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Abstract

Particle Swarm Optimization is a popular heuristic usedteessuitably and effectively mono-objective prob-
lems. In this paper, we present an adaptation of this heutéstreat unconstrained multi-objective problems.
The proposed approach (called G-MOPSO) incorporates asgauspdate of individuals, Pareto dominance,
an elitist policy, and a shake-mechanism to maintain diters

In order to validate our algorithm, we use four well-knowstt&unctions with different characteristics. Pre-
liminary results are compared with respect to those obdalnyea multi-objective evolutionary algorithm rep-
resentative of the state-of-the-art: NSGA-II. We also caregthe results with those obtained by OMOPSO, a
multi-objective PSO based algorithm.

The performance of our approach is comparable with the N8@Ad outperforms the OMOPSO.

Keywords: Multi-objective Optimization, Particle Swarm Optimizarti, Pareto Optimality.

Resumen

Particle Swarm Optimization es una heuristica populadagara resolver adecuada y efectivamente problemas
mono-objetivo. En este articulo, presentamos una priméaptacion de esta heuristica para tratar problemas
multi-objetivo sin restricciones. La propuesta (llamaddMGPSO) incorpora una actualizacion Gaussiana,
dominancia Pareto, una politica elitista, un archivo exie/ un shake-mecanismo para mantener la diversidad.
Para validar nuestro algoritmo, usamos cuatro funcioneprdeba bien conocidas, con diferentes carac-
teristicas. Los resultados preliminares son comparadiedos valores obtenidos por un algoritmo evolutivo
multi-objetivo representativo del estado del arte en@haNSGA-Il. También comparamos los resultados con
los obtenidos por OMOPSO, un algoritmo multi-objetivo lasan la heuristica PSO.

La performance de nuestra propuesta es comparable con I8@AM y supera a la de OMOPSO.

Palabras claves: Optimizacion Multi-Objetivo, Particle Swarm Optimizati, Optimalidad Pareto.
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1 INTRODUCTION

Real world problems frequently require that a number of cetimg objectives have to be traded
against one other whilst seeking a viable solution to a gmweblem. These objectives cannot be
met by a single solution. These problem types present diftecharacteristics in the variable and
objective function spaces, and solution space.

As can be seen in the mono-objective cases, the use of hetwisolve optimization problems has
experienced a significative grow in the last ten years [H],[4]. One of these heuristics is Patrticle
Swarm Optimization (PSO). Given the promising results reggbin the mono-objective optimization
domain, to consider the application of PSO to the multi-otoye domain, is a natural progression.

In this paper, we present a modified PSO algorithm in ordead&lé unconstrained multi-objective
problems. This version is simpler than other PSO-basedoappes [12], [20], [16], [18], [17] and
its performance is comparable with the performance of ortbebest evolutionary algorithms of the
multi-objective optimization area.

The remainder of the paper is organized as follows: Sectigivés a brief description of the most
relevant previous work. Section 3 reviews the basic comscepmulti-objective optimization and
classical PSO algorithm. Section 4 describes our appro&ettion 5 presents the test functions
taken from the specialized literature to validate our apphp and the metrics used to evaluate the
performance of the algorithms. Section 6 explains the expsrtal design. Section 7 shows and
discusses the results obtained. Section 8 shows stdtistialysis for the results obtained. Finally,
our conclusions and possible future research lines areptes in Section 9.

2 RELATED WORK

Talbi et al. proposed a PSO algorithm hybridized with a continuatiorhmet The idea is to combine
the global search of PSO with the local search inherent tdiraastion method. The convergence
results show that the performance of their algorithm is g¢bg

Toscano and Coello Coello proposed the use of clusterirnigaes to improve the performance of
a multi-objective PSO. They used Pareto dominance to ghel#ight direction of a particle and had
a set of sub-swarms to focalize the search. A PSO algorithmmisn each sub-swarm and at some
point the sub-swarms exchange information. Their resoti&cate that the approach is highly com-
petitive with respect to algorithms representative of tiagesof-the-art in evolutionary multiobjective
optimization. [5]

Becerraet al. used different optimization techniques combined to sobwe lmulti-objective prob-
lems. They used theconstraint method to obtain points near the true Paretatfned then rough
sets were applied to spread the solution on the entire Plaretd. Their algorithm performs well and
can solve some problems that any algorithm can. [15]

Jaeggiet al. presented a Tabu Search algorithm for multi-objectiverojtation enhanced with a
novel parameter selection strategy. Two variants are [zegand tested with several standard func-
tions. The results are compared with those of NSGA-II dertratisg the comparability of perfor-
mance. [11]

Hernandez-Diazt al. proposed a mechanism that can be seen as a variafttarhinance trying to
overcome the main limitation that has: the loss of severallominated solutions. They tested the
mechanism using three algorithms: differential evolutgteady-state genetic algorithm and a varia-
tion of differential evolution. In all cases, their mechemidemonstrated the effectiveness in found
the best metric results. [8]

Reyes and Coello Coello presented a based-Pareto domiappzach (OMOPSO) with a crowding



factor for the selection of leaders and two external filese for storing the leaders being used and
the other for saving the final solutions. They useddfi®mminance concept to select the particles to
put at the final file and they included a scheme to subdividewam into three subsets. A mutation
operator also was used. Their results demonstrated beyhighipetitive with respect to five algo-
rithms representative of the state-of-the-art in mulgahiye optimization. [17]

Debet al. proposed a nondominated sorting genetic algorithm (NSahich alleviates the three
main difficulties of multi-objective evolutionary algdniins (with nondominated sorting and sharing):
the high computational complexity, the nonelitism and tkedfor specifying a sharing parameter.
A selection operator creates a mating pool by combining #rerg and offspring population, and
selecting the best solutions for the new population. Thesults showed that the algorithm is able to
find much better spread of solutions and convergence nedfrtleePareto front, when is compared
with other algorithms. [13]

We select the last two algorithms (OMOPSO and NSGA-II) to pare the performance of our
approach. The first because is a based-PSO algorithm witlke somilar characteristics of our G-
MOPSO and the second because is one of the best evolutidgarittam representative of the multi-
objective optimization area.

3 BACKGROUND

3.1 The PSO algorithm: classical model

The Particle Swarm Optimization algorithm (PSO) proposgd.iKennedy and R. Eberhart [14] in
1995 is based on the behavior of communities that have bathlsnd individual behavior. In the al-
gorithm, population-based, each individual (narpadicle) represents a solution ina-dimensional
space. All the particles have knowledge of its previous beperience and know the global best ex-
perience (best solution) found by the entire populatemain). Particles update their exploration
directions {lights) and position at every iteratiomyclg of the algorithm using the following equa-
tions:

Vij =W X U5+ 01 X1 X (i — Tij) + 2 X 1o X (pgj — Tij) Q)

Tij = Tij+ Vi (2)

wherew is the inertia factor influencing the local and global al@Btof the algorithmy; ; is the
velocity of the patrticle in the j — th dimension,c; andc, are weights affecting the cognitive and
social factors, respectively; andr, ~ U(0, 1); p; stands for the best value found by partic{pbes}
andp, denotes the global best found by the entire swaybes}.

After the velocity is updated, the new positibim its j — th dimension is calculated. This process
is repeated for every dimension and for all the particleh@swarm.

In order to use PSO for multi-objective optimization prabke a classical version of PSO was
hybridized with some concepts taken from de multi-objecvolutionary algorithms field. This
version is described in Section 4.

3.2 Multi-Objective Optimization Problem

The unconstrained Multi-Objective Optimization Probleam e defined as follows [4]:
Definition 1: Find the vector
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which optimizes (minimizes or maximizes) the vector fuonti

F@) = [1(@), fo(@), ..., fx(@)]" (3)
i

The & components of the vectgf(Z) are the criteria to be considered. The vectordenotes the
optimum solutions.

When there are several objective functions, the conceptptifmom changes, because in multi-
objective optimization problems the purpose is to find “é-adf” solutions rather than a single solu-
tion. The concept of optimum commonly adopted in multi-ahjes optimization is the one proposed
by Vilfredo Pareto in 1986 (and called Pareto optimality).

Definition 2 Pareto Optimality A solutionz* € () is Pareto optimal with respect to if and only

if there is nox € Q for whichv = f( 7) = [A(D), f2(2),..., fo(?)]" dominatesy = f(7*) =
[F1(Z), fo(T), ..., fu(@)]". Thatis,z* is Pareto optimal if there exists no feasible vectawhich
would decrease some criteria without causing a simultasgauease in at least one other criterion.
Definition 3 Pareto DominanceA vector® = (1, s, . .., xx) iS said to dominat§ = (y1, yo, - - -, Yx),
denoted byr < 7, if and only if 7 is partially less thaw, i.e.,Vi € {1,2,...,k}, z; < y; and, at least
for onei, x; < y;.

Definition 4 Pareto Optimal SetFor a given multi-objective problerfi(@, the Pareto optimal set,
denoted byP* or P;,.., is defined as:

P ={reQ|B € Qf(x) = f()}. (4)

Definition 5 Pareto front For a given multi-objective problerﬁ(x) and Pareto optimal sét*, the
Pareto front, denoted B9 F* or P.F,.., is defined as:

—

PF ={y=f=([(x),f2(x),.... fu(2)) |z € P} (6)

4 OUR APPROACH

In this section, we describe our PSO-based approach foi-ohj#ctive optimization: G-MOPSO
(Gaussian Multi-Objective Particle Swarm Optimizatio&)s we stated before, this is a version of
the algorithm for unconstrained problems. We extend thesatal model described above with the
following characteristics.

4.1 Gaussian update

There are some multi-objective problems that require aiderasbly high number of objective func-
tion evaluations in order to obtain a front near the PareteTront. For help the search process,
we combine the equation (2) for updating the particles wlid ¢quation (6) as we proposed in a
previous work [2]. The algorithm selects the equation toaipdhe position of particles, depending a
probability value. For the Gaussian equation (6) the prdibabf be selected was set in 0.005. That
value was empirically found to be the best after performirsgiaes of experiments with all the test
functions evaluated. Then, Gaussian equation for updatsgion is defined as:

i+
o= N (P ) ©

wherez; is the particle to be updated is the Gaussian random generafgrjs the best position
reached by the particle; (that is, pbes}, andp, is the best position reached by any particle in the
swarm (that isgbes}.



4.2 External file for elitist policy

The elitist policy was implemented maintaining the bestiBohs (hon-dominated) found in the flight
cycles (iterations) in an external archive. This archive &ayrid structure as it was proposed by K.
Deb [6], and is constructed as follows: each objective igdeigt into2? equal divisions. In this way
the entire search space is divided intd unique equal sizé—dimensional hypercubed (s a user
parameter and is the number of objective functions). The stored solutiares placed in one of
these hypercubes according to their locations in the dlgespace. The number of solutions in each
hypercube is counted. When the archive is full and there enanmon-dominated solution it cannot be
included automatically. First, the hypercube that has moredominated solutions is found. If the
new solution does not belong to that hypercube it is insartékde archive and at random one of the
solutions from the highest covered hypercube is deletedn@wndominated solutions are privileged
and placed in the archive. When non-dominated solutiongpetefor a space in the archive, they are
evaluated based on how crowded they are in objective fumsfg@ace. The one residing in the least
crowded area gets preference. In this manner, we obtainsitivé the non-dominated solutions.

4.3 Mechanism to select thg@best and gbest particles

The selection of the best patrticles is different from the nrobjective classical model. Our approach
updategpbest the best experience found for a particle, only when the nastigbe is non-dominated
and it dominates the previopbest In order to selecgbest the global best particle, at each iteration
we randomly select a non-dominated particle of the exteanctive, because by definition all the
Pareto optimal solutions are equally good.

4.4 Shake-Mechanism

For difficult functions, it is common to have some stagnapooblems when we try to obtain so-
lutions close to the Pareto True front. In order to overcome problem, we incorporate shake-
mechanisnjl] to maintain diversity into the population. This mechaniis dynamic, that is, applied
with a high probability at the beginning of the search predast with a low probability at the end.
The probability value is decreased at each iteration of ldp@@hm. In order to implement th&hake-
mechanismall the dimensions of the particle are changed by a randdue\(&vithin the allowable
range) depending the current probability. This procespdied to all particles into the swarm.

4.5 The pseudo-code of our approach: G-MOPSO

Figure 1 shows a pseudo-code of G-MOPSO. In that, the paighrm is initialized with random
values corresponding to the ranges (depending on the tesidas) and the velocities are initialized
with zero values (lines 2-3). Then, the swarm is evaluatetbe corresponding objective functions
(line 4). Next, the fitness vectors are updated (line 5). Asaveedealing with multi-objective opti-
mization, these vectors store the values of each decisiaabl@, in which the particles obtained the
best values in a Pareto sense (that is, for each functionthig\stage of the algorithm these vectors
are filled with the results of the initial particle evaluatgdo Analogously, these values are copied in
the pbestvectors (line 6) and all non-dominated particles are sk the grid, i.e. in the external
file (line 7). Globalgbestparticle is randomly selected (line 8) from the external file

The flight cycles start at line 9, the velocity of each paetislupdated, and its position is also updated
using the corresponding equation (lines 10-18). The keppperation is carried out to maintain the
particles into the allowable range values (line 19). Therstiake-mechanisi applied (line 20), the



1. G-MOPSO{

2. I nit_Pop();

3. Init_Velocity();

4. Eval uat e_Pop() ;

5. Updat e_Fbest () ;

6. Updat e_Pbest () ;

7. I nsert _nodon() ;

8. Gbest pos = rnd(0, nodonfil eSi ze)

9. for(i=1 to MAXCYCLES) {

10. for(j=0 to MAXPARTI CLES) {

11. Updat e_Vel ocity with eq. (1);
12. Updat e_Particl e:

13. if rnd(0,1) > 0.005

14. Update with eq. (2)

15. el se

16. Gaussi an update with eq. (6)
17. end

18. 1

19. Keepi ng();

20. Shake_Mechani sn() ;

21. Eval uat e_Pop();

22. Updat e_Fbest () ;

23. Updat e_Pbest () ;

24. I nsert _nodomn() ;

25. Goest pos = rnd(0, nodonfil eSi ze)
26. }

27. Print_Statistics();

28. Generate Qutfile();

29. }

Figure 1: Pseudo-code G-MPSO.

particles evaluated angdbestvectors updated (lines 21-23).

As the particles were moved in the search space becausehhryged positions, the dominance of
each particle (line 24) is verified and, if appropriate, taey inserted in the grid. Then the nglest

is randomly selected (line 25). The cycle is executed unéldondition is false and at this point we
print the statistics and generate an output file, which éostdne non-dominated particles (lines 27
and 28).

5 TEST FUNCTIONS AND METRICS

5.1 Test functions
In order to validate our approach, we selected the folloviaug well-known unconstrained test func-
tions [3]. Each one was selected because has differentathasdics:

Viennet3: Proposed by Viennet, it is an (unconstrained) three olyedtinction that has it%;,..
disconnected and unsymmetric, and®#,,,. is connected. It is defined as:

F= (fl(x,y),fQ(x,y),f?,(‘T,y)) with —3 < z,y <3
filz,y) = 0.5 % (2 + y?) + sin(2z? + y?)

Bz —2y+4)? (z—y+1)2
8 27
1
Ry

fa(z,y) = +15

fa(a,y) = — 1167 )



Fonseca2:Proposed by Fonseca and Fleming, it is an (unconstraine®lyective function that has
its P CONNected, and itBF ;... is concave. It is defined as:

F = (fi(z,y), falz,y)) with —4 < z,y <4

3
Sz, y) =1 = exp(- Z(I -

3
fQ(xvy) =1- exp(_Z(Ii + %

Viennet2: Proposed by Viennett al, it is an (unconstrained) three objective function that it&s
P.ue CONNected, and itB F,,.,.. is disconnected. It is defined as:

F= (fl(xvy)a fQ(xvy)a f3($,y)) with —4 < T,y <4

(z-2)?°  (y+1)?

(x+y—3)2?% (—x+y+2)?
pu— _1
C(z+2y—1)2  (—xz+2y)?

Schaffer: Proposed by Jonest al, it is an (unconstrained) two objective function that hasAt. ..
connected, and itB F,,... is convex. It is defined as:

F= (fl(:v,y)7fz(x,y))

fl(Iay) = IQ

Fa(z,y) = (z — 2)°

5.2 Metrics

The performance analysis of multi-objective optimizat&gorithms is made assigning a measure of
guality to an approximation set, that is the Pareto fronamtgd by the algorithm. There are several
performance indicators having different properties andsueng different aspects of the solution set.
Normally, two issues are taken into account: minimize tistasice of the Pareto front obtained with
respect to the Pareto True front, and maximize the distobutf solutions so we have vectors as
smooth and uniform as possible. For that, usually the netan be classified into three categories
depending if they evaluate the closeness to the Pareto fiong the diversity of solutions obtained,
or both factors [6]. We select one metric of each type: Gdimral Distance, Spread and Hypervol-
ume [4], respectively.

Spread: is a diversity metric that measures the extent of spreaceaetiiamong the Pareto front
obtained. It is defined as:
dy+di+ 35" |di — d|

dy +d+ (N —1)d
whered; is the Euclidean distance between consecutive solutitins,the mean of these distances
and,d; andd; are the Euclidean distances to the extremes (boundingiaotudf the Pareto True
front) in the objective space. A zero-value indicates aalidéstribution (perfect spread).

Spr=A=




Generational Distance: measures how far the elements are in the Pareto front odtdnoen those
in the Pareto True front. It is defined as:

GD =

wheren is the number of vectors in the Pareto front obtained &rid the Euclidean distance (mea-
sured in the objective space) between each of these sdudimh the nearest member of the Pareto
True front. A zero-value indicates that all solutions fouamnd in the Pareto True front set.

Hypervolume: calculates the volumé (in the objective space) covered by each solution of the
Pareto front obtained. Mathematically, for each soluti@n(, a hypercube; is constructed with a
reference poini and the solution as the diagonal corners of the hypercube. The referencéqanin
simply be found using the vector with worst objective fuontvalue. Then, a union of all hypercubes
is found and its hypervolume calculated as:

1Q
Hyp = volume U V;
i=1

Algorithms with large values off yp are desirable. The metric is only defined for minimizing prob
lems with three objective functions as the maximum.

6 EXPERIMENTAL DESIGN

The experiments were designed to evaluate the performdrigeMOPSO. We use the test functions
described before. For each function, we obtained the Pagetowith our algorithm and, the value of
the metrics (maximum, minimum, mean and deviation starjddalcompare the performance of our
algorithm, we also run other two algorithms: NSGA-II (ondlué state-of-the-art-representative) and
OMOPSO (a PSO-based with some similar characteristic€HMOPSO) both described previously.
To run NSGA-Il and OMOPSO we downloaded the codes, compitetdran with the JMetal-NEO
free on-line toolkit [10]. JMetal is a Java-based framewtbr&t facilities the development, experi-
mentation and study of metaheuristics for multi-objectpémization problems.

All the algorithms performed 50 independent runs with 28,@@aluationsi{erations xindividual s)

of the objective function for each tested function, in ortiecompare them on the basis of the same
amount of computational effort. The parameter setting flotha algorithms are summarized in Ta-
ble 1. For NSGA-Il and OMOPSO we used the parameter settirggoped by the original authors.
The parameter values for G-MOPSO were empirically derivechfa set of previous experiments.
The entry ‘Divisions’, in Table 1, indicates the number opbycubes in the grid used to maintain
diversity and, ‘Upd eq prob.” the probabilities of updatepairticles used to select the equation (2)
and (6), respectively.

7 RESULTS AND DISCUSSION

The values shown in Table 2 correspond to mean and standaedide values calculated over the 50

runs performed in each experiment. The best value reacheddd function is marked with boldface.
The performance of G-MOPSO across all functions studiepgerytdirms OMOPSO in all metrics.

These results are notable because G-MOPSO, although simaescharacteristics with OMOPSO, is



Table 1: Parameter Settings.

[ Parameters [ G-MOPSO | NSGA-II [ OMOPSO |

Iterations 5000 250 250
Extern file size 100 100 100
Crossover prob. - 0.9(SBX) -
Mutation prob. - 0.5 0.5
eta - - 0.0075
Individuals 5 100 100
Divisions 4 - -
C1=C2/W 15/0.5
SHAKE prob. 0.95
Upd eq prob. 0.995/0.005

Table 2: Values of the Metrics

[ Functions ]| NSGA-II [ GMOPSO | OMOPSO |
Spread
mean stdDev. mean stdDev. mean stdDev.

Viennet3 0.4179 | 0.0390 0.6993 | 0.0565 0.7454 0.1662
Fonseca2 || 0.3727 | 0.0362 0.5834 | 0.0669 0.7383 0.2459
Viennet2 0.7674 | 0.0462 0.8395 | 0.0438 0.9487 0.1736
Schaffer 0.2721 | 0.0312 0.7611 | 0.0705 0.9425 0.1807
Generational Distance
Viennet3 2.50E-4 | 4.92E-5|| 4.67E-4 | 2.50E-4 || 0.0447 0.0329

Fonseca2 || 0.0012 | 3.88E-5|| 0.0012 | 5.82E-5|| 0.1570 0.0626

Viennet2 1.90E-4 | 5.32E-5|| 1.33E-4 | 4.84E-5|| 0.0479 0.0668

Schaffer 2.40E-4 | 1.62E-5 || 2.34E-4 | 1.19E-5 || 91.1728 | 179.9310
Hypervolume
Viennet3 0.8325 | 7.50E-4 || 0.8304 | 0.0013 0.5786 0.1349
Fonseca2 || 0.3055 | 4.22E-4 || 0.3008 0.013 0.0335 0.0499
Viennet2 0.9956 | 9.18E-5|| 0.9958 | 1.60E-4 || 0.9573 0.0310
Schaffer 0.8294 | 1.14E-4 || 0.8260 | 0.0011 0.0503 0.1663

simpler. The G-MOPSO metrics results are comparable withelof NSGA-I1I. For the spread metric,
NSGA-Il is better than our algorithm, although the valuexieed by G-MOPSO are not very different
in some cases. For the generational distance metric, N3@Asétter in Viennet3 and FonsecaZ2, but
G-MOPSO outperforms NSGA-II in Viennet2 and Schaffer fumas. The hypervolume values of
NSGA-II are almost the same obtained by G-MOPSO.

Figures 2 and 3 show the Pareto fronts obtained by NSGA-IIGAdOPSO, with respect to the
true Pareto fronts (obtained by enumeration). The graptao®spond to the fronts that obtained the
minimum value of spread in the total of runs. We do not incltlte graphics of OMOPSO fronts

because considerate the metrics results obtained by OMG@IRS @0t comparable with G-MOPSO
neither NSGA-II.

8 STATISTICAL ANALYSIS

To analyze the performance of our algorithm we used a statisest. We do an analysis of variance
between NSGA-II, OMOPSO and G-MOPSO using the mean valuéggahetrics obtained at the 50
independent runs. We analyze each metric separately. WetapKruskal-Wallis [9] nonparametric
one-way analysis because the values (the sample) do noaherenal distribution (determined with
the Shapiro-Wilk normality test) neither same variancesgdnined with the Bartlett test of homo-
geneity of variances).
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Figure 2: Pareto Fronts obtained with the algorithms.

The Kruskal-Wallis test returns thgvaluefor the null hypothesis for all samples. If thgevalue

is zero or near, that suggests that at least one sample ificagtly different (orstatistically signi-
ficative) than the other samples. Usuallypdvalueis less than 0.05, we declare that the results are
significative.

Table 3 shows thp-valuefor each function and each metric. The results indicateuvhlates reached
with G-MOPSO are statistically significative from those dd@A-1I and OMOPSO. Only for GD
metric for Schaffer problem, the-valuewas higher than 0.05 so for that metric, G-MOPSO do not
obtained result statistical difference of NSGA-II. Thet®sows that G-MOPSO is statistically signif-
icant of OMOPSO, and if we observe Table 2, we can concluddahbaerformance of our algorithm

is higher. With respect a NSGA-II we conclude that, althosgme results are almost similar, the
statistical analysis says that there are significativedkfice with G-MOPSO. This last result was ex-
pected because NSGA-II actually is one of best evolutioafggrithm in the field of multi-objective
optimization.

9 CONCLUSIONS AND FUTURE WORK

The performance of our approach G-MOPSO turned out to b&faetibry. The aim was to determine
if this version was able to obtain results at least comparéblthose obtained with a well-known
multi-objective algorithm, and our algorithm did. We alsontpare these results with an existent
PSO-based algorithm and our version (simpler) obtainebegsults. For that, we conclude that G-
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Figure 3: Pareto Fronts obtained with the algorithms.

Table 3: Kruskal-Wallis’ p-values.

| Functions|| G-MOPSOvs NSGA-ll | G-MOPSO vs OMOPSO ||
Spr GD Hyp Spr GD Hyp

Viennet3 || 2.2E-16| 1.8E-9 | 7.9E-13|| 0.039 | 2.2E-16| 2.2E-16
Fonseca?|| 2.2E-16| 8.7E-4 | 2.2E-16|| 2.0E-4 | 2.2E-16| 2.2E-16
Viennet2 || 1.1E-10| 1.94E-6| 6.5E-7 1.3E-5 | 2.2E-16| 2.2E-16
Schaffer || 2.2E-16| 0.089 | 2.2E-16| 8.7E-14| 2.2E-16| 2.2E-16

MOPSO is a promising approach to multi-objective optimmabecause this study of performance
was satisfactory.

In our future work we will pretend enhance the results of #ieision and incorporate a mechanism to
handle constraints, so we also can study its performanog gsinstrained multi-objective problems.
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