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Abstract 

There has been an increasing demand of a variety of logical systems, prompted by applica­
tions of logic in Al, logic prograrnming and other related areas. Labelled Deductive Systems 
(LDS) [Gab96] were developed as a flexible methodology to formalize such a kind of complex 
logical systems. 

In the last decade, defeasible argumentation [SL92, PV99, Ver96, BDKT97] has proven to 
be a confluence point for many approaches to formalizing commonsense reasoning. Different 
formalisms have been developed, many of them sharing cornmon fe atures. 

This paper outlines an argumentative LDS, in which the main issues concerning defeasible 
argumentation are captured within a unified logical framework. The proposed framework is 
defined in two stages. First, defeasible inference will be formalized by characterizing a defeasible 
LDS. That system wiU be then extended in order to obtain an argumentative LDS. 

1 Introduction and motivations 

From the early '90s there have been several attempts to find an unified framework for non mono­
tonic reasoning (NMR). Recent work [PV99, BDKT97] has shown that defeasible argumentation 
constitutes a confluence point for characterizing many different approaches to NMR. Neverthe­
less, the evolution of different, alternative formalisms for defeasible argumentation has resulted in 
a number of models which share sorne common issues (the notion of argument, attack between 
arguments, defeat, justifying arguments, etc.). 

We are concerned in studying these aspects within a logical system, using the MTDR framework 
as a basis [SL92, SCG94J.l In our logical framework we want to capture the main issues involved 
in defeasible argumentation by specifying a suitable underlying logicallanguage and its assocÍated 
inference rules. In order to accomplish this goal we will make use of the so-called labelled deductive 
systems [Gab96]. Labelled Deductive Systems (LDS for short) offer an attractive approach to 
formalizing complex systems, since they allow to characterize the different components involved in 
a logical systern by using labels. As an ultimate result we want to be able to define an argumentative 
LDS. 

This paper is structured as follows. In section 2 we will briefly outline our approach. Then in 
section 3 we will define a knowledge representation language LKR as well as a labelling language 
LLabels, both of which will be used as the object language in our formalization. Section 4 presents 

1 In what follows, we assume that the reader is familiar with defeasible argumentation under the MTDR framework 
(see [SL92, SCG94, Che96] for details). 
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a characterization of the inference rules needed for capturing defeasible inference. Next, in sec­
tion 5 we will discuss sorne of the features needed for extending defeasible inference to define an 
argumentative LDS. Finally, in section 6 we will discuss the most important conclusions that have 
been obtained. 

2 An outline of our approach 

When modeiling the behavior of an intelligent agent in an argumentative setting, it is common 
to provide that agent with the usual features in knowledge-base systcms, namely a knowledge 
base and an inference engine. In the case of MTDR, the knowledge base involves incomplete 
and potentially inconsistent information. In order to infer a justified conclusion h, the MTDR 
inference procedure involves two levels. First, the agent must be able to find a tentative piece 
or reasoning, viz. an argument A, supporting h. Second, the agent should determine that the 
argument (A, h) is a justification, by being ultimately preferred over any other argument which 
defeats (A, h). Determining whether an argument is a justification involves a recursive procedure, 
in which arguments, defeaters, defeaters of defeaters, and so on, must be taken into account. 

We want to capture both defeasible knowledge representation and argumentative inference 
within a logical system (f,rv ), in which f represents the agent's knowledge base and rv stands for 
a consequence relation. Traditionally, a logical system (f,rv ) allows the inference of new wffs from 
those available in f using the rules of inference that characterize the notion of logical consequence 
rv In order to formalize defeasible argumentation within a logical system (which involves the 
weil-known problems associated with non monotonic reasoning), we will make use of a powerful 
methodology, cailed labelled deductive systems [Gab96]. In LDS, the usual notion of formula is 
replaced by the notion of labelled formula expressed as Label:a, where Label represents a label 
associated with the wff a. Inference rules that characterize the notion of consequence in an LDS 
will be augmented in order to include labels. 

As pointed out before, the agent's knowledge base f will contain incomplete, potentially in­
consistent information. Hence we will provide our inteiligent agent with a defeasible LDS (f, ~ ) 

Arg 

which will allow him to arrive to tentative conclusions. Those conclusions will correspond to la-
belled formulas label:w f f, where label will be associated with the notion of argument (as defined 
originally in [SL92]). 

In other words, the consequence relation ~ will allow our agent to derive labeiled wffs having 
Arg 

the form argument:conclusion, where argument wiIl be a wff in a labelling language CLabels, and 
conclusion will be a ground literal in a knowledge representation language CKR. In this setting, 
an argument will represent a tentative proof our intelligent agent can build in order to support p. 
However, our agent could also be able to build an argument supporting ""p from the knowledge 
available in f. This leads to a comparative, recursive analysis of arguments in which a given 
argument should be compared with all those counter-arguments which may defeat it. To model 
this process, our approach wiil consist in extending the consequence relationship ~ ,in order to 

Arg 

obtain a new consequence relationship rr. Those wffs derivable from f via rr will correspond to 
acceptable dialectical trees [SCG94] for a given argumento These new labelled wffs will have the 
form dialectical tree: conclusion. 

The elements in our ontology are summarized in figure 1. The lower level represents the knowl­
edge base f, from which our agent will be able to build arguments using a defeasible LDS. In 
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Argumentative LDS (r, ~) 
Defeasible LDS (r, r:: ) 

Aro' 

Knowledge Base r 

Figure 1: Formalizing argumentation using LDS 

order to decide whether an argument is justified or not, a comparison among arguments is needed, 
which results in computing an acceptable dialectical tree. This will be captured by the consequence 
relation r.; within an argumentative LDS. 2 

3 Knowledge Representation 

In this section we will introduce a knowledge representation language LKR for performing defeasible 
inference, together with a labelling language LLabels' These languageS will be used to define the 
object language LArg to be used in our defeasible LDS. Our approach is based on the one introduced 
by Modgil in [Mod98], adapted for our purposes. 

FoIlowing Gabbay's terminology [Gab96]' the basic information units in LArg will be called 
declarative units, having the form Label:wff. .In our approach we will restrict wffs in labelled 
formulas to ground literals. As we will see along this section, a ground literal can be understood 
as conclusion of an argument, which will be defined by the label. 

A label in a formula L:a will provide three elements which are convenient to take into account 
when formalizing defeasible argumentation, namely: 

1. For every declarative unit L:a the label L will distinguish whether that declarative unit 
corresponds to defeasible or non-defeasible information. 

2. The label L will also provide an unique name to identify a wff in the knowledge base r. 

3. When performing the inference of a declarative unit L:a from a set r of declarative units, 
the label L wiIl provide a trace of the wffs needed in the derivation of L:a from r. 

Wffs in our knowledge representation language LKR will be a subset of a classic propositional 
language L, restricted to implications and facts. A modality (label) will be attached to both kinds 
of wffs: defeasible and non-defeasible. Formally: 

DEFINITION 3.1 (Language LKR). The knowledge representation language LKR wiIl be composed 
of 

1. A countable set of propositional atoms, possibly subindicated. We wiIl denote propositional 
atoms with lowercase letters. Example: a, b, e, d, e, ... , al, a2, ag are propositional atoms. 

2. Logical connectives 1\, ..., and -. 

2For reasons of space, tbis paper focuses on the defeasible LDS, discussing only sorne of the aspects involved in 
defining the argurnentative LDS. 
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The sct of all atoms in L-KR will be denoted as Atoms(L-KR)' O 

DEFINITION 3.2 (Wffs in L-KR)' Wffs in L-KR will be defined as follows: 

1. If a is an atom in L-KR, then a and -,a are wffs called literals in L-KR. We will denote a..<; 

Lit(L-KR) the set of allliterals in L-KR. 

2. If al, ... ak, {3 are literals in L-KR, then {3 ~al, ... ak is a wff in L-KR, called implication.3 

Note that implications are written as logic programming clauses. More precisely, our for­
malization will follow the approach used in defeasible logic programming [Gar97] for representing 
knowledge. We will denote as WffS(L-KR) the set of all wffs in L-KR. O 

For the sake of simplicity, when referring to the language L-KR the following conventions will be 
used: Greek lowercase letters a, {3, 'Y will refer to any wff in L-KR. Greek uppercase letters T, <1>, 

r will refer to a set of wffs in L-KR. The conjunction al A a2 A ... A ak will be simply written as 
al, a2,···, ak· 

Separately we will define a labelling language L-Labels, which will be associated with wffs in 

L-KR· 

DEFINITION 3.3 (Labelling constants). A set Labels of labelling constants will include constant 
names having the form ni or di. Thus Labels constitutes the enumerable set: 

A set of labelling constants will be denoted as Ll , L2, ... , Lk' O 

DEFINITION 3.4 (Labelling language L-Labels). A label L in our labelling language L-Lahels can be 
either an argumentlabel or a dialectical label, defined as follows: 

1. An argument label will be a tuple (Li,<1» where Li ~ Labels, and <1> ~ p(Wffs(L-KR)). The 
set of all argument labels that can be defined from Labels and L-KR will be denoted as 
ArgumL(Labels, L-KR). 

2. If (Li ,<1» is an argument label, then 

TP( (L¡,<I» ), with j E Nat 
T,p( (l¡,<I» ), with k E Nat 

are dialecticallabels in L-Labels. For the sake of simplicity, we will write 'JkD to denote a generic 
dialectical label 'JkD( (Li,<I» ), for a given argument label (Li,<I». We will also write Tk to 
denote either the functor TkD or the functor 'JkU 

3We introduce this term in order to denote a relationship between a consequent (literal) and an antecedent (set 
of literals). This relationship can be "weak" (defeasible) or "strong" (non-defeasible). The corresponding semantics 
wiIl be characterized in terms of natural deduction rules to be introduced latero 

4 



o 

3. If 1i, 7k are diclectical labels, then 'Ynu (1i, ... , 7k), with j E Nat, n f/. {L .. k}, and 
Tr!?(1i, ... , 7k), with k E Nat m f/. {l. .. k} will also be dialecticallabels in .cLabels' The 
set of all dia1ectical 1abe1s that can be defined from Labels and .cK R will be denoted as 
DialectL(Labels, .cKR) 

The set of al1 wffs in .cLabels will be the set ArgumL(Labels,.cKR) U DialectL(Labels,.cKR ). 

It shou1d be noted that in order to characterize a defeasible LDS argument 1abe1s will suffice; 
dialectica11abe1s will be used in characterizing an argumentative LDS, as discussed in section 5. 

DEFINITION 3.5 (Defeasible Labelled Language LArg). If LLabels is a 1abelling language, and LKR is 
a know1edge representation 1anguage, then the defeasible labelled language, denoted LArg, is defined 
as LArg= (LLabels, Ll< R) O 

DEFINITION 3.6 (Declarative Unit). Given a 1anguage LArg, a declarative unit will be a pair 
Label:O'., where Label is a 1abe1 written in the 1anguage LLabels, and O'. is a wff in Ll<R. We 
will distinguish two special kinds of declarative units: 

O 

• If Label is-''an argument 1abe1, then Label:O'. will be called an argumentative declarative unit . 

• If Label:O'. is an argumentative declarative unit, where Label=(Li,<p) is such that Li is a 
sing1eton, then Label:a will be called an atomic declarative unit. 

EXAMPLE 3.1 Let Labels = { nI, n2, n3, dI }, and 1et Ll<R= { a, b, b+-a, c+-b 
}. Then ({nI} {a} ):a, ({nÚ {b} ):b, ({n3} {b+-a} ):b+-a and ({nI}, {c+-b} ):c+-b 
({nI,nÚ {a,b} ):aAb ( {n},d2,d3} {a,b,a,c+-b} ):c are argumentative declarative units in .cArg. 
Note that the first four declarative units are atomic. O 

From now on we will refer to a declarative unit Label:a by the abbreviated form duo We will 
refer to Label as the "labe1" associated with Label:O'.. Greek uppercase 1etters r, n, T will be used 
to refer to sets of dus, when no ambiguity arises. 

3.1 Argumentative Theories 

Intuitive1y, a theory re WjjS(.cArg) will constitute the knowledge base from which an intelligent 
agent will perform its inference process. Such a theory r will be defined in terms of argumentative 
dus, distinguishing: 

• Non-defeasible information, characterized by argumentative dus of the form ( {ni} ,0) : a 

• Defeasible information, characterized by argumentative dus of the form ( {di} ,<p) a such 
that <P ~ 0'..4 

4Usually the du ( {dÚ , { o}) o E r will be associated váth dejeasible jacts, and ( {di} , { {3+-0 } ):{3+-0 E r 
wiIl be associated with dejeasible rules. 
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Labelling constants ni and di will denote unique names for declarative units. In this ontology, 
a declarative unit ( {di} ,{,8f-a}):,8f-a wiIl stand for the defeasible rule f3-.. a in the MTDR 
framework [SL92, SCG94]. 

Next we will focus on sets of declarative units (theories) that respect certain requirements 
to constitute an acceptable knowledge base for an intelligent agent. This situation is formalized 
through the following definition: 

DEFINITION 3.7 (A rgumentative theory r). Let r = { 11, 12, ... , Ik} be a finite set of declarative 
units in LArg. 

Let Wffs-S(r) be the set oi all wffs in LKR associated with non-defeasible declarative units in 
r, i.e., Wffs-S(r) = { a I ( {ni} , 0 ):a Er}. We wiIl say that r is an argumentative theory if 

• li is an atomic declarative unit, for i = 1 ... k 

• Wffs-S(r) If p, p, where p is a literal in LKR and p denotes its complemento 

o 

The labeIllng system makes it easier to formalize a proof theory based on natural deduction. 
For every inference rule, labels propagate inforD;lation from the premises to the conclusion. In this 
way, given a du (Labels,<I» a that has been inferred from a given theory r, the set Labels will 
provide a 'history' of the proof carried out to conclude a. If <I> = 0, then no defeasible information 
was needed in order to conclude a. Therefore wffs of the form (Labels,0) a will correspond to 
non-defeasible inferences. On the contrary, (Labels,<I» a, <I> =f 0, denotes a defeasible inference, 
and <I> is the set of facts, presumptions, defeasible rules and non-defeasible rules needed to conclude 
a. Intuitively, a will be 'supported' by the argument cI>.5 Sorne inference rules for labelling wiIl 
incorporate additional preconditions which should be satisfied for an inference rule to be applied. 
This preconditions are mainly intended for ensuring that the defeasible wff (Labels,<I» a can be 
inferred only if certain consistency checks are satisfied. 

EXAMPLE 3.2 Consider an intelligent agent whose theory r includes the foIlowing wffs: 

( {nd , 0 ):,jf-P, 
( {n2} , 0 ):p 
( {n3} , 0 ) :b, 
( {dd , { jf-b }):jf-b 

Then it should not be valid to infer ( {nI,n2,n3,d1} , { p, b, ,jf-b, jf-b }):j, since the set {p, b, 
,j f-b, jf-b} would entail an inconsistency (f and ,J). O 

In the next section we wiIl introduce an inference relation which will allow us to capture the 
notion of consistent prooj involving defeasible information. The inference relation will ensure that 
only consistent proofs can be derived. These consistent proofs wiIl be called generalized arguments. 

SIn [Mod9S] this set is caBed justijica.tional C1Jntext. 
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4 Argument Construction as a Consequence Relation ~ /,rg 

Our goal will be to define a logical system (r, ~rg), where r is a knowledge base as previously 
described, and ~ is a consequence relation. The object language will be CArg, and inference rules 

Ar¡ 
will be formulated in a natural deduction style. 

4.1 Natural deduction rules characterizing ~ 
Arg 

• Introducing non-defeasible information (I-N): Any wff in r corresponding to non­
defeasible information can be introduced in a proof. 

r, ( ni ,0) a 

for any (Labelsl 4:>1) a E r. 

• Introducing defeasible information (I-D): Any wff in r corresponding to defeasible in­
formation can be introduced in a proof ir it is consistent wrt Wffs-S(r). 

for any (di <PI) a E r. 

WfFs-S(r) U 4:>1 'f 1-
r, ( di , 4:>1) a 

• Introducing conjunction (I-A): If ( Labelsl , <PI) a and ( Labels2 , <P2 ) are dus such 
that Wffs-S(r) U 4:>1 U <P2 If 1-, then the conjunction a A {3 can be derived. Formally: 

r, ( Labelsl , <PI ) : a r, ( Labels2 , <P2 ) : (3 Wffs-S(r) U <PI U <P21f 1-
r, ( Labelsl U Labels2 4:>1 U 4:>2) a A {3 

• Eliminating implication (E---+): As a precondition for applying modus ponens, a similar 
criterion as the one used in the previous rule will be applied. 

r, ( Labelsl , <PI ):{3-a r, ( Labels2 , <P2 ):a WfFs-S(r) U <PI U <P21f 1-
r, ( La belsl U La bels2 , <P 1 U <P2) {3 

DEFINITION 4.1 (Generalized argument). Let r be a theory, such that rrv Arg(Labels,<p) a. Then 
(Labels,<P) will be called a generalized argument for a. O 

DEFINITION 4.2 (Defeasible LDS). Let 

be a logical system, where r ~ Wffs(CArg) is a set of argument declarative units such that 
Wffs-S(r) ¡-1-, and ~ is the consequence relation characterized by the inference rules 1-0, 1-N, 

Arg 

(I-A) and (E---+). This logical system will be called defeasible labelled deductive system. O 

7 



EXAMPLE 4.1 Let r be the argumentative theory shown below on the left. On the right side sorne 
Possible ínferences (and non-inferences) resulting from ~ are shown. 

Arg 

r= 

o 

{ (n1,0 ):d+-c, 
(n2,0 ):-,d, 
(n3,0 ):el, 
(n4,0 ):e2, 
(d1,{c+-a, b}):c+-a 1\ b, 
(d2 , {a+-eÜ) :a+-el. 
(d3 ,{b+-eú):b+-e2 } 

r~ (d2 ,n3, {a+-eÜ ):a 
ATg 

r~ (d3,n4, {b+-e2} ):b 
Arg 

r~ (d 2,n3,d3,n4, {a+-el,b+-e2} ):a 1\ b 
ATg 

r 1-; (dI, d2,n3,d3,n4, {c+-a, b, a+-el,b+-e2} ):c 
ATg 

For the sake of simplicity, the argumentative du (LI,<I»:a will be usually written as AI:a. 

5 Towards the Definition of an Argumentative LDS 

So far a formalization of defeasible inference has been introduced, in which the notion of generalized 
argument has been formalized. However, given.an argumentative theory r an intelligent agent can 
obtain different, conflicting arguments. Thus our agent could be able to find that r~ Al:a and 

Arg 

r~ A2:-,a. In order to decide among conflicting arguments a preference criterion is needed, as 
ATg 

well as a global analysis in which the attack relationships between those conflicting arguments can 
be captured. This analysis will be formalized in terms of an acceptable dialectical tree [SCG94]. 

It should be remarked that arguments in the Simari-Loui sense [SL92] should be minimal. 
Therefore, in order to analyze generalized arguments in a dialectical setting it will be required that 
they are mínimal. This willlead to defining a new logical system, an argumentative LDS (r, rr), 
extending the consequence relation ~ with new inference rules. 

Arg 

When defining rr, inference rules for constructing acceptable dialectical trees are needed. In 
order to conceptualize these trees, we will use an approach similar to the one used when formalizing 
classicallogic under natural deduction. We will start by stating the preconditions for introducing 
axioms, which in our case correspond to the most simple acceptable dialectical trees. Next we will 
introduce sorne of the inference rules needed for characterizing rr . 

• Introducing an 'undefeated' acceptable dialectical tree: For any generalized argument 
AI:a such that a) it is mínimal and b) it has no defeaters, the labelled wff TF (A¡):a can be 
inferred (denoting that there exists a dialectical tree whose root is an undefeated node Al:a) 

r, A1:a tiA' ~ Al: A':a ti A2:,B »darAl:a 
r, T¡U (AI):a 

• Introducing a 'defeated' acceptable dialectical tree: For any generalized argument 
Al:a such that a) it is minimal and b) it has (at least) a defeater A2:,B, the labelled wff 
T¡D(Al, T:P(A2)):a can be inferred (denoting that there exists a dialectical tree whose root 
is a defeated node Al:a) 
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r, Al:O: ,llA' ~ Al: A':o: :J A2:¡3 »defA1:0: 

r, 'IP(A1 ,12U (A2)):0: 

Of course additional inference rules would be needed (not presented in this paper for space 
limitations) to fully characterize the notion of acceptable dialectical tree. Our final goal will be 
to capture the notion of justification in terms of derivability within such an argumentative LDS. 
Justified literals would be those supported by ultimately 'undefeated' acceptable dialectical trees. 
This situation could be formalized by the following definition: 

DEFINITION 5.1 (Jusiification - prelímínary versíon). Let r be an argumentative theory, such 
that 

Then the (ground) literal o: will be justified, and the declarative unit TU:o: will be called its 
jusiífication. O 

6 Concl usions 

Labelled Deductive Systems offer a powerful tool for formalizing different logical frameworks. In 
this paper we have outlined a formalization of an argumentative system in terms of LDS. On the 
one hand, the notion of label allows to capture the concept of argument as a set of wffs supporting 
a given proposition. On the other hand, the concept of dialectical tree can be also captured by 
a complex label, defined in terms of more simple ones. We are currently working on a complete 
formalization of an argumentative framework using LDS. 

Having a formal system that models the process of defeasible argumentation will allow to analyze 
different aspects associated with characterizing argumentative frameworks (such as argumentation 
protocols, resource-bounded reasoning, etc.). Since labelled formulas can on its turn be labelled, 
meta-Ievel features can be captured in a natural way in LDS. Thus, as suggested originally by 
Gabbay [Gab96], we could think about wffs of the form 

Agent: (dialectical tree: conclusion) 

to model argumentative reasoning in a multiagent system. Appropriate inference rules would 
characterize which interactions among agents are valid, specifying an argumentative protocol [Lou98, 
CS96] in terms of preconditions in inference rules. Research in this direction is currently being 
pursued. 
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