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1 Introduction

An important ampliative inference schema that is commonly used is abduction. Abduction plays
a central rôle in many applications, such as diagnosis, expert systems, and causal reasoning. In a
very broad sense we can state that abduction is the inference process that goes from observations
to explanations within a more general context or theoretical framework. That is to say, abductive
inference looks for sentences (named explanations), which, added to the theory, enable deductions
for the observations. Most of the times there are several such explanations for a given observation.
For this reason, in a narrower sense, abduction is regarded as an inference to the best explanation.
However, a problem that faces abduction is the explanation of anomalous observations, i. e.,
observations that are contradictory with the current theory. It is perhaps impossible to do such
inferences in monotonic theories. For this reason, in this work we will consider the problem of
characterizing abduction in nonmonotonic theories. Our inference system is based on a natural
deduction presentation of the implicational segment of a relevant logic, much similar to the R!
system of Anderson and Belnap [1]. Then we will discuss some issues arising the pragmatic
acceptance of abductive inferences in nonmonotonic theories.

2 Abduction of Anomalous Observations

Before discussing the worries of abduction in nonmonotonic theories, first we will give a formal
characterization of a nonmonotonic reasoning system, and then include an explicit rule for abduc-
tion. In a nutshell, the system regards defeasible rules a(X) >¡¡ b(X)1 as material implications
only for the modus ponens inference rule (that is, contraposition, left strengthening, right weaken-
ing, and similar uses are explicitly left out). Defeasible rules can be activated in MP only when
their antecedent is fully instantiated, i. e., there is a ground substitution for X such that all the
literals in a(X) have been inferred. The reasoning system, then, will chain inferences in a way
very similar to (classical) deductions, with the addition of inferences in which a fully activated
defeasible rule was used. This chains of inferences are named (sub)-theories [2, 6] orarguments
[7, 8]. If a defeasible rule can be regarded as a prima facie material implication, then an argument
for A is a prima facie proof or a prediction for A. We can then extend the (classical) consequence
operator ` to the new operator j» , where T j» A means that there is an argument for A in theory
T .

1both antecedent and consequent of defeasible rules are restricted to be sets of literals (interpreted as a conjunction),
and X is a tuple of free variables.
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Since we may reasonably expect that these inferences will eventually generate a pair of con-
tradictory literals, and since we want to avoid (classical) trivialization, then our reasoning system
must incorporate some kind of strengthening or restriction among the structural rules. For this
reasoning, we adapted a presentation of the implicational segment of a relevant logic, much similar
to the R! system of Anderson and Belnap [1]. Then, the reiteration rule is restricted to sentences
that were inferred within the same subproof. If we need reiteration of a sentence S of a previous
step outside the subproof, then we must either introduce S as a new assumption, or reproduce the
inference steps that leads to the inference of S. To take due care of this, we establish an index
schema that labels premise introduction and its ulterior discharge by means of !I . The use of
a defeasible rule is regarded as a restricted modus ponens that also introduces a new hypothesis.
The labeling schema obeys a simple set of cases (the subindices I and J denote sets of indices,
and i and j denote individual indices).

² (Premise) An hypothetical premise a is introduced with an index i never used before (we
will use the sequence of natural numbers).

² (!I) From a (sub-)demonstration for bI from premise aj (with j 2 I) to infer (a! b)I¡fjg.

² (Reit.) Reiteration of a sentence retains the indices.
² (!E) In the modus ponens rule, the consequent retains the indices of the major and the
minor premises: from aI and (a! b)J to infer bI[J .

We now add the case for defeasible rules.

² (>¡¡E) From a (sub-) demonstration of a(t)I and a(X) >¡¡ b(X) to infer a(t)! b(t)I[fkg,
where k is an index never used before.2.

Example 2.1 Suppose that in our knowledge base we have
a; a >¡¡ b; b >¡¡ c; a >¡¡ :c

In this situation, we may establish the following reasoning lines:

1
2
3
4
5

26664
af1g
(a >¡¡ b)f2g
bf1;2g
(b >¡¡ c)f3g

cf1;2;3g

Premise
Defeasible rule
1; 2; >¡¡E
Defeasible rule
3; 4; >¡¡E

1
2
3

"
af1g
(a >¡¡ :c)f4g

:cf1;4g

Premise
Defeasible rule
1; 2; >¡¡E

Given a theory T and an observed evidence e, then e is surprising if neither T ` e, nor
T ` :e, and e is anomalous if T ` :e. The first situation has received considerable interest since
Peirce, who coined the word abduction, and characterized it as the third member of the triad of

2Both a(X) and a(t) denote sets of literals. X is a tuple of free variables, t is a tuple of ground terms such that
X may be substituted for t in a(X).
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syllogistic reasoning (together with deduction and induction)3. The second situation (abduction of
anomalous observations) has received only an occasional attention. It is a well established fact
that monotonic theories cannot accommodate anomalous observations. For this reason, research
in this direction must focus in abduction in nonmonotonic theories. For this reason, our final step
is to propose a rule for abduction. This rule is based on several considerations (which cannot be
discussed at length here because of space limitations). For this reason, we will give here only a
short motivation. Given a nonmonotonic theory T (i. e., a theory that may have defeasible rules),
an abduction for an observation O should be a hypothetical explanation H that is compatible with
T , neither T nor H should jointly (but not separately) explain O, and any other explanation H 0

should also explain H itself. Formally:

² (Abd.) From Ok to infer HS[fkg iff
1. HS[fkg [ T 6̀ ?, (H is consistent with T )
2. T 6j» Ok, (there is no argument for O in T )
3. HS[fkg 6j» Ok, (there is no argument for O in H)

4. T [HS[fkgj» Ok, (there an argument for O in T [H)
5. Any other set H 0 that satisfies the four conditions above is such that H 0 [T j» HS[fkg
(i. e., H is the most “shallow” explanation for O).

Example 2.2 Suppose that in a knowledge-based system we find the rules

w(X)>¡¡i(X) Normally if X has a work, then X receives an income.
w(X)>¡¡t(X) Normally if X has a work, then X pays taxes.
w(X)>¡¡:s(X) Normally if X has a work, then X does not study.
s(X)>¡¡w(X) Normally if X studies, then X has a work.
c(X)>¡¡s(X) Normally if X has a scholarship, then X studies.
c(X)>¡¡i(X) Normally if X has a scholarship, then X receives an income.
c(X)>¡¡:t(X) Normally if X has a scholarship, then X does not pay taxes.

Given this, what can we expect about Scott, of whom we only know he pays taxes?

1
2
3

4
5
6

7
8
9

"
t(Scott)f1g
(w(X)>¡¡t(X))f2g

w(Scott)f1;2g"
w(Scott)f1;2g
(w(X)>¡¡i(X))f3g

i(Scott)f1;2;3g"
w(Scott)f1;2g
(w(X)>¡¡:s(X))f4g

:s(Scott)f1;2;4g

Premise
Defeasible rule
1; 2;Abduction
(Explanation)
3;Reit.
Defeasible rule
4; 5;! E

(Prediction)
3;Reit.
Defeasible rule
7; 8;! E

(Prediction)
3This shortest account of Peirce is surely unfair, since his purpose was much wider, for in his semiotic analysis

of inference, abduction was central as the source of creativity and new knowledge [3].
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By abduction, we can show that t(Scott) because w(Scott) (he pays taxes because he works),
and from this inference, we can predict that he has an income, and that he does not study. It is a
desirable feature here that further (iterated) abductions (for example, c(Scott) because i(Scott))
are blocked for being inconsistent (see the next Section).

If we knew about another person, say Kim, of whom we know only that she receives an
income, then we can generate two abductive explanations for her income. The first one, i(Kim)
because w(Kim), allow further predictions (t(Kim) and :s(Kim)). The second one, i(Kim)
because c(Kim), allow other predictions (s(Kim) and :t(Kim)). In this situation we have
two unrelated explanations, of which we can not make any preference (again, see next Section).
However, further knowing that, for instance, s(Kim), will block the first explanation in favor of
the second.

3 Combining Defeaters

A final issue we wish to discuss is the defeat among various arguments in a nonmonotonic
theory. This situation arises if we admit the possibility of iterating abductive explanations. In the
Sect. 3, we introduced a “shallow” abductive operator, but it can be iterated to produce “deeper”
explanations.

Example 3.1 (After [4] and [5]). Suppose we have the following theory.

T =f r(T ) >¡¡ wr(T ); (if it rains, the road is wet),
r(T ) >¡¡ wl(T ); (if it rains, the lawn is wet),
r(T ) >¡¡ :s(T ); (if it rains, it’s not sunny),
s(T ) >¡¡:r(T ); (if it’s sunny, it does not rain),
so(T ) >¡¡ wl(T ); (if the sprinklers are on, the lawn is wet),
s(T ) ^ h(T ) >¡¡ so(T ); (if it’s sunny and hot, the sprinklers are on),
wl(T ) >¡¡ ws(T ); (if the lawn is wet, the shoes are wet),
wr(T ) >¡¡ ws(T ) g. (if the road is wet, the shoes are wet).

In this situation, suppose we observe that our shoes are wet (E = ws(today)). The possible
(shallow) explanations for this are that either the road is wet, or that the lawn is wet, or both.
However, none of these suffices to generate a “most specific” explanation.

To generate a more specific explanation we can iterate the abductive inference, that is, to gener-
ate a new “evidence” set E 0 that contains E plus any of the independently generated explanations,
and then use this new context to try to generate a new abductive explanation. This procedure may
be easy to formalize, but, as we will see, it may be that an argument is conflicting with some of
these abductive hypotheses, and a criterion for combining defeat should be taken into account.

Definition 3.1 Given a context T [ E with an underlying knowledge K. Then

1. The set of argumentative supported conclusions Ac are generated from E [ T .
2. The set of abductive explanations Bc are generated from E [ T .
3. If there is a pair of contradictory literals a 2 Ac and b 2 Bc, then either

(I) Any argument A for a defeats any argument generated with b.
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(II) Any argument generated with b defeats any argument generated with a.

(III) Any of the defeasible rules used in the arguments for a or in the explanations for b is
defeated (syntactically blocked).

4. Firm conclusions C are the members of Ac and Bc that were not defeated in 3.

If we need to iterate abduction, then the firm conclusions C are added to the “evidence” E,
and the process is repeated.

Example 3.2 Suppose we are in the situation of Example 3.1, and we observe our shoes wet
(ws(today)), and we remember that today it was sunny (s(today)). Then, what can we conclude?
The most general abductive explanations are wr(today) and wl(today). By the moment, any of
these explanations is compatible with the observations and there is no defeat. If we iterate the
abductive process, we find that r(today) is explanation for wr(today), and r(today) or so(today)
are explanations for wl(today).

Following strategy I, we assimilate so(today) as the only tenable explanation for ws(today),
that is, we conjecture that the sprinkler was on, it got the lawn wet, and then our shoes got wet.
If we push this further, we can also conjecture that today it was hot in addition of being sunny.

Instead, if we follow strategy II, then the explanation r(today) blocks our remembrance of
being sunny. Then, our explanation now is that it rained, the rain got the road and the lawn wet,
and then our shoes got also wet.

If we use strategy III, then both previous explanations are valid and compatible, and we reject
the rules that mutually exclude r(today) and s(today), that is, we suppose that today it may be
hot and sunny at one time, and rainy at another.
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