is needed in knowledge representation
techniques to guarantee an easy comprehension by
the reuser. These techniques must allow automatic
extraction from diverse information sources such as
experts. documentation, source code, other
repositories, and so on. We also need to combine
present search tools such as spiders and intelligent
agents. user profiles, visual querying languages,
hypertext navigation, search histories and user
responses (feedback). The fact that many distributed
repositories can be interconnected also implies the
need for a common interface and links between
different abstraction levels of components.

REFERENCES

[1] Abran, A., Maya, M., Measurement of Functional
Reuse, WISR8, Ohio State University, Columbus, Ohio,
USA, March 23-26, 1997

[2] Agafonov, V.N., Reuse of General Specification Notions
and Specification Languages, WISR8, Ohio State
University, Columbus. Ohio, USA. March 23-26. 1997

[3] M. D'Alessandro, P. lachini, and A. Martelli. The
generic reusable component: an approach to reuse
hierarchical OO designs. In Proceedings of .the 2nd

International Workshop on Software Reusability. March 24-
26. Lucca. ltaly, pages 39--46, 1993.

|4] Allemang. D.. Liver. B.. Functional Representation for
Reusable Components. WISR7, Andersen Consulting
Center. St. Charles. lllinois. USA. August. 1995

[5] Atkinson. S.. A Unifying Model for Retrieval from
Reusable Softwarc Libranies. TR95-41, CS Dept.,
University of Queensland. Australia, December, 1995

[6] Atkinson. S.. Examining Behavioural Retrieval, WISRS8,
Ohio State University, Columbus, Ohio, USA, March 23-26.
1997

[7) S. Amold and S. Stcpoway. The REUSE system:
Cataloging and retrieval of reusable software. In
Proceedings of COMPCON '87, pages 376--379, 1987.

[8] Borstler, J., Feature-Oriented Classification for Software
Reuse. Proc. of SEKE'95. Rockville, MD, USA. pp.: 204-
211., June 22-24, 1995

[9] Browne, S.. Dongarra, J., Hohn, K., Niesen, T., Software
Repository Interoperability, TR UT-CS-96-329. July, 1996

[10] Browne, S.V., Moore, J.W. Reuse Library
Interoperability and the World Wide Web, SSR97, January
2,1997

[11] Burton, B.A., Aragon. R.W., Bailey, S.A Koehler,
K.D., Mayes, L.A., The Reusable Software Library, IEEE
Software, Vol. 4, N° 4. pp.: 25-33, July, 1987

[12] Cheng., B.H.C., Jeng. J-J., Reusing Analogous
Components, Technical Report MSU-CPS-94-28. April
1994 (revised June 1995), June, 1995

[13] W.G. Cho, Y.W. Kim, and J.H. Kim. CLIS: A software
reuse library system with a knowledge based information
retrieval model. In Procecdings of the Pacific Rim
International Conference on Al, pages 402407, 1990.

[14] Ciaccia. P., Patella,. M., Zezula, P.. Processing
Complex Similarity Queries with Distance-based Access

-Methods, Sept. 15, 1997

[15] Cybulski. J.L., Neal, R.D.. Kram, A., Allen, J.C.. Reuse
of Early Life-Cvcle Artefacts: Workproducts, Methods and
Tools. Annals of Software Engineering. Vol 5., 1998

[16] Damiani, E., Fugini, M.G., Automatic Thesaurus
Construction Supporting Fuzzy Retrieval of Reusable
Components. Proc. of the 1995 ACM Symp. on Applied
Computing. pp. 542-547, 26-28 Feb. 1995

[17] Damiani, E., Fugini, M.G., Beliettini, C., A Hierarchy-
Aware Approach to Faceted Classification of Object-
Oriented Libraries, Politecnico di Milano, Dipartimento di
Elettronica e Informazione. Raporto interno 001-97,
Gennaio, 1997

[18] S. Faustle and M.G. Fugini. Retrieval of reusable
components using functional similarity. Technical Report
ITHACA. POLIMI.E.6.92, University of Pavia, 1992.

[19] Finnigan, PJ., Holt, R.C., Kalas, I, Kem, S.
Kontogiannis, K., et all., The Software Bookshelf, IBM
Systems Journal, Vol. 36, N° 4, 1997

[20] Frakes. W.B.. Pole, T. P., An Empirical Study of
Representation Methods for Reusable Software
Components, EEE Trans. on Software Engineering, Vol. 20,
Ne° 8. pp.: 617-630. August, 1994

[21] M. Fugini and S. Faustle. Retrieval of reusable
components 1 a development informauon svstem. in
Proceedings of 3rd International Workshop on Software
reusability FTWSR-3. pages 89--98. 1993

[22] Henninger. S.. Supporting the Construction and
Evolution of Component Repositories. Proc. of Int. Conf’
On Software Engineering. Berlin. FRG. March. 1996

[23] Henninger, S.. An Evolutionary Approach 1o
Constructing Effcctive Software Reuse Repositories. ACM
Trans. On Software Engineering and Methodology. Vol. 6.
N° 2. pp.: 111-140. April. 1997

[24] Isakowitz. T.. Kauffman. R.J.. Supporting Search for
Reusable Software Objects. IEEE TSE. Vol. 22. N°® 6. pp.
407-423, june, 1996

[25] Jeng, J-J.. Gheng, B.H.C.. Using Formal Methods to
Construct a Software Component Library, Lecture Notes in
Computer Science. Vol. 717. pp.: 397-417, Sept. 1993

[26] Jilani, L.L., Deshamais. J., Frappicer. M.. Mili. R.. Mili.
A.. Retrieving Software Components That Minimize
Adaptation Effort. Automated Software Enginecring.
ASE'97, 12th IEEE Intl. Conf.. Nevada. USA.. November -
5,1997

[27] Jilani. L.L.. Mili. R., Mili, A.. Approximate Component
Retrieval: An Academic Exercise or a Practical Concern?.
WISR8, Ohio State University, Columbus, Ohio, USA,
March 23-26, 1997

[28] Jurisica, 1., A Similarity-Based Retrieval Tool for
Software Repositories, 3rd Workshop on Al and Software
Engineering, 1JCAI-95. Montreal. Quebec. Canada, April
20-21, 1995

[29] Jurisica, 1., Glasgow, J., Case-Based Classification
Using Similarity-Based Retrieval. 8th IEEE Intl. Conf. On
Tools with Al. Toulouse, France., November 16-19, 1996

[30] Jurisica, 1., Similarity-Based retrieval for Diverse
Bookshelf Software Repository Users. IBM CASCON
Conference. Toronto, Canada. November 10-13. 1997

[31] Lim, W.C., Applying Cluster Analysis to Software
Reuse, WISR7. Andersen Consulting Center. St. Charles.
lilinois, USA, August, 1995

[32] Maarek, Y.S., Berry. D.M.. Kaiser. G.E. An
Information Retrieval Approach For Automatically
Constructing Software Libraries. EEE Trans. on Sofiware
Engineering, Vol. 17, N° 8. pp.: 800-813. August. 1991

[33] Meyer, B., Lessons from the Design of the Eiffel
Libraries, Communications of the ACM. Vol. 33, N° 9.
pp-:68-88, Sept.. 1990

[34] Mili, R., Mili, A,, Mittermeir, R.T.. Storing and
Retrieving Software Components: A Refinement Based
System, EEE Trans. on Software Engineering. Vol. 23, N° 7.
pp.: 445460, July, 1997

[35] Nato Communications and Information Systems
Agency, NATO Standard for Management of a Reusable
Software Component Library. 1991

[36] Noll. J., Scacchi, W., Integrating Diverse Information
Repositories: A Distributed Hypertext Approach. IEEE
Computer, Vol. 24, N° 12. pp.: 38-45. December, 1991

[37] E. Ostertag. J. Hendler, R. Prieto-Diaz. and C. Braun.
Computing similarity in a reuse library system: an Al-based
approach. ACM Transactions on Software Engineering and
Methodology, pages 205--228, July 1992.

|38) Pathak. P.. A Simulation Model of Document
Information Retrieval System with Relevance Feedback.
hup /www.umich.cdu/~praveen/research/irmodel.himl

[39) Poulin, J.S.. lglesias, K.P.. Experiences with a Faceted
Classification Scheme in a Large Reusable Software Library
(RSL). Proc. of COMPSAC'93, Phoenix-AZ. pp. 90-99.,
Nov. 3-5.1993

[40] Poulin. J.S., Werkman. K.J.. Software Reuse Libraries
with Mosaic. Proc. of 2nd World Wide Web Conference'94:
Mosaic and the Web. 1994

[41] Prieto-Diaz. R.. Implementing Faceted Classification
for Software Reuse. Communications of the ACM, Vol. 34,
N® 5. pp.: 88-97. May. 1991

|42] Ribeiro. A.N.. Martins. F.M., A Fuzzy Query Language
for a Software Reuse Environment, WISR7, Andersen
Consulting Center, St. Charles. Illinois. USA, August, 1995

|43] RIG: Reuse Library Interoperability Group, Standard
Reuse Library Basic Interoperability Data Model (BIDM),
IEEE Standards Department. January. 1995

[44] G. Salton, J. Allan, and C. Buckley. Automatic
structuring and retrieval of large text files. Communications
of the ACM, 37(2). February 1994.

[45) G. Sindre, E. Karlsson, and T. Staalhane. Organizing
large libraries of reusable components: the REBOOT
approach. Journal of Software Engineering and Knowledge
Engineering. April 1992.

[46] G. Sindre. E. Karlsson. and T. Staalhane. A method for
software reuse through large component libraries. In
Proceedings of the International Conference on Computing
and Information, pages 464-468. 1993.

[47] Sindre, G., Sorumgird, S., Terminology Evolution in
Component Libraries, Proc. of Terminology and Knowledge
Engineering (TKE'93). Cologne-Germany.. August 25-27,
1993

[48] Sivert. L.. Sindre. G., Stokke, F.. Experiences in
Reusable Components Classification. Proc. of 2nd
International Workshop on Software Reuse (IWSR-2).
Lucca-ltaly, March 24-26, 1993

[49] Spanoudakis. G., Constantopoulos, P.. Similarity for
Analogical Software Reuse: A Computational Model,
ECAI'94. Edited by A. Cohn, Published by John Wiley &
Sons. Lid.. 1994

[50] Spanoudakis, G., Constantopoulos, P., Measuring
Similarity Between Software Artifacts, SEKE '94, Jurmala,
Latvia, pp. 387-394, June 1994

[51] Terry. R.H., Price, M., Welton, L., Standardized
Software Classification in the World Wide Web, WISR7,
Andersen Consulting Center, St. Charles, Illinois, USA,
August, 1995

[52] Veerasamy, A., Hudson, S., Navathe, S., Visual
Interface for Textual Information Retrieval Systems, Proc.
of the Third IFIP 2.6 Working Conference on Visual
Database Systems. 1995

