NESTED PARALLELISM IN PARALLELS PARADIGMS

Piccoli F., Printista M.!

! Universidad Nacional de San Luis

Ejercilo de los Andes 950- San Luis

{mpiccoli,mprinti } @unsl.edu.ar
ARGENTINA

Gonzalez J.A., Leon C., Roda J.L., Rodriguez C. and Sande F.’

? Departamento de E.1.O.C.
Universidad de La Laguna
Facullad de Matematicas. Tenerifc

SPAIN

ABSTRACT

Data parallelism is one of the more successful efforts to introduce explicit parallelism (o high
level programming languages. This approach is taken because many uscful computations can
be framed in term of a set of independent sub-computation, each strongly associatcd with an
element of a large data structure. Such computations are inherently parallelizable. Data parallel
programming is particularly convenient for two reasons. The first is its case of programming
and the second is that it can scale easily Lo larger problem sizes. Several data parallel language
implementations now exists [8][9]. However, almost all discussion of data parallelismy werc
limited to the simplest and least expressive form: unstructured data parallelism (flat).

Many other generalizations of the data parallel model have been proposed, which permit the
nesting of data parallel constructors to specify parallel computation across nested and irrcgular
data structures[2][3]. These language implementations include the capability of nested parallel
invocations, combining the facility of programming on a data parallel model with the efficicncy
in the execution on irregular data structures of the task parallel model [1).

The divide and conquer approach is characterized by dividing the problems into subproblems
that arc of the same structurc as thc larger problem. Further divisions into still smaller
subproblems arc usually done by recursion. The recursive method will continually divide a
problem until the problem cannot be broken down into smaller parts. Then the very simple tasks
are performed. The tasks’ results are combined with the others tasks’ results in the same level.
Nested parallelism is critical for describing divide and conquer algorithms[4]16]{10]. A simplc
data parallel algorithm could not exploit the task parallelism that is available in divide and
conquer algorithms, and a simplc task-parallel algorithm could not exploit the data parallelism
that is available| 13]. By contrast, nested parallelism accomplishes the ability to take a parallel
function and apply it over multiple instances in parallel. For example having a parallel Fast
Fourier Transform and then using it recursively to work several sub-sequences in parallel.

The significantly enhanced cxpressiveness of the nested data parallel paradigm originates
greater demands upon the computational model that implements it. The main subject discussed
is how to divide of processor groups to mach the change from data parallel o task parallel
behavior of a algorithm and how to switch from parallel code (o serial code when the group
contains only onc processor.

Wicc 2000 - 16



In this work we examine some performance requirements (o obtain nesting and show briclly
how two paradigms, HPI" and llc-MPI attempt (o satisly them.

High Performance Fortran (HPF) is an informal language standard. Its aims arc to simplily the
programming of data parallel applications for distributed memory MIMD machines and supply
the lack of portability of the resulting programs [7][8].

For a MIMD architecture, an HPF compiler transforms this program into an SPMD code by
partitioning and distributing its data as is specified, allocating computation to processors
according to the locality of the involved data, and inserting, if is necessary, data
communications. Although HPF is a Data Parallel language, it provide task parallelism,
thercfore, the Nested Parallelism can be achieved.

HPF augment a standard Fortran 90 |9] program with directives. A dircctive is a structured
Fortran comment that are distinguished by starting the characters ‘HPF$’ immediately after the
comment character. A directive can specity the data distribution, define the abstract processor or
implement task parallelism. In espccial, the ON |5] directive allows the programmer (o control
the distribution of computations among the current active processors set. This directive don't
change the active processors set, the callee inherits the caller's active processors.

In HPF approved extensions is legal 10 nest ON directives, if the sct of active processors named
by the inner ON directive is included in the sct of active processors {rom the outer directive. The
nesting of ON dircctives can be useful for expressing parallelism along different dimensions [5].

The MPI standard defines the user interface and functionality for a wide range of message-
passing capabilities [12]. Since its completion in Junc of 1994, MPI has becomc widely
accepted and used. Implementations are available on a range of machines.

The major goal of MPI, as with most standards, is a degree of portability across dilferent
machines. This topics is central but the standard will not gain wide usage if this was achicved al
the expensc of performance. A crucial detail is that MPI was carclully designed so as (o allow
cificient implementations. The design choices secm (0 have been made correctly, since MPI
implementations over a wide range of platforms are achieving high performance, comparable to
that of less portable, vendor-specific systems.

MPI1 allows or supports scalability, an important goal of parallel proccssing. Finally, MPL, as all
good standards, is valuable in that it defincs a known, minimum behavior of message-passing
implementations. This relieves (he programmer from having to worry about certain problems
that can arise. Onc example is that MPI guarantees that the underlying transmission of messages
is reliable. The user need not check if a message is received correctly.

Particularly for develop our experiments, we are using La Laguna C [11]. a sct of macros and
functions that extend MP1 and PVM with the capacity for nested parallelism.

Although the performance of Data parallelism and Task parallelism languages has been
demonstrated to be competitive for resolve commons parallels problems, performance of them
is not optima when they try to resolve divide and conquer algorithms.

The obtained results on an particular example, parallel FFT algorithm, on HPF and //c-MPI
confirm that the Nested parallelism is the natural model to apply when divide and conquer
techniques are uscd.

References

111 Blelloch G. - Programming Parallel Algorithms. Communications of ACM. 39(3). March
1996.

12] Blelloch, G., Hardwick J., Sipelstien j., Zahga M. - NESL user's manual Technical
report CMU-CS-93-114, School of computer Science . Carncgie Mcllon luniversity.
July, 1995.

Wicc 2000 -

17



13

4]

(5]
6]
(71
8]

(9]
[10]

(11}

L13]

Wicc 2000 -

Blelloch, G., Hardwick J., Sipelstien j., Zahga M., and Charterjee S. - Implemeniation
of a portable nested data-parallel language. Journal of Parallel and distributed
Computing, 21(1):4-14, April 1994,

Hardwick J. - An Lfficient Implementation of nested data Parallelism for Irregular
Divide and Conquer Algorithms. First International Wokshop on High programming
Models and Supportive Environments. April 1996.

High Performance Fortran Forum - High Performance l'ortran Language Specification.
1997

Li, X., Lu, P., Schaefer, J., Shillington, J., Wong, P.S., Shi, H. - On the Versatility of
Parallel Sorting by Regular Sampling. Parallel Computing, 19, pp. 1079-1103. 1993.
Merlin J., Hey A. - An introduction to High Performance Fortran. University ol
Southampton. 1994.

Merlin, J., Chapman, B. High Performance Fortran 2.0. VCPC University of Viena.
1997.

Mctcalf M., Reid J., - Fortran 90 Explained. Oxford University Press. 1990

Quinn M.- Parallel Computing. Theory and Practice. Second Edition. McGraw-Hill,
Inc.

Rodriguez C., Sande F., Leon C. and Garcfa L. - Extending Processor Assignment
Statements. 2"* IASTED European Conference on Parallel and Distributed Systems. Acta
Press. 1998.

Snir, M., Otto, S., Huss-Lederman, S., Walker, D., Dongarra, J. - MP[: The complete
Reference. Cambridge, MA: MIT Press, 1996.

The Design and Analysis of Parallel Algorithms. Prentice-Hall (1989)

18





