
An extension to EMTPL

Maŕıa Laura Cobo Marcelo Alejandro Falappa

Department of Computer Science and Engineering ∗

Universidad Nacional del Sur

Bah́ıa Blanca - Argentina

fax: +54 291 4595136

[mlcobo, mfalappa] @cs.uns.edu.ar

Abstract

The development of languages allowing a proper handling of time is important in many
areas of computer science because the capability to deal with the notions of change and time
are essential to solve their problems.

In the development of EMTPL [CA99a] we focused the research work in making the
languages useful in the area of databases, where some problems demand the possibility to
represent and use temporal information. We achieve that goal, although we managed the
negation in a way that causes the lost of some properties of the underlying logic. This logic
was deeply studied and it is one of the most famous metric temporal logics [Pri67a]. The
main idea of this work is to extend EMTPL by the addition of a new operator, and also
grant the negation with its logic meaning.

Key words: Programming Languages, Metric Temporal Logic, Deductive Databases, Negation.

1 Introduction

The database research field provides solutions for the problem of storing and retrieving infor-
mation. One of the possible ways to achieve this goal is by using deductive databases. They

use logic as a mean to represent information in a declarative way and an inference procedure to
answer queries. Some problems are involved with the notions of change and time. For example

we could be interested on keeping record of the different positions of the employees in some
factory, evolution of patients in a hospital, transactions in a business or events in an industry

environment.
Some implementations are available for languages with capability to handle temporal con-

cepts, for example, Temporal Prolog in [CA99b] based on the proposal of [Gab87]. The Temporal
Prolog’s proposal was improved in [CA99a] where we had presented a programming language,
Metric Temporal Programming Language (MTPL), with the capability of dealing with more pre-

cise temporal information; this language is based on a deeply studied logic proposed by Prior
([Pri67a] and [Pri67b]) and follows one of the most known ways of seeing time, through A-series

(past, present and future). There are other logics, and some of them formalize the other view of
time, as B-series (before, after), where we use explicit references of time. An example of logic of

this later type has been presented by Rescher [RU71]. However, there are many circumstances
when it is very useful if not mandatory to have both ways to use and refer time.

To preserve all the properties and benefits of the underlying logic is important to associate
the logic meaning to the negation operator. In the first version of EMTPL, we use negation as

∗Partially supported by the Secretary of Science and Technology (Universidad Nacional del Sur).

1

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 266

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 267

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

failure instead of classical negation. Because of this the manipulation of negative information
is not always appropriate, we could think about the need of counting with an operator that

offers to the language some kind of temporal negation. This new operator could be interesting,
because we will count with an operator that provides a way to manage that negative information

that is vital in some contexts or problems.
EMTPL [CA99a] was designed to manipulate temporal references of both kinds, making

the language appropriate for Databases. In section 2 we present a brief presentation of the
programming language EMTPL. In section 3 we mention the principal aspects of the extension

we have in mind. Conclusions and future work suggestions will be presented in section 4.

2 Brief revision to EMTPL

2.1 Syntax and semantics

The syntax of the EMTPL’s operators as follows:

φ = p|¬φ|φ1 ∧ φ2|ATnφ|3+n φ|∃n 3+n φ|∀n 3+n φ|3−n φ|∃n 3−n φ|∀n 3−n φ

Disjunction and implication could be defined as usual. More temporal operators are definable
as specified below.

The intuitive meaning of the temporal operators 3+ and 3− is as follows:

3+ φ sometime in the future φ or φ will be true in some moment of the future.
3− φ sometime in the past φ or φ was true in some moment of the past.

With this intuitive idea we can now give the formal semantic the operators. We assume,

then, a set of instants . . . , in, in+1, in+2, . . . that represents an unbounded and linear temporal
structure. The information in the system could be seen as a list of sets, σ, that contains all
the truths we have in our theory. Each member of the list is a set denoted by σ(j). Then

σ(j) represents the set of truths at an instant j. We follow with an inductive definition for “a
temporal proposition true at an instant j”. We start specifying that p ∈ σ(j) means “p is true

at instant j”.
It is important to point out that the quantification is applied only over the members of the

temporal structure, i.e., the set of numbers we choose to represent time. We claim this set of
numbers to be a metric space.

(σ, j) |= p iff p ∈ σ(j)

(σ, j) |= ¬p iff (σ, j) 6|= p

(σ, j) |= p∧ q iff (σ, j) |= p and (σ, j) |= q

(σ, j) |= 3+c p iff (σ, j + c) |= p

(σ, j) |= 3−c p iff (σ, j − c) |= p

(σ, j) |= ∃n 3+n p iff exists an instant n, n > 0 such that (σ, j + n) |= p

(σ, j) |= ∃n 3−n p iff exists an instant n, n > 0 such that (σ, j − n) |= p

(σ, j) |= ∀n 2+n p iff for all instant n, n > 0 we have (σ, j + n) |= p

(σ, j) |= ∀n 2−n p iff for all instant n, n > 0 we have (σ, j − n) |= p

(σ, j) |= ATc p iff (σ, c) |= p

We can define some other nice operators from this ones [CA00, CA99a]

2

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 267

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 268

2.2 Definition of the language

The language is based on Prior’s logic [Pri67a, Pri67b] plus an extension to that logic buy the
introduction of the AT . This extension consists mainly, on introducing the AT operator in

Prior’s axiomatization [CA99a].
In what respects to the language based on this extended logic, Extended Metric Temporal

Programming Language (EMTPL), we define it in this way:

Definition 1 (EMTPL)
Let us consider a language with propositional atoms, the logic connectives: ∧,∨ →, ¬ and the

temporal operators: 3+n, 3−n, 3+
1, 3−, 2+

2, 2−. We define the notion of EMTP’s program, clause,
always clause, ordinary clause, head, body and goal as follows:

• A program is a set of “clauses”.

• A clause is ATiC or C where C is an “ordinary clause”.

• An ordinary clause is a “head” or a B → H , where B is a “body” and H is a “head”.

• A head is an atomic formula, 3+n A or 3−n A or 2+A or 2−A where A is a conjunction of

“ordinary clauses”.

• A body is an atomic formula, a conjunction of bodies, 3+n B or 3−n B or 2+A or 2−A or ¬B

where B is a body.

• A goal is ATnB or B where B is any body or a disjunction of bodies.
�

It is important to point out that the facts or rules (Prop) that are not affected with an ATn

operator are interpreted as facts or rules that happen in the present moment, i.e., we are going

to put them in the base as ATmProp, where m means “now”. The reader can find more details
of this language in [CA99a].

3 Motivation for a negation extension

The definition of EMTPL includes the operator ¬, this operator can be part of a clause, more
specifically it can form part of the body of an EMTPL clause. We have previously seen that the

semantic of ¬ operator is:
(σ, j) |= ¬p iff (σ, j) 6|= p

Intuitively this is the negation as failure semantic, because it means that some formula ¬A is
true if and only if the system can not prove the truth of A. This semantic is quite different

from the classical negation semantic, in which the truth of ¬A depends only in the proof of the
negated formula. The decision of which semantic choose is quite important, because no matter
which one the language support, it causes some effects on it. If we choose negation as failure,

the system looses some properties of the underlying logic and a considerable set of theorems.
Another disadvantage of this way of conceive negation is the restriction to manipulate negative

information. That means that we can not have in the base any negative information, this can
be seen in the fact that the negation operator can be only part of a body clause and that body

must be proven in the system. On the other hand since databases are usually systems with
incomplete information, classical negation will not always has an positive or negative answer

1
3+φ =Def ∃n 3+n φ

2
2+φ =Def ∀n 3+n φ

3

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 268

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 269

to all possible queries. Instead the system could answer true, false and unknown. In the
development of EMTPL we though of critical data bases where the answer unknown is quite

dangerous.
Considering this we can think in the possibility of adding a new negation operator to EMTPL

language, i.e. the language keep having negation as failure, but provides some kind of temporal
negation, that allows manage negative information.

3.1 Extension 1: EMTPL∇

EMTPL∇ is like EMTPL, except for the new operator ∇. The syntax of the new language
EMTPL∇ is as follows:

φ = p|¬φ|φ1 ∧ φ2|ATnφ|∇φ|3+n φ|∃n 3+n φ|∀n 3+n φ|3−n φ|∃n 3−n φ|∀n 3−n φ

Assuming a temporal structure like EMTPL’s one, the semantic of the new operator is:

(σ, j) |= ∇p iff ∇p ∈ σ(j) or (σ, j) |= ¬p

The intuitive meaning of this semantic is: “∇p is true only if we have ∇p in the set of proven

facts, or we can not prove p” In order to avoid the or-problems of logic programming we only
are going to allow the negation of atomic formulas.

As a consequence of the definition we have the following definition of EMTPL∇

Definition 2 (EMTPL∇)
Let us consider a language with propositional atoms, the logic connectives: ∧,∨ →, ¬, ∇ and

the temporal operators: 3+n, 3−n, 3+, 3−, 2+, 2−. We define the notion of EMTP∇’s program, clause,
always clause, ordinary clause, head, body and goal as follows:

• A program is a set of “clauses”.

• A clause is ATiC or C where C is an “ordinary clause”.

• An ordinary clause is a “head” or a B → H , where B is a “body” and H is a “head”.

• An atomic formula is an atom or ∇A where A is an atom.

• A head is an atomic formula, 3+n A or 3−n A or 2+A or 2−A where A is a conjunction of

“ordinary clauses”.

• A body is an atomic formula, a conjunction of bodies, 3+n B or 3−n B or 2+A or 2−A or ¬B

where B is a body.

• A goal is ATnB or B where B is any body or a disjunction of bodies.

�

For example we can now infer negative information like in the following rule:

in way(Car, Street)∧ move(Car) → ∇free way(Street)

In EMTPL, the previous rule is not allowed because it is meaningless to infer something whose
value depends on the failure of some other proof. Also, we can consider a short example where

the use of ∇ is different form ¬.

op move(Car) ∧ in way(Car, Street2)∧ lateral way(Street, Street2) → free way(Street)

In the previous rule if there are negative information the meaning change if we replace op with

¬ or with ∇. That is because it is not the same infer that a car is not moving because we just
know that the car is not moving.

4

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 269

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 270

3.2 Extension 2: EMTPL∇c

The new operator could be used as the realization operand AT or like 3+c but for negative
information. In this sense we can analyze what happens with an operator of this kind.

The syntax of the language is quite similar to the corresponding to EMTPL∇ the only
modification is that we replace ∇p by ∇c p

Let see the semantic of ∇c, again we assume a temporal structure like EMTPL’s one.

(σ, j) |= ∇c p iff (σ, j + c) |= ¬p

With this semantic we do not manage negative information in the same way as in 3.1, because
the manipulation of that kind of information is, in some way, virtual.

We can think in having both operators, but it seems to be not very attractive because al
first sight we can think that:

∇c p = 3+c∇p

Although it can be interesting to analyze what happen with this kind of operators more carefully.

4 Conclusions and future work

We show some ways of extend the language EMTPL to manage negative information. The idea

behind the first one is to combine classical negation and negation as failure, so we can have
negative information and also keep a two-valuate system. For this alternative we believe that

can be interesting to find a way to make the operator ∇ more flexible, i.e., analyze what happens
with the system if we extend its application to any formula instead of only atomic ones The

idea of the second extension is to provide some kind of temporal negation, this can lead to some
interesting operator.

In both cases it should be analyzed how this extensions affects the expressiveness of the
language, and at the same take a look to the underlying logic part. Another aspect to consider
is how to introduce these operators in an interpreter of our language.

References

[CA99a] Maŕıa Laura Cobo and Juan Carlos Augusto. EMTPL: A Pogramming Language for
Temporal Deductive Data Bases. In Proceedings de la XIX International Conference of

the Chilean Computer Science Society, pages 170–178, Talca, Chile, 1999.

[CA99b] Maŕıa Laura Cobo and Juan Carlos Augusto. Fundamentos lógicos e implementación
de una extensión a temporal prolog. The Journal of Computer Science and Technol-

ogy (JCS&T), sponsored by ISTEC (Iberoamerican Science & Technology Education
Consortium, 1(2):22–36, 1999.

[CA00] Maŕıa Laura Cobo and Juan Carlos Augusto. Towards a Programming Language Based

on Prior’s Metric Temporal Operators. In Proceedings del VI Congreso Argentino de
Cs. de la Computación, CACiC2000, pages 453 –464, 2000.

[Gab87] Dov Gabbay. Modal and temporal logic programming. In Antony Galton, editor,

Temporal Logic and their Applications, pages 197–236. Academic Press, 1987.

[Pri67a] Arthur Prior. Past, Present and Future. Clarendon Press, 1967.

[Pri67b] Arthur Prior. Stratified metric tense logic. Theoria 33, pages 28–38, 1967.

[RU71] Nicholas Rescher and Alasdair Urquhart. Temporal Logic. Springer-Verlag, 1971.

5

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 270

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 271

