
A Semi-Automatic Method for Ontology Mapping �

Laura Perez, Agustina Buccella, and Alejandra Cechich

GIISCO Research Group
Departamento de Ciencias de la Computación

Universidad Nacional del Comahue
Neuquen, Argentina

Abstract. Ontology mapping involves the task of finding similarities among overlapping sources by using
ontologies. In a Federated System in which distributed, autonomous and heterogeneous information sources
must be integrated, ontologies have emerged as tools to solve semantic heterogeneity problems. In this
paper we propose a three-level approach that provides a semi-automatic method to ontology mapping.
It performs some tasks automatically and guides the user in performing other tasks for which his/her
intervention is required. Finally, a plug-in of the ontology editor, Protégé, is presented showing how the
method is implemented through a case study.

1 Introduction

A Federated System [7] refers to the data integration of distributed, autonomous and hetero-
geneous information sources. In general it is implemented by using a 4-layer architecture [3],
in which the federation layer is the core of the system. In this layer, each information source
is described by its own ontology (domain ontologies), and all of them converge in one global
shared vocabulary. This shared vocabulary contains basic terms (the primitives) of the whole
domain. In this way, an hybrid ontology approach [18] is followed.

Several proposals on ontology mapping have emerged in the last years [9]. Among them,
we can cite [13, 12, 11, 14]. For example, [13] and [12] propose two similar ontology-merging
tools. On one hand, the PROMPT tool described in [13] proposes an interactive tool that
guides the user through the merging process. However the main problem with the PROMPT
tool is that it is highly dependent on the names of the concepts in the ontology. On the
other hand, Chimarea [12] provides support for merging of ontological terms from different
sources, checking the coverage and correctness of ontologies and maintaining ontologies over
time. Except for several situations referring to structural aspects of the ontologies, Chimarea
does not make any suggestion to the user; and the only relation that Chimarea considers is
the subclass/superclass relation. Another proposal for semantic matching is introduced in [11],
where a lexical and a conceptual layer are used to find similarities. At the lexical level, the
method uses a lexical function called lexical similarity measure (SM). At the conceptual level,
concepts (classes and properties) are compared taking into account the taxonomies in which
they appear. However, some types of properties are not considered by this method. Finally,
the proposal of Rodriguez et.al [14] presents a combination of two different approaches to
similarity assessment – the feature matching process [17] and the semantic distance. Common
features increase the similarity value and distinct features decrease it. The main disadvantage
with this method is that the similarity values cannot be calculated neither automatically nor
semi-automatically due to the high dependence on natural language descriptions.

In previous work [5, 4], we have proposed a three-level approach that allows us to build
similarities expressed as mappings. In this work we improve this method taking into account

� This work is partially supported by the UNComa project 04/E059 (Mejora del Proceso de Desarrollo de Software
Basado en Componentes).

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

213

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cycles in the ontologies and implementing a tool as a plug-in of the ontology editor Protégé [1].
This extension allows us to introduce a semi-automatic process for ontology mapping.

This paper is organized as follows: Section 2 shows the main steps of our three level approach
describing changes performed to detect and solve cyclic ontologies. Then, in Section 3 the
structure of components for our plug-in is described. An example describing how our tool
works is shown in Section 4. We discuss future work and conclusions afterwards.

2 A Three-Level Approach to Ontology Mapping

In previous work, we have proposed a three-level method to ontology merging, taken into
account information ontologies provide [5]. In this way, concepts of an ontology are compared
using three comparison levels: syntactic, semantic and user level. Figure 1 shows our approach
graphically, where the levels are part of the process.

Fig. 1. Approach for searching similarities

Ontology Instantiation and Thesaurus are the two external modules. The former, obtains
the object structure from ontologies described in some ontology language. Figure 2 shows how
the different elements of an ontology are divided. The first division refers to two different ele-
ments. On one branch we have the classes and on the other branch the properties. Firstly we
analyze the classes branch, which is also divided into two new branches: common classes and
attribute classes. Both are classes defined in the ontology to represent things about the world.
The specific role defined in the ontology is the difference between them. The common classes
have the role of representing things about the domain and the attribute classes have the role of
representing information about a common class. Both roles exist because some concepts of the
ontologies act as attributes. For example, an ontology can have the Animal class as a common
class and the Organ class as an attribute class because Organ exists to describe a characteristic
about a common class. The Organ class has no properties.

On the other branch, Figure 2 shows the properties branch which is also divided into two
new branches: datatype properties and special properties. A property is a set of tuples that
represents a relationship among objects in the universe of discourse. Each tuple is a finite,
ordered sequence (i.e., list) of objects. The properties have restrictions to denote functions,
cardinality, domain, range, etc. The datatype properties are properties relating a class or a set
of classes with a data type. For example, the animal name is a common property between the

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

214

Animal class and the String data type. On the other hand, the special properties are properties
relating classes. For example, the relationship between the Animal class and the Organ class
to denote the organs of an animal. Thus, a common class has both datatype properties and
special properties, and attribute classes do not have properties.

Fig. 2. Proposed division to represent the ontology

The latter, the Thesaurus module, uses thesauruses to search for synonyms, which are de-
tected by the module through the use of a similarity function.

In Figure 1, two common classes (of different ontologies) are indicated by the user. These two
classes are inputs of the Retrieve Properties and Attribute Classes module, which retrieves the
attribute classes and special and datatype properties of each class by using the object structure
of each ontology. This retrieved information enters the Syntactic Comparison module, which
analyses syntactically classes and properties relating with the concepts. A set of syntactic
functions [5] are used here.

Then, the Semantic Comparison module compares the classes and properties semantically.
To do so, we extract semantic information from the Thesaurus module in order to find synonym
relationships. Using the results of the syntactic level functions, we construct functions that
combine these values together with the thesaurus information.

In the Interaction with the User module all the mappings that exceed a threshold are shown
to the user, and he decides if the mappings are correct. The accepted mappings are classified
as definitive mappings.

The Semantic Comparison for Common Classes module receives the definitive mappings
and compares the common classes of the two ontologies. It uses the mappings added by the
comparison of properties in order to denote the set of similar attributes (properties) of both
classes.

One more time, in the Interaction with the User module, all mappings are displayed to the
user and he decides if these mappings must be added permanently.

2.1 Improving the Method: Detecting Cycles

Our approach analyzes the ontologies as graphs, taking into consideration both taxonomic and
non taxonomic relationships among terms.

Figure 3 describes our basic method for searching similarities. The method has a series of
steps depending on the different elements of the ontology (see Figure 2).

Firstly, a user must indicate the first mapping, for example between the Animal class of one
ontology and the Creature class of the other ontology. If the classes are common classes, the sys-
tem compares firstly the datatype properties of both classes. The cleaning process in the method

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

215

Similarity(O1,O2)
the user enter to similar classes (c1,c2)
if (c1 and c2 are common classes)

for each datatype property dtpi ∈ c1 and dtpj ∈ c2
cleanning process(dtpi, dtpj)
sim1thesaurus(dtpi, dtpj) = search on thesaurus(dtpi, dtpj)
sim1sint(dtpi, dtpj) = wed ∗ simed(dtpi, dtpj) + wtri∗
simtri(dtpi, dtpj) + wdtc ∗ simdtc(range of(dtpi), range of(dtpj))+
wthesaurus ∗ sim1thesaurus(dtpi, dtpj)
if sim1sint(dtpi, dtpj) ≥ thaccept

add mapping(dtpi, dtpj)
for each special property sp i ∈ c1andspj ∈ c2

cleanning process(spi, spj)
sim2thesaurus(spi, spj) = search on thesaurus(spi, spj)
simrest(spi, spj) = check restrictions(spi, spj)
sim2sint(spi, spj) = wed ∗ simed(spi, spj) + wtri ∗ simtri(spi, spj)+
wthesaurus ∗ sim2thesaurus(spi, spj) + wrest ∗ simrest(spi, spj)
if(c1, c2) /∈ Visited

add visited(c1,c2)
if (range of(spi), range of(spj)) /∈ Mapped

simtotal(spi, spj) =
calculate all the process for(range of(spi), range of(spj))

if (range of(spi), range of(spj)) ∈ Mapped
simtotal(spi, spj) = get value(range of(spi), range of(spj))

simsp(spi, spj) = wsint ∗ sim2sint(spi, spj) + wtotal ∗ simtotal(spi, spj)
if simsp(spi, spj) ≥ thaccept

add mapping(spi, spj)
remove visited(c1,c2)

using the added mappings
cleanning process(c1, c2)
sim3thesaurus(c1, c2) = search on thesaurus(c1, c2)
sim3sint(c1, c2) = wed ∗ simed(c1, c2) + wtri ∗ simtri(c1, c2)+

wthesaurus ∗ sim3thesaurus(c1, c2)
if c1 and c2 are attribute classes

simclass(c1, c2) = sim3sint(c1, c2)
if c1 and c2 are common classes

simclass(c1, c2) = wsint ∗ sim3sint(c1, c2) + wpropiedadtes especiales

∗simpropiedadtes especiales + wpropiedadtes tipo de dato ∗ simpropiedadtes tipo de dato

if(c1, c2) /∈ Visited
if simclass(c1, c2) ≥ thaccept

add mapping(c1, c2)
if(c1, c2) ∈ Visited

if simclass(c1, c2) ≥ (thaccept − (thaccept ∗ wpropiedadtes especiales))
add mapping(c1, c2)

Fig. 3. Steps for searching similarities

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

216

denotes the process of elimination of articles, prepositions and non-relevant characters (,:,-,
etc.). Next, thesauruses are used to search for synonymies. The function sim1thesaurus(dtpi, dtpj)
is equal to 1 if a synonym relationship is found for the two datatype properties and it is equal
to 0 otherwise.

Then, the sim1sint(dtpi, dtpj) function is calculated using four syntactic functions. The edit
distance function, which considers the number of changes that must be done to turn one string
into the other, and weights the number of these changes with respect to the length of the shortest
string. The trigram function [10], which is based on the number of different trigrams in two con-
cepts or strings. The data type compatibility function, (simdtc(range of(dtpi), range of(dtpj)))
which compares the datatype of the ranges. And the result of applying the thesaurus function,
aforementioned. The sim1sint(dtpi, dtpj) function returns a value between 0 and 1; and the sum
of weights, the w values (wed, wtri, wdt and wthesaurus), is equal to 1.

Finally, if the result of the function exceeds a threshold (thaccept), a temporal mapping is
added.

The simrest(spi, spj) function checks special property restrictions [16] such as functional,
symmetric, allValuesFrom, someValuesFrom, cardinality, etc. That is, it compares the constrains
applied to the properties. Only when both properties have the same restrictions, the function
returns 1; otherwise it returns a percentage according to the number of restrictions that are
the same.

Then, a temporal mapping is added when the simsp(spi, spj) function exceeds the threshold.

Following, the method compares the special properties included in the common classes.
The comparison is similar to the previous case, but the datatype compatibility function is not
calculated.

The simtotal(spi, spj) function makes all the similarity process taking into account the range
of the special properties. Therefore, this is a recursive method that will stop when the ranges
are attribute classes (because they do not have properties). Once again, thesauruses are used
to find synonymies relationships.

We have detected the presence of cycles in the similarity search graph. There is a major
cause for cycles, the way special properties and classes can be combined are not acyclic graphs
themselves. As a result, the cycles existing in the ontology become cycles in the similarity search
graph, it means, a descendant of a concept could be simultaneously an ancestor of this concept.
For instance, in our similarity searching method, the similarity value of a pair of classes A and
B depends on the resolution of the similarity value of a pair of classes C and D which depends
on the similarity values of A and B.

Because the ontology graph contains cycles, precautions must be taken for avoiding loops
in the graph traversal. It is necessary for the method to eliminate cycles. In addition, once a
cycle is found with a graph’s node a partial similarity value has to be calculated in order to
go on with the analysis. First of all, our approach for detecting cycles is to mark as visited
the nodes while covering the graph in order to avoid visiting twice the same node. This is a
very simple and effective approach. So, in Figure 3 the sentence if(c1, c2) /∈ Visited verifies
whether the node is in the analysis path. If this condition is true, then the algorithm takes
places again for the range classes with the purpose of finding the simtotal value. On the other
hand, if(c1, c2) ∈ Visited means that the node has been visited so that no special properties
will be analyzed.

Although a cycle may be detected in a node graph, the similarity search algorithm must
still go ahead and return a partial value for that node. In this case the similarity value, will

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

217

be obtained only from the information available on the node itself. For instance, semantic and
syntactic analysis over the concepts will be carried out but no structural analysis over the
special properties will be done.

Finally, the method compares the classes. This comparison is made using the syntactic
functions for common and attribute classes and the semantic function for common classes.
The semantic function uses the mappings added by the property comparisons in order to de-
note the set of similar attributes of both classes. A temporal mapping is added if the final
function exceeds the threshold. Notice that in the final similarity value for any pair of classes
simclass(c1, c2), the operand wpropiedadtes especiales ∗ simpropiedadtes especiales ought to be null if a
cycle was detected on (c1, c2). Thus, the similarity threshold is lower in this case with the
intention of giving more chances to the user to decide over the mapping of this classes.

Once all similarity values are obtained for two classes, the temporal mappings are displayed
to the user and he/she must decide if these mappings must be added permanently. Thus, the
user makes the final decision.

One last thing to point out over the method is the check done before the process starts again
over the range classes. Taking into account that either of the ontologies having a lot of classes
and properties will generate a large graph, a question whether a pair classes are already in the
defined mappings set is stated with the if(range of(spi), range of(spj)) ∈ Mapped sentence. If
they have been mapped, then the found value is taken to avoid doing the same analysis again.

3 Architecting a Supporting Tool

As an implementation of our three-level approach for ontology integration, we built a plug-
in for the Protégé ontology editor [1]. Basically, at its core, Protégé implements a rich set
of knowledge-modelling structures and actions that support the creation, visualization, and
manipulation of ontologies in various representation formats. Further, Protégé can be extended
by way of a plug-in architecture and a Java-based Application Programming Interface (API)
for building knowledge-based tools and applications. The Protégé platform supports two main
ways of modelling ontologies through the following editors Protégé-Frames y Protégé-OWL. In
this section, we will describe the design of the Protégé plug-in called OWLSim.

During the design process, the Responsibility Driven Design (RDD) [20, 19] model was used
to keep our focus on the behavior of our software. This methodology helps us to identify the
application’s responsibilities and to divide them into collaborative objects.

The plug-in’s architecture design is based on two architectural styles the model-view-
controller (MVC) and its successor the presentation-application-control PAC [2, 6]. We describe
how software objects are organized, this means how objects are located in components. Each
component contains characteristic object roles that are located according to both the applica-
tion components’ functionality and the object’s roles.

Figure 4 shows our plug-in’s architecture. In the first place, the Transactions (Control and
business logic) component includes the objects that are responsible for the control and busi-
ness logic. Furthermore, this component mediates the interaction between Domain Model and
Presentation in order to avoid direct dependency between them. Secondly, the Domain Model
(Abstraction) component contains all those objects that represent the domain concepts. Lastly,
the User interaction component (Presentation) is structured into objects that provide win-
dow, menu, and dialog functionality. They manage the inputs and translate them into service
requirements.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

218

Fig. 4. Plug-in’s architecture

3.1 Designing classes

One of the most important activities in Object-Oriented design is to identify object classes.
Thus, we move from the requirements and descriptions – the method specification explained in
previous sections (behavior that the plug-in must accomplish), the definition of OWL ontologies
and the Protégé model specification – to find and describe the most important classes.

Domain and application-specific objects Domain objects represent concepts in a specific
field of interest. In our domain, the ontologies and their elements, the mappings between them,
and the similarity method.

Figure 5 shows part of the domain class diagram using UML notation [8] – the part where
the ontology and both their elements and mappings are modelled. There are classes that model
the most important components of an OWL [16] ontology, such as classes, properties and re-
strictions. In addition, as described in section 2, we also take into account the division of
the ontology elements that the similarity method embodies (Atributte Class, Common Class,
Datatype Property and Special Property). As shown in the diagram, both classes Atributte Class
and Common Class were modelled as a class Class specialization. Because of their differences,
the method gives different treatment to each of them. In addition, the has superclass relation
represents taxonomic relations in an ontology. Regarding class Property, it has a specialization
into two classes: Datatype Property and Special Property in accordance to the method’s division
on property elements, as only Special Property relates the classes. Moreover, both special prop-
erties and datatype properties ranges are different, so two distinct relations has classrange and
has XMLDatatyperange were modelled to associate them to the range classes XMLDatatype and
Class. Further, the has compatibility association shows that each data type might be compatible
with other data types. Unlike Common classes, that might have both types o properties, the
Attribute classes have not gotten any property; thus, the association has property is between
the subclass Common Class and the superclass Property. Finally, properties restrictions are
also modelled.

Following, the mappings found by the method are contained in the Mapping class. The Prop-
erty Mapping and Class Mapping classes are its subclasses. The former class involves classes
using the has classes and the latter class involves properties using the has properties.

As we shift our view from modelling ontology concepts to the three-level approach method,
we find the Similarity-Searcher class. This, is an abstraction from the similarity searcher
method. It is subclassified into three subclasses DataTypePropertyAnalysis, SpecialProperty-
Analysis, ClassAnalysis, each of them representing the analysis method part over the following
elements identified in an ontology (Figure 2).

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

219

Fig. 5. Plug-in class design diagram part

Similarly, there are in the design plenty of other classes that are needed objects to translate
the computer’s user inputs to commands to the right objects in the application. For brevity
reason we only explained the Similarity Searcher class which is the core of our method.

3.2 Similarity searching

As a result of being too complex to be implemented by a single object, the SimilaritySearcher
class main responsibility is divided into subresponsibilities reassigned to collaborating objects.
Each object implements a quite different similarity search method depending on three elements
as above mentioned. The SimilaritySearcher object coordinates these collaborating objects, as
Figure 6 shows. If the ontology classes to be analyzed are Common Class then datatype and
special property analysis would take place, following the class analysis is carried out.

Fig. 6. Symilary Searcher collaborates with other objects to find similarities.

Those specialized objects, which implement the subordinated responsibilities that the Simi-
larity Searcher object delegates as well as coordinates are: DataType Property Analysis, Special
Property Analysis, Class Analysis.

Each of these classes implements the different parts of our method. For instance, the
DataType Property Analysis component implements the comparison between datatype prop-
erties applying all the functions (syntactic and semantic) described in Figure 3.

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

220

4 A Case Study - Using the Plugin

Now, we will present a case study that lets us show both the plug-in interface and how the
method works. In addition, it let us point out some interesting results depending on the chosed
ontologies for mapping. The following two ontologies were selected and created with the Protégé
editor, they are shown graphically in Figures 7 and 8.

– The first ontology is called “Travel Ontolgy” 1; it models flights, air agencies, car rental,
hotels among other concepts. It has around 40 classes with many properties in order to
describe their semantic and structure – they may be special properties or data type proper-
ties. From this ontology we only show the Airport class and their taxonomical relationships,
and properties and restrictions that apply to the related entities, the ones involved in the
example.

– The second ontology is called “Location Ontology” 2 which possess five classes and a number
of properties, both special and datatype properties, to represent a location domain.

Fig. 7. “Travel ontology part.”

Fig. 8. “Location ontology part.”

There are some points to notice in the two ontologies. Firstly, in both Travel and Location
ontology graphs there are cycles. It means, that there is a pair of special properties that made

1 www.ilby.net/travel.owl
2 http://www.liacs.nl/CS/DLT/pickups/sjoerd/for%20Protege/Science.zip

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

221

some class both range and domain class from each other at the same time. In the former, the
hasFlightTo, hasAirport and hasCity special properties involving the classes Airport and City as
their ranges and domains. In the other one, for instance, the hasParts and is Part Of involves
the classes City and Country as ranges and domains classes from one each other. Nevertheless,
our method will detect this and find out a similarity value too. Secondly, regarding to the City
and Address classes modelled in each of the ontologies, they are represented quite different. So
the similarity values will not be high in spite of been the same entities. Later we will discuss
examples on this points.

Let us now look at the plug-in’s interface where we choose the .owl files containing the
mentioned ontologies. As Figure 9 shows, this form lets the user to indicate the ontologies to
be compared in OWL language.

Fig. 9. “OWLSim plug-in interface which lets us select the owl files to map.”

Following, if both owl files are loaded successfully, the mapping layout screen appears (see
Figure 10). It is divided into two main panels. On the left side, there is the select source classes
form that holds each of the selected ontologies class hierarchy, so that a pair of classes to
be compared could be choosen. On the other side, the right one, there is the show class and
property mappings form. On this window, the mappings between classes and properties found
by the procces are shown.

Fig. 10. “OWLSim plug-in interface shown while the mapping process takes place.”

Once two classes are selected to be compared, the analysis takes place over those selected
concepts by clicking the ”Mapp selected” button. As a result, for any mapping that is found,

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

222

a confirmation is required from the user through the confirmation window as shown previously
in Figure 10.

Let us now look at two examples, which show the similarity values found when the two points
described before occur while using the plug-in. First, when the Location.City and Travel.City
classes are selected to be compared the values shown in Figure 11 will be obtained as the
method goes through the special properties graph. As the similarity searching progresses it
will find a cycle when the City classes are visited again. The method detects that the node
is in the searching path. As a result of the special treatment to this node, we can see that
the similarities between the data type properties cityKeyWords, name y name 2 (stand for
Location.City.name) are calculated. The similarity value from the two last ones only is higher
than the acceptance threshold. Moreover, the syntactic and semantic values are equal to one.
Thus, the structural comparison regarding the data type properties, simAttDtatypeProperties,
is quite low. Moreover, because of being a cycle node, the simAttSpecialProperties is equal to
cero. From this, the final value just barely exceeds the acceptance threshold.

Fig. 11. “Similarity values obtained by comparing City concepts from both ontologies.”

In the second place, Figure 12 shows the results obtained from the analysis of both Address
classes. They match syntactically as well as semantically; consequently, the simThesaurus
and simSint values are equal to one. However, they are represented quite differently. On the
one hand, the Location.Address class has two data type properties, street and zipCode in ad-
dition to a special property city-of-address. On the other hand, the Travel.Address class is
represented with two data type properties, address and postalCode. Although, the address and
street properties meant to represent the same information about classes, they are represented
rather different. Hence, it will afect the final result. Futher, the comparison of the zipCode
and postalCode properties is the only one that results in a grater value. Consequently, there is
just one common attribute between these classes. The final similarity value is higher than the
acceptance threshold so a temporal mapping is found, and this result will be prompted to the
user. Then, if the user confirms this mapping it will be changed to permanent.

Fig. 12. “Similarity values obtained by comparing Address concepts from both ontologies.”

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

223

5 Conclusions and Future works

In this paper, we have presented our three level approach for searching mappings between
two OWL ontologies, and aspects such as cycles in the ontologies and performance have been
considered to avoid possible problems in the application of the method. An implementation of
it as a Protégé plug-in has been presented and it will be soon available to be downloaded from
Internet 3.

However, currently our work is in a development stage for a number of tasks that are
still being developed. Since our current method only deals with one-to-one relationships, we
are improving the similarity functions in order to consider many-to-many relationships. Some
efforts has been presented in [15].

References

1. Protégé. http://protege.stanford.edu/doc/users guide/index.html, 2000.
2. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-Wesley Longman Publishing Co.,

Inc., Masachusetts, USA, 1998.
3. A. Buccella, A. Cechich, and N. Brisaboa. Ontology-based data integration: Different approaches and common

features. In L. Rivero, J. Doorn, and V. Ferraggine, editors, Encyclopedia of Database Technologies and Applications.
Idea Group, 2005.

4. A. Buccella, A. Cechich, and N. R. Brisaboa. Ontology-based identification of similarity among heterogeneous
sources. Journal of Computer Science and Technology, 6(1):62–68, 2003.

5. A. Buccella, A. Cechich, and N. R. Brisaboa. A federated layer to integrate heterogeneous knowledge. In VODCA’04
First International Workshop on Views on Designing Complex Architectures, number 142 in Electronic Notes in
Theoretical Computer Science, Elsevier Science B.V, pages 79–97, Bertinoro, Italy, September 2004.

6. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerland, and M. Stal. Pattern Oriented Software Arquitecture - A
systema of Patterns. Wiley and Sons Ltd., West Sussex, England, 1996.

7. S. Busse, R. Kutsche, U. Leser, and H. Weber. Federated information systems: Concepts, terminology and architec-
tures. Technical Report Nr. 99-9, Technical University of Berlin, 1999.

8. Martin Fowler and Kendall Scott. UML distilled (2nd ed.): a brief guide to the standard object modeling language.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

9. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The Knowledge Engineering Review,
18(1):1–31, 2003.

10. D. Lin. An information-theoretic definition of similarity. In Proceedings of the Fifteenth International Conference
on Machine Learning, pages 296–304, July 1998.

11. A. Maedche and S. Staab. Measuring similarity between ontologies. In Proceedings of the EKAW’02 13th Interna-
tional Conference on Knowledge Engineering and Knowledge Management. Ontologies and the Semantic Web, pages
251–263, London, UK, 2002. Springer-Verlag.

12. D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and testing large ontologies. In
Proceedings of the KR, pages 483–493, 2000.

13. Natalya Fridman Noy and Mark A. Musen. Prompt: Algorithm and tool for automated ontology merging and
alignment. In Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference
on Innovative Applications of Artificial Intelligence, pages 450–455. AAAI Press / The MIT Press, 2000.

14. M.A. Rodŕıguez and M.J. Egenhofer. Comparing geospatial entity classes: An asymmetric and context-dependent
similarity measure. International Journal of Geographical Information Science, 18(3):229–256, 2004.

15. S. Roger, A. Buccella, A. Cechich, and M. S. Palomar. Asematch: A semantic matching method. In TSD’06: Ninth
International Conference on Text, Speech and Dialogue, pages 229–235, Brno, Czech Republic, September 11-15
2006.

16. M. K. Smith, C. Welty, and D. McGuinness. Owl web ontology language guide. W3C, February 2004.
17. A. Tversky. Features of similarity. Psychological Review, 84(4):327–352, 1977.
18. H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hbner. Ontology-based

integration of information - a survey of existing approaches. In Proceedings of the IJCAI-01 Workshop: Ontologies
and Information Sharing, pages 108–117, Seattle, WA, 2001.

19. R. Wirfs-Brock and A. McKean. Object Design: Roles, Responsibilities, and Collaborations. Addison-Wesley 2003,
2003.

20. R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented Software. Prentice Hall 1990, 1990.

3 http://protege.cim3.net/cgi-bin/wiki.pl

XIII Congreso Argentino de Ciencias de la Computación
¯¯¯

IV Workshop de Ingeniería de Software y Bases de Datos

224

