
Logical Properties in Defeasible Logic Programming

– a preliminary report –

A. G. Stankevicius M. Capobianco C. I. Chesñevar

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur
Bah́ıa Blanca - Buenos Aires - ARGENTINA

e-mail: {ags, mc, cic}@cs.uns.edu.ar

1 Introduction

Logics for nonmonotonic reasoning have often been described by the property they lack—that
is, monotonicity—instead of by those they do enjoy. These theories flourished in the early
‘80s in response to the inconveniences incomplete and changing information posed to classic,
monotonic approaches. Several nonmonotonic formalisms were introduced in the literature:
inheritance networks, default logic, preferential entailment, autoepistemic logic, and defeasible
argumentation among others. The introduction of these proposals in a short span of time made
it difficult to decide which approach is best suited for a given context.

In a landmark paper, Dov Gabbay [3] pioneered the comparison of nonmonotonic theories
with respect to a set of desirable properties. He endorsed focusing our attention on the proper-
ties of the inference relation induced by each system, that is, the relation between a conclusion
and the set of premises supporting it. Further pursuing this approach, first Kraus et al. [5], and
later Makinson [6], studied which set of core properties every nonmonotonic theory must have.
These properties can be roughly divided in the so-called pure conditions, that solely depend on
the inference relation, and those that also interact with the logical connectives. For any infer-
ence relation |∼ its corresponding inference operator, noted C, is defined as C(Φ) = {φ |Φ |∼ φ}.
Assuming that Φ and Ψ are sets of premises, the pure conditions can be defined in terms of
this operator as follows:

Inclusion: Φ ⊆ C(Φ)

Idempotence: C(Φ) = C(C(Φ))

Cut: Φ ⊆ Ψ ⊆ C(Φ) implies that C(Φ) ⊆ C(Ψ)

Cautious monotonicity: Φ ⊆ Ψ ⊆ C(Φ) implies that C(Ψ) ⊆ C(Φ)

Inclusion is clearly desirable in the context of any sensible inference relation, as it stands for
accepting the premises upon which we reason. Idempotence shows we have inferred as much
as possible, in the sense that no new conclusions can be obtained from Φ through the operator
C. Cut ensures that adding known consequences into our set of premises does not give us
new conclusions. Cautious monotonicity, the dual of cut, states the opposite: adding known

1

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 60

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 61

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042257?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

consequences into our set of premises does not make us loose conclusions. Those inference
relations satisfying all these properties are called cumulative.1

Some authors have suggested that every nonmonotonic theories should be engineered around
a cumulative inference relation. For instance, Kraus et el. [5] pushed this stance further
claiming that “. . . [these properties] are rock-bottom properties without which a system should
not be considered a logical system.” In what follows we study whether the entailment relations
induced by a particular nonmonotonic theory are cumulative.

2 Our Study Case

Defeasible Logic Programming (DeLP, henceforth), combines a language similar to the one
of logic programming with an argumentative inference engine [10, 9, 4]. DeLP structures
knowledge using a set of facts, denoting the evidence at hand, also complemented with two meta-
linguistic relations written as rules. On the one hand, strict rules represent uncontrovertible
information (e.g., being a penguin is an uncontrovertible reason for being a bird). On the other
hand, defeasible rules represent disputable information (e.g., being a bird is a disputable reason
for being able to fly). Thus, a defeasible logic program P is just a tuple (Π, ∆) where Π is a
set of facts and strict rules, and ∆ a set of defeasible rules. The conclusions endorsed by a
given a program P are obtained through a dialectical process based on three auxiliary inference
relations. In the remainder of this section we consider what properties are met by each of these
relations.

2.1 Strict and defeasible inference

The first inference relation we consider is called strict inference as it only concerns strict rules.
In this relation, a conclusion φ is inferred from a program P, noted P ` φ, when it can be
derived from P simply by interpreting its strict rules as inference rules. The second relation,
called defeasible inference, allows the use of both strict and defeasible rules in order to form
conclusions. We write P |∼ φ when a conclusion φ is defeasibly inferred from a program P. Even
though these two relations look rather simple-minded, they play a fundamental role within
DeLP: they are the building blocks of the more elaborate notions of argument and warrant.

Let C` and C|∼ be the consequence operators associated respectively to strict and defeasible
inference, that is to say, C`(Φ) = {φ | Φ ` φ} and C|∼(Φ) = {φ | Φ |∼ φ}. The following
proposition summarizes our findings about these relations:

Proposition 2.1 The consequence operators C|∼ and C` satisfy inclusion, idempotence, cut,
and cautious monotonicity.

It is straightforward to see that C|∼ and C` are both monotonic, and therefore cumulative. Any
standard proof of monotonicity from classical logic also applies here.

It should be mentioned that the strict part of any defeasible logic program is by definition
bound to be consistent with respect to strict inference, i.e., no pair of contradictory literals can
be derived.

1for an excellent survey of these and other abstract properties we refer the interested reader to [1].

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 61

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 62

2.2 Argument-based inference

The last auxiliary inference relation concerns the construction of arguments. Simply put, an
argument is a tentative piece of reasoning supporting a certain conclusion. In this system, an
argument is the subset of defeasible rules that allows to defeasibly derive a given conclusion. We
say that φ is an argument-based inference from a program P, noted as P |∼A φ, if it is possible
to build an argument for φ using the defeasible rules in P. The corresponding consequence
operator for this relation is defined as CA(Φ) = {φ | Φ |∼A φ}. This inference relation greatly
differs from the previous one.

Proposition 2.2 The consequence operator CA satisfies inclusion, but fails idempotence, cut,
and cautious monotonicity.

Inclusion trivially holds, given that every fact is supported by the empty argument (note that
facts can be strictly derived). The failure of idempotence is shown next:2

Example 2.1 Let P = (Π, ∆) be a DeLP program, where Π = {a} and ∆ = {b −≺ a;∼b −≺ a}.
Note that in this case CA({a}) = {b; ∼b} 6= ∅ = CA(CA({a})).

Finally, the following counterexamples show that argument-based inference does not satisfy cut
nor cautious monotonicity.

Example 2.2 Consider the DeLP program P = (Π, ∆), where Π = {b; d; ∼ c ← a} and
∆ = {a −≺ b, d; b −≺ c; c −≺ d}. In this setting, it is possible to build the argument A1 =
{b −≺ c; c −≺ d} for b. However, should b be added to P as a fact, we now can obtain a new
argument A2 = {a −≺ b, d} for a, previously unavailable.

Example 2.3 Let P = (Π, ∆) be a DeLP program, where Π = {a} and ∆ = {b −≺ a;∼b −≺ a}.
In this context, the arguments A1 = {b −≺ a} for b and A2 = {∼ b −≺ a} for ∼ b can be
constructed from P. However, should b be added to P as a fact, we can no longer argue A2 (it
now contradicts our strict knowledge). Thus, since A1 was the only argument supporting ∼ b,
this conclusion is lost.

2.3 Warrant

The whole purpose of a DeLP program is obviously to establish what set of conclusions holds.
This purpose is filled by the notion of warrant. Given certain program P, a conclusion φ is said
to be warranted on the basis of P, noted P |∼W φ, if it is supported by an non-defeated argument
constructed from P. It should be stressed that in order to establish whether an argument is
non-defeated, we must take into account all its potential counter-arguments—one of them might
defeat our initial argument. Since these counter-arguments are in fact arguments, there may
exist defeaters for the defeaters, and so on, thus requiring a complete recursive analysis. The
set of warranted conclusions of a program P represents its semantics.

In a like manner as before, the consequence operator for |∼W can be defined as CW(Φ) =
{φ | Φ |∼W φ}. The next proposition summarizes our results in regard with this inference
relation.

Proposition 2.3 The consequence operator CW satisfies inclusion but fails idempotence, cut,
and cautious monotonicity.

2for simplicity sake, we shall adopt propositional defeasible rules, despite the fact that these rules represent
general knowledge and should contain variables.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 62

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 63

It is easy to see why CW complies inclusion: just note that every fact in a given program is triv-
ially supported by the empty argument, and that the empty argument cannot be defeated since
it is entirely based on strict information. To show the failure of cut and cautious monotonicity
we have found the following counter-examples:

Example 2.4 We can use the same counter-example as before (example 2.2) to show that CW
does not satisfy cut. Note that the argument A1 = {b −≺ c; c −≺ d} for b also warrants it on the
basis of P. However, should b be added to P as a fact, then the new argument A2 = {a −≺ b, d}
for a can be built, which now warrants a on the basis of the new program.

Example 2.5 Consider a DeLP program P = (Π, ∆), where Π = {a} and ∆ = {c −≺ b; b −≺ a;
∼ c −≺ a}. The arguments A1 = {c −≺ b; b −≺ a}, A2 = {∼ c −≺ a}, and A3 = {b −≺ a},
supporting respectively c, ∼c, and b, can be all built from P. Yet, only ∼c and b are warranted
on the basis of P, since A2 defeats A1, but both A2 and A3 remain undefeated. Finally, should
b be added to P as a fact, the new argument A4 = {c −≺ b} for c now defeats A2. Thus, since
A2 was the only argument for ∼c, this previously warranted conclusion is now lost.

3 Conclusions

In this work we have studied the different inference relations defined within defeasible logic
programming with respect to a set of desirable properties for any nonmonotonic reasoner. The
results we have obtained are summarized in the following table:

Inclusion Idempotence Cut Cautious M.
`

√ √ √ √

|∼ √ √ √ √

|∼A
√

× × ×
|∼W

√
× × ×

Note that the enhanced inference relations satisfy less properties than the simpler ones. This
stems from the fact that each inference relation is included in the previous one, that is to say, for
a given DeLP program, C` ⊆ C|∼ ⊆ CA ⊆ CW . Based on these properties, the notion of warrant
does not seem to improve argument-based inference. However, the consequence operator CA
fails to preserve consistency. That is to say, for a set of premises Φ non contradictory with
respect to strict inference, CA(Φ) may become contradictory. On the contrary, CW does preserve
consistency (a fundamental property for any logical system).

It is worth remarking that DeLP semantics (i.e., the set of warranted conclusions) does not
verify cumulativity. As we mentioned before, to some authors DeLP would not be deemed as
a logical system. Nevertheless, DeLP has been successfully applied to a number of challenging
scenarios with encouraging results. In addition, several others nonmonotonic theories do not
hold cumulativity as well. For instance, Pollock’s Oscar [7], Prakken and Sartor’s prioritized
argumentation theory [8], or Vreeswijk’s abstract argumentation framework [11]. These results
show that cumulativity appears to be too restrictive for any sufficiently expressive entailment
relation.

References

[1] Antoniu, G. Nonmonotonic Reasoning. MIT Press, 1996.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 63

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 64

[2] Chesñevar, C. I. Formalización de los Procesos de Argumentación Rebatible como Sis-
temas Deductivos Etiquetados. PhD thesis, Departamento de Ciencias de la Computación,
Universidad Nacional del Sur, Bah́ıa Blanca, Argentina, Mar. 2001.

[3] Gabbay, D. Theoretical foundations for nonmonotonic reasoning in expert systems. In
Logics and Models of Concurrent Systems, K. Apt, Ed. Springer-Verlag, Berlin, Germany,
1985.

[4] Garćıa, A. J. Programación en Lógica Rebatible: Lenguaje, Semántica Operacional,
y Paralelismo. PhD thesis, Departamento de Ciencias de la Computación, Universidad
Nacional del Sur, Bah́ıa Blanca, Argentina, Dec. 2000.

[5] Kraus, S., Lehmann, D., and Magidor, M. Non-monotonic reasoning, preferential
models and cumulative logics. Artificial Intelligence 44 (1990), 167–207.

[6] Makinson, D. General patterns in nonmonotonic reasoning. In Handbook of Logic in
Artificial Intelligence and Logic Programming, H. Gabbay and Robinson, Eds., vol. 3.
Oxford University Press, 1994, pp. 35–110.

[7] Pollock, J. L. Cognitive Carpentry: A Blueprint for How to Build a Person. The MIT
Press, 1995.

[8] Prakken, H., and Sartor, G. Argument-based extended logic programming with
defeasible priorities. Journal of Applied Non-classical Logics 7 (1997), 25–75.

[9] Simari, G. R., Chesñevar, C. I., and Garćıa, A. J. The Role of Dialectics in Defea-
sible Argumentation. In Proceedings of the XIV Conferencia Internacional de la Sociedad
Chilena para Ciencias de la Computación (Concepción, Chile, Nov. 1994), Universidad de
Concepción, pp. 111–121.

[10] Simari, G. R., and Loui, R. P. A mathematical treatment of defeasible reasoning and
its implementation. Artificial Intelligence 53, 2–3 (1992), 125–157.

[11] Vreeswijk, G. A. W. Abstract Argumentation Systems. Artificial Intelligence 90, 1–2
(1997), 225–279.

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 64

Workshop de Investigadores en Ciencias de la Computación WICC 2002

Página 65

