of change and time

the research work in making the
oblems demand the possibility to
t goal, although we managed the
of the underlying logic. This logic
ric temporal logics [Pri67a]. The
ition of a new operator, and also

ogic, Deductive Databases, Negation.

blem of storing and retrieving infor-
by using deductive databases. They
e way and an inference procedure to
ons of change and time. For example
positions of the employees in some
a business or events in an industry

n capability to handle temporal con-
e proposal of [Gab87]. The Temporal
presented a programming language,
e capability of dealing with more pre-
eply studied logic proposed by Prior
ays of seeing time, through A-series
e of them formalize the other view of
ences of time. An example of logic of
ever, there are many circumstances
to use and refer time.
rlying logic is important to associate
rsion of EMTPL, we use negation as

Universidad Nacional del Sur).

Pagi na 267

https://core.ac.uk/display/301042334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Wor kshop de I nvestigadores en Ciencias de | a Conputaci én W CC 2002

failure instead of classical negation. Because of this the manipulation of negative information
is not always appropriate, we could think about the need of counting with an operator that
offers to the language some kind of temporal negation. This new operator could be interesting,
because we will count with an operator that provides a way to manage that negative information
that is vital in some contexts or problems.

EMTPL [CA99a] was designed to manipulate temporal references of both kinds, making
the language appropriate for Databases. In section 2 we present a brief presentation of the
programming language EMTPL. In section 3 we mention the principal aspects of the extension
we have in mind. Conclusions and future work suggestions will be presented in section 4.

2 Brief revision to EMTPL

2.1 Syntax and semantics

The syntax of the EMTPL’s operators as follows:

¢ = pl=9[p1 A p2| AT, 9| On @[T & G|V & G|y B3N O ¢[Vn O @

Disjunction and implication could be defined as usual. More temporal operators are definable
as specified below.
The intuitive meaning of the temporal operators ¢ and < is as follows:

& ¢ sometime in the future ¢ or ¢ will be true in some moment of the future.
& ¢ sometime in the past ¢ or ¢ was true in some moment of the past.

With this intuitive idea we can now give the formal semantic the operators. We assume,
then, a set of instants ..., 4n, int1,int2, . . . that represents an unbounded and linear temporal
structure. The information in the system could be seen as a list of sets, o, that contains all
the truths we have in our theory. Each member of the list is a set denoted by o(j). Then
o(7) represents the set of truths at an instant j. We follow with an inductive definition for “a
temporal proposition true at an instant j”. We start specifying that p € o(j) means “p is true
at instant j”.

It is important to point out that the quantification is applied only over the members of the
temporal structure, i.e., the set of numbers we choose to represent time. We claim this set of
numbers to be a metric space.

i) Epiffpea(y)

J)E piff (0,5) FEp

i) EPAqift (0,5) Fpand (0,]) Fq
B E S piff (0,j+¢)FEp
ECpiff (0,j—c)Fp
7)
7)
7)
7)
7)

)

E dn &, p iff exists an instant n, n > 0 such that (0,7 +n) Ep
E dn ©, p iff exists an instant n, n > 0 such that (0,5 —n) Ep
E Vn B, p iff for all instant n, n > 0 we have (0,j+n)Ep
E Vn B, p iff for all instant n, n > 0 we have (0,7 —n) Ep

AT piff (0,¢) Fp

(
(
(
(
(
(
(
(
(
(

(o2
(o
(o
(o
(o
(o
(o
(o
(o2
(o

)

We can define some other nice operators from this ones [CA00, CA99a]

Pagi na 268

Wor kshop de I nvestigadores en Ciencias de | a Conputaci én W CC 2002

2.2 Definition of the language

The language is based on Prior’s logic [Pri67a, Pri67b] plus an extension to that logic buy the
introduction of the AT. This extension consists mainly, on introducing the AT operator in
Prior’s axiomatization [CA99a].

In what respects to the language based on this extended logic, Extended Metric Temporal
Programming Language (EMTPL), we define it in this way:

DEFINITION 1 (EMTPL)

Let us consider a language with propositional atoms, the logic connectives: A,V —, — and the
temporal operators: &, ©,, ¢, ©, B, 8. We define the notion of EMTP’s program, clause,
always clause, ordinary clause, head, body and goal as follows:

e A program is a set of “clauses”.

e A clause is AT;C or C where C is an “ordinary clause”.

An ordinary clause is a “head” or a B — H, where B is a “body” and H is a “head”.

A head is an atomic formula, &, A or ©, A or HA or BA where A is a conjunction of
“ordinary clauses”.

A body is an atomic formula, a conjunction of bodies, ¢, B or €, B or BA or HA or - B
where B is a body.

A goalis AT, B or B where B is any body or a disjunction of bodies.
[|

It is important to point out that the facts or rules (Prop) that are not affected with an AT,
operator are interpreted as facts or rules that happen in the present moment, i.e., we are going
to put them in the base as AT,,Prop, where m means “now”. The reader can find more details
of this language in [CA99a].

3 DMotivation for a negation extension

The definition of EMTPL includes the operator —, this operator can be part of a clause, more
specifically it can form part of the body of an EMTPL clause. We have previously seen that the
semantic of = operator is:

(ij) l: —p iff (ij) bép

Intuitively this is the negation as failure semantic, because it means that some formula —A is
true if and only if the system can not prove the truth of A. This semantic is quite different
from the classical negation semantic, in which the truth of =A depends only in the proof of the
negated formula. The decision of which semantic choose is quite important, because no matter
which one the language support, it causes some effects on it. If we choose negation as failure,
the system looses some properties of the underlying logic and a considerable set of theorems.
Another disadvantage of this way of conceive negation is the restriction to manipulate negative
information. That means that we can not have in the base any negative information, this can
be seen in the fact that the negation operator can be only part of a body clause and that body
must be proven in the system. On the other hand since databases are usually systems with
incomplete information, classical negation will not always has an positive or negative answer

'$¢p =peyIn G, ¢
B¢ =pef Vn &, ¢

Pagi na 269

Wor kshop de I nvestigadores en Ciencias de | a Conputaci én W CC 2002

to all possible queries. Instead the system could answer true, false and unknown. In the
development of EMTPL we though of critical data bases where the answer unknown is quite
dangerous.

Considering this we can think in the possibility of adding a new negation operator to EMTPL
language, i.e. the language keep having negation as failure, but provides some kind of temporal
negation, that allows manage negative information.

3.1 Extension 1: EMTPLy

EMTPLy is like EMTPL, except for the new operator V. The syntax of the new language
EMTPLy is as follows:

¢ = p‘_\qﬁ‘(]ﬁl A ¢2‘ATn¢‘V¢‘®n (b‘an ®n (b‘vn ®n (b‘@n (b‘an <>n (b‘vn <>n ¢

Assuming a temporal structure like EMTPL’s one, the semantic of the new operator is:

(Uaj) ': Vp iff Vpe U(]) or (Uaj) ': -p

The intuitive meaning of this semantic is: “Vp is true only if we have Vp in the set of proven
facts, or we can not prove p”’ In order to avoid the or-problems of logic programming we only
are going to allow the negation of atomic formulas.

As a consequence of the definition we have the following definition of EMTPLv

DEFINITION 2 (EMTPLy)

Let us consider a language with propositional atoms, the logic connectives: A,V —, =, V and
the temporal operators: &, ©,, &, ©, B 8. We define the notion of EMT Py’s program, clause,
always clause, ordinary clause, head, body and goal as follows:

e A program is a set of “clauses”.

e A clause is AT;C or C where C' is an “ordinary clause”.

An ordinary clause is a “head” or a B — H, where B is a “body” and H is a “head”.

An atomic formula is an atom or VA where A is an atom.

e A head is an atomic formula, ¢, A or ©, A or HA or HA where A is a conjunction of
“ordinary clauses”.

A body is an atomic formula, a conjunction of bodies, ¢, B or €, B or A or HA or - B
where B is a body.

A goalis AT, B or B where B is any body or a disjunction of bodies.

For example we can now infer negative information like in the following rule:
in-way(Car, Street) A move(Car) — V free_way(Street)

In EMTPL, the previous rule is not allowed because it is meaningless to infer something whose
value depends on the failure of some other proof. Also, we can consider a short example where
the use of V is different form —.

op move(Car) N in-way(Car, Street2) A lateral way(Street, Street2) — free_way(Street)

In the previous rule if there are negative information the meaning change if we replace op with
= or with V. That is because it is not the same infer that a car is not moving because we just
know that the car is not moving.

Pagi na 270

Wor kshop de I nvestigadores en Ciencias de | a Conputaci én W CC 2002

3.2 Extension 2: EMTPLy,

The new operator could be used as the realization operand AT or like . but for negative
information. In this sense we can analyze what happens with an operator of this kind.

The syntax of the language is quite similar to the corresponding to EMTPLy the only
modification is that we replace Vp by V. p

Let see the semantic of V., again we assume a temporal structure like EMTPL’s one.

(Uaj) ': chiﬂ (O’,j—l—C) ': -p

With this semantic we do not manage negative information in the same way as in 3.1, because
the manipulation of that kind of information is, in some way, virtual.
We can think in having both operators, but it seems to be not very attractive because al
first sight we can think that:
Vep =S Vp

Although it can be interesting to analyze what happen with this kind of operators more carefully.

4 Conclusions and future work

We show some ways of extend the language EMTPL to manage negative information. The idea
behind the first one is to combine classical negation and negation as failure, so we can have
negative information and also keep a two-valuate system. For this alternative we believe that
can be interesting to find a way to make the operator V more flexible, i.e., analyze what happens
with the system if we extend its application to any formula instead of only atomic ones The
idea of the second extension is to provide some kind of temporal negation, this can lead to some
interesting operator.

In both cases it should be analyzed how this extensions affects the expressiveness of the
language, and at the same take a look to the underlying logic part. Another aspect to consider
is how to introduce these operators in an interpreter of our language.

References

[CA99a] Maria Laura Cobo and Juan Carlos Augusto. EMTPL: A Pogramming Language for
Temporal Deductive Data Bases. In Proceedings de la XIX International Conference of
the Chilean Computer Science Society, pages 170178, Talca, Chile, 1999.

[CA99b] Maria Laura Cobo and Juan Carlos Augusto. Fundamentos légicos e implementacién
de una extensién a temporal prolog. The Journal of Computer Science and Technol-
ogy (JCSET), sponsored by ISTEC (Iberoamerican Science & Technology Education
Consortium, 1(2):22-36, 1999.

[CA00] Maria Laura Cobo and Juan Carlos Augusto. Towards a Programming Language Based
on Prior’s Metric Temporal Operators. In Proceedings del VI Congreso Argentino de
Cs. de la Computacion, CACiC2000, pages 453 —464, 2000.

[Gab87] Dov Gabbay. Modal and temporal logic programming. In Antony Galton, editor,
Temporal Logic and their Applications, pages 197-236. Academic Press, 1987.

[Pri67a] Arthur Prior. Past, Present and Future. Clarendon Press, 1967.
[Pri67b] Arthur Prior. Stratified metric tense logic. Theoria 33, pages 28-38, 1967.
[RU71] Nicholas Rescher and Alasdair Urquhart. Temporal Logic. Springer-Verlag, 1971.

Pagi na 271

