
A Systematic Approach

to Generate Test Cases based on

Combinations of Information

Marisa A. S¶anchez1 and Miguel A. Felder2

1 Universidad Nacional del Sur, Bah¶³a Blanca
E-mail: mas@cs.uns.edu.ar

2 Pragma Consultores, Buenos Aires
Url: http://www.pragma.com.ar
E-mail: mfelder@pragma.com.ar

1 Introduction

Software based systems incrementally provide critical services to
users. Mobile telephone systems, for example, are used in circum-
stances in which the malfunctioning may have disastrous conse-
quences. During the last years, software has been incorporated in
devices used in daily life, such as audio and television. The diver-
sity of systems in which software is incorporated is increasing. Thus,
the software development process has to consider a variety of spec-
i¯cation techniques and models, incorporating also techniques from
engineering sciences. In particular, the validation and veri¯cation
processes have to be adapted to these new developments. For exam-
ple, the testing based solely on the software speci¯cation is incom-
plete. First, there is an implicit objective to verify that the program
works correctly (as in the testing model of the 1957{1978, [GH88]).
Myers [Mye83] says that with the aim of demonstrating that a pro-
gram does not fail, we can unconsciously select data that has a low
probability of exposing faults. On the other hand, if the objective
is to demonstrate that a program has faults, test data will have a
higher probability of revealing them. In speci¯cation-based testing
we select data for which the desired behavior for the system is de-
¯ned. As stated by Boris Beizer [Bei95] testing should include both
clean and dirty tests. Dirty tests are designed to \break" the soft-
ware; clean tests are designed to demonstrate that software executes
correctly. Speci¯cations only provide clean tests.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 325

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 326

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


It is clear that a system has more possible behaviors than those
deduced from the speci¯cation. The problem is that, given the diver-
sity of information that we have to consider to understand a system,
it is not obvious how to de¯ne those behaviors. In this work, we
propose a systematic approach generate test cases based on combi-
nations of information:

{ information based on the software speci¯cation;
{ information about the behavior of other system components, such

as, memory resources, network availability, deadlock of resources;
{ information about di®erent operative conditions.

2 Research direction

The main problems that we encounter when we try to deduce infor-
mation outside the speci¯cation are the following:

(a) For the case of speci¯cation-based testing, the number of possible
behaviors is bounded by what is described in the speci¯cation. If
we also consider information outside the speci¯cation, the number
of possible behaviors is in¯nite.

(b) We have to deal with speci¯cations provided in di®erent lan-
guages, with di®erent levels of granularity and abstraction, and
that they consider di®erent views of the system.

In Sections 2.1 and 2.2 we discuss these points.

2.1 Selection of \dirty" behaviors

To address the ¯rst point, we propose to characterize possible be-
haviors and to give a priority according to some criteria. We use
Fault Tree Analysis to determine how an undesirable state (failure
state) can occur in the system [us881]. This analysis is a widely used
technique in industrial developments, and allows to describe how in-
dividual component failures or subsystems can combine to e®ect the
system behavior.

A fault tree consists of the undesired top state linked to more
basic events by logic gates. Once the tree is constructed, it can be
written as a Boolean expression and simpli¯ed to show the speci¯c

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 326

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 327



combinations of identi¯ed basic events su±cient to cause the unde-
sired top state. The sets of basic events that will cause the root event
are regarded as Minimal Cut Sets.

2.2 Integration of di®erent sources of information

Concerning the second point mentioned in the introduction of this
section, we have to integrate Fault Tree Analysis results with state-
charts. We assume we have a speci¯cation of the desired behavior for
the system using statecharts [Har87]. This formalism is widely used
within the software engineering community, and has been adopted
by the Uni¯ed Modeling Notation (UML) [DH89,HLN+90,BRJ98].

The results of the Fault Tree Analysis are related to the system
speci¯ed behavior to determine how we can reproduce these scenar-
ios. In our work we propose to interpret each Minimal Cut Set as
a Duration Calculus formula [ZHR91]. We de¯ned some conversion
rules of a formula to a statechart. These rules are applied to the syn-
tactic categories of Duration Calculus formulas. By combining both
sources of information within a common semantic framework, we can
systematically build a testing model. The testing model provides a
representation of the way the system behavior can be compromised
by failures or abnormal conditions or interactions.

In particular, if this conditions refer to a peak activity that exceed
system limitations, we are doing stress testing. Stress testing evalu-
ates the behavior of systems that are pushed beyond their speci¯ed
operational limits [Ngu01]. Stress testing requires an extensive plan-
ning e®ort for the de¯nition of workload, and this involves the analy-
sis of di®erent components that e®ect system behavior (e.g. memory
resources, network bandwidth, software failures, database deadlocks,
operational pro¯les). However, this analysis is usually performed ad
hoc. We propose to use Fault Tree Analysis helps to de¯ne workload
scenarios. The results of this analysis are composed with the spec-
i¯cation statecharts, and we obtain a model that describes how a
given workload can be reproduced.

2.3 Reduction of the testing model

The testing model is speci¯ed using statecharts. Although its se-
mantics is very intuitive, the inherent complexity of many of today's

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 327

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 328



applications may lead to large and complex statecharts. To address
this problem, we propose to reduce statecharts using slicing tech-
niques.

Program slicing is a technique for decomposing programs by an-
alyzing their data °ow and control °ow. The traditional de¯nition of
slicing is concerned with slicing programs written in imperative pro-
gramming languages [Wei84]. Therefore, it is assumed that programs
contain variables and statements, and slices consist solely of state-
ments. Sloane et al. extended the concept of slicing to a generalized
marking of a program's abstract tree [SH96]. This generalization al-
lows slicing based on criteria other than the use of a variable at a
given statement. We also base our approach to slicing on a marking
of the abstract syntax tree, and for this purpose we de¯ne a formal
grammar to describe correct syntax for statecharts. A slicing crite-
rion of a statechart is de¯ned by a state. The criterion determines
a projection on the sequences of the statechart that throws out all
states and transitions that do not contribute to reach the state of
interest.

2.4 Tool support

The testing process can become very tedious, if not unpractical be-
cause the amount of information needed to describe a test case is
large in most real problems. So it becomes necessary to support any
testing approach with tools, otherwise it may be useless for the prac-
titioner. We direct our e®orts towards developing an approach that
requires as little human intervention as possible. Thus, the resulting
approach allows a level of automation that can signi¯cantly enhance
the productivity of the testing process. Much of the ongoing work is
directed at developing tool support.

References

[Bei95] Boris Beizer. Black-Box Testing. Techniques for Functional Testing of Soft-
ware and Systems. John Wiley Sons, Inc., 1995.

[BRJ98] G. Booch, J. Rumbauch, and I. Jacobson. The Uni¯ed Modeling Language.
User Guide. Object Technology Series. Addison Wesley Longman, Reading,
MA, USA, 1998.

[DH89] D. Drusinsky and D. Harel. Using Statecharts for Hardware description and
Synthesis. IEEE Transactions on Computer-Aided Design, 8:798{807, 1989.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 328

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 329



[GH88] David Gelperin and Bill Hetzel. The Growth of Software Testing. Commu-
nications of the ACM, 31(6):687{695, June 1988.

[Har87] D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Prgramming, 8:231{274, 1987.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,
A. Shtulltrauring, and M. Trakhtenbrot. Statemate: A Working Environ-
ment for the Development of Complex Reactive Systems. IEEE Transactions
on Software Engineering, 16, 1990.

[Mye83] G. Myers. El Arte de Probar el Software. Librer¶³a El Ateneo Editorial,
Buenos Aires, 1983. Spanish translation.

[Ngu01] Hung Q. Nguyen. Testing Applications on the Web. John Wiley and Sons,
Inc., 2001.

[SH96] A. M. Sloane and J. Holdsworth. Beyond traditional program slicing. In
Proceedings of the International Symposium on Software Testing and Anal-
ysis, pages 180{186, 1996.

[us881] Fault Tree Handbook. Nureg-0492, U.S. Nuclear Regulatory Commission,
Washington, D.C., Jan. 1981.

[Wei84] Mark Weiser. Program Slicing. IEEE Transactions on Software Engineering,
10(4), July 1984.

[ZHR91] Chaochen Zhou, C.A.R. Hoare, and Anders P. Ravn. A Calculus of Dura-
tions. Information Proc. Letters, 40(5):269{276, Dec. 1991.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 329

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 330




