
Formal Specifications in Component-Based
Development

Elsa Estévez Pablo Fillottrani

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur

Av. Alem 1253 – (8000) Bah́ıa Blanca

Argentina

e-mail: {ece,prf}@cs.uns.edu.ar

1 Introduction

Software engineering has entered a new era, the Internet and its associated technologies
require a different conceptual framework for building and understanding software solu-
tions. Users ask to develop applications more rapidly, and software engineers need to
ensamble systems from preexisting parts. Components and Components-Based Devel-
opment(CBD)[16, 15], are the approaches that provide solutions to these arising needs.
Components are the way to encapsulate existing functionality, acquire third-party solu-
tions, and build new services to support emerging business processes. Component-based
development provides a design paradigm that is well suited to the new requirements, were
the traditional design and build has been replaced by select and integrate. Within this
approach, the specification of components plays a crucial role. If we are working on the
development of components in order to construct a library for general use, we need to start
from a concrete and complete specification of what we are going to construct. If we are
assembling our application from pre-existing components, we need a precise specification
of the behaviour of the component in order to select it from the library.

The specification is a statement of the requirements of a system. In general, we can
view a specification as the statement of an agreement between the producer and a consumer
of the service. In particular for software engineering, this agreement holds between the
software engineer and the user. Depending on the context, these two roles may present
important differences, so the nature of the specification is different. It is obvious we need
to specify the system that is our final product, but also all the intermediate elements
such as subsystems, components, modules, case tests, etc. Therefore, we can speak about
requirements specification to represent the agreement between the user and the system
developer, design specification in terms of the agreement between the system arquitect

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 275

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 276

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and the implementers, module specification or component specification as the contract
between the programmer using the module and the programmers who develops it. As
it is shown, the term specification is used in different stages of system development. In
all cases a specifiation at some level states the requirements for the implementation at a
lower level, and we can view it as a definition of what the implementation must provide.
The relation between the specification and the implementation is often explained in terms
of what the system must provide and how the system will be implemented in order to
provide the services. The specification must states what a component should do, while the
implementer decides how to do it.

The specification activity is a critical part of the software production process. Specifi-
cations themselves are the result of a complex and creative activity, and they are subject
to errors, just as are the products of other activities, like coding. As a result, we can write
good specifications, or bad ones. In this sense, most of the qualities required for software
products are required for specifications. The first qualities required are that they should
be clear, unambiguous, and understandable. These properties are quite obvious, but some-
times specifications are written in natural language and usually hide subtle ambiguities,
specially informal specifications. The second major quality required for specifications is
consistency, meaning that it should not introduce contradictions. The third prime quality
required for specifications is that they should be complete. Because of the difficulties in
achieving complete specifications, the use of the incremental principle is esencially impor-
tant in deriving specifications. That is, one may start with a fairly incomplete specification
document and expand it through several steps.

There are many relevant techniques for writing specifications, so we classify them ac-
cording to different specification styles. Ghezzi, Jazayeri and Mandrioli [2] classify them
according to two different orthogonal criteria. Specifications can be stated formally or
informally. Informal specifications are written in a natural language; they can, however,
also make use of figures, tables, and other notations to help understanding. They can also
be structured in a standardized way. When the notation gets a fully precise syntax and
meaning, it becomes a formalism. In such a case, we talk about formal specifications. It
is also useful to talk of semiformal specifications, since, in practice, we sometimes use a
notation without insisting on a completely precise semantics.

2 Research Topics

On this ground, we restrict our research to the use of formal methods for the specification
of software. By formal methods we mean a specification language plus formal reasoning,
that includes the use of formalisms such as logic, discrete mathematics, finite state ma-
chines, and others. Formal specifications are expressed in languages whose syntax and
semantics are formally defined, so they provide hierarchical decomposition and stepwise
development. The main goals of using formal methods in requirements specification is to
clarify customer’s needs and to reveal ambiguity, inconsistency and incompleteness. By
using formal specification for requirements, we can make a structural decomposition of the
behaviour of the system by specifying the behaviour of each component. Furthermore,
there is also the possibility of refinement by demonstrating that lower levels of abstraction

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 276

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 277



satisfies higher levels. Formal methods enables the verification of software by proving that
an implementation satisfies its specification, and likewise it makes easier the validation
facilitating testing and debugging. In this context we use RAISE, Rigourous Approach
to Industrial Software Engineering, [3, 4] as the formal method to develop and to spec-
ify software. The RAISE Method provides a methodology to develop software, a formal
specification language RSL, and automated tools for proofs and code generation.

Within the formal methods area, algebraic specification is one of the most extensively-
developed approaches. The most fundamental assumption underlying algebraic specifica-
tion is that programs are modelled as many-sorted algebras consisting of a collection of sets
of values together with functions over those sets. The overall aim of work on algebraic spec-
ification is to provide semantic foundations for the development of software that is correct
with respect to its requirements specifications. This means that the component developed
must exhibit the required input/output behaviour. Algebraic specifications are used to
construct software in a stepwise fashion, adding more details in each step of refinement
[14, 8, 12].

As new paradigms appeared, different formalisms are used for the theoretical foun-
dations. For example, the object oriented paradigm uses the mathematical concept of
coalgebras to model the behaviour of classes [13, 8, 6, 7]. The concept of a class as a
black box, that is fully encapsulated and cannot be examined directly, presents a typically
co-algebraic view. In dealing with coalgebras, we use destructors to get a result or to
change the state of an object. This is more suitable with the concept of encapsulation
and information hiding, basis of the object-oriented paradigm. As another example, in
component integration we need to asbtract implementation details and concentrate only
on behaviour aspects. The co-algebraic view is also suitable for modeling the component
as a black box.

On our research we describe software components as class expressions in RAISE. Each
class consists of the state, operations for reading and writing this state and the axioms to
relate such operations. On the one hand a class represents a data structure, giving rise
to the definition of an abstract data type. This presents a typically algebraic view which
allows us to construct and manipulate particular values of the state [14]. On the other hand,
a class represents dynamic behaviour: how the component generated from this class can
interact with its environment, how its operations invoked externally to produce observable
attributes of the state, new states (which attributes we can investigate again) or both.
Our studies are based on these two complementary approaches; the algebraic view is more
adequate when we need to construct a class from its specification (by refinement)and the co-
algebraic view is more suitable for reuse and composition of class expressions. In the latter
we require definition of behavioural abstraction which is not supported by refinement. For
this purpose we propose to use bisimulations [11, 9]. Bisimulation is a relation between the
states of two dynamic systems representing that the two systems cannot be distinguished
by interacting with them. It is a central concept in concurrency theory, and it was also
considered on the grounds of logic [5], category theory [1], games [10] and co-algebras
[8]. We study the application of bisimulation in the framework of RAISE, an industrial-
strength formal method, in the role of behavioural abstraction for building software from
pre-existing components. The goal is to prove how bisimulation ignores what is inessential
from the point of view of behaviour, such as differences in operation definitions, data

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 277

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 278



representations, implementation structures and specification styles. We can thus establish
a criteria for comparing components from the behavioural equivalence view.

References

[1] A. Joyal, M. N., and Winskel, G. Bisimulation for Open Maps. Information
and Computation 127 (1996), 164–185.

[2] Carlo Ghezzi, Mehdi Jazayeri, D. M. Fundamentals of Software Engineering.
Prentice-Hall International, 1991.

[3] Group, T. R. M. The RAISE Specification Language. Pr. Hall, 1992.

[4] Group, T. R. M. The RAISE Development Method. Prentice Hall, 1995.

[5] Hennessy, M., and Milner, R. Algebraic Laws for Nondeterminism and Concur-
rency. Journal of the ACM 32 (1985), 137–161.

[6] Jacobs, B. Coalgebraic Reasoning about Classes in Object-Oriented Languages.
Electronic Notes in Theoretical Computer Science 11 (1998), 1–12.

[7] Jacobs, B. Coalgebras in specification and verification for object oriented languages.
Newsletter of the Dutch Association for Theoretical Computer Science 3 (1999).

[8] Jacobs, B., and Rutten, J. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin 62 (1997), 222–259.

[9] Milner, R. A Calculus of Communicating Systems. LNCS 92 (1980).

[10] Nielsen, M., and Clausen, C. Bisimulation, Games and Logic. In CONCUR94
(1994), vol. 836 of LNCS, Springer-Verlag, pp. 385–400.

[11] Park, D. Concurrency and automata on infinite sequences. LNCS 104 (81).

[12] Razvan Diaconescu, K. F. CafeOBJ Report: The Language, Proof Techniques,
and Methodologies for Object-Oriented Algebraic Specification. World Scientific,
1998. AMAST Series in Computing, 6 (1998).

[13] Reichel, H. An approach to object semantics based on terminal co-algebras. Math-
ematical Structures in Computer Science 5 (1995), 129–152.

[14] Sannella, D., and Tarlecki, A. Essential Concepts of Algebraic Specification
and Program Development. Formal Aspects of Computing 9(3) (1997), 229–269.

[15] Szyperski, C. Component Software Beyond Object-Oriented Programming. Addison
Wesley Longman Limited, 1998.

[16] W.Brown, A. Large-Scale Component-Based Development. Prentice Hall Interna-
tional, 2000.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 278

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 279




