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Abstract

Particle Swarm Optimization is a popular heuristic used to solve suitably and effectively mono-objective prob-
lems. In this paper, we present an adaptation of this heuristic to treat unconstrained multi-objective problems.
The proposed approach (called G-MOPSO) incorporates a Gaussian update of individuals, Pareto dominance,
an elitist policy, and a shake-mechanism to maintain diversity.
In order to validate our algorithm, we use four well-known test functions with different characteristics. Pre-
liminary results are compared with respect to those obtained by a multi-objective evolutionary algorithm rep-
resentative of the state-of-the-art: NSGA-II. We also compare the results with those obtained by OMOPSO, a
multi-objective PSO based algorithm.
The performance of our approach is comparable with the NSGA-II and outperforms the OMOPSO.

Keywords: Multi-objective Optimization, Particle Swarm Optimization, Pareto Optimality.

Resumen

Particle Swarm Optimization es una heurı́stica popular usada para resolver adecuada y efectivamente problemas
mono-objetivo. En este artı́culo, presentamos una primeraadaptación de esta heurı́stica para tratar problemas
multi-objetivo sin restricciones. La propuesta (llamada G-MOPSO) incorpora una actualización Gaussiana,
dominancia Pareto, una poĺıtica elitista, un archivo externo y un shake-mecanismo para mantener la diversidad.
Para validar nuestro algoritmo, usamos cuatro funciones deprueba bien conocidas, con diferentes carac-
terı́sticas. Los resultados preliminares son comparados con los valores obtenidos por un algoritmo evolutivo
multi-objetivo representativo del estado del arte en el área: NSGA-II. También comparamos los resultados con
los obtenidos por OMOPSO, un algoritmo multi-objetivo basado en la heurı́stica PSO.
La performance de nuestra propuesta es comparable con la de NSGA-II y supera a la de OMOPSO.
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1 INTRODUCTION

Real world problems frequently require that a number of competing objectives have to be traded
against one other whilst seeking a viable solution to a givenproblem. These objectives cannot be
met by a single solution. These problem types present different characteristics in the variable and
objective function spaces, and solution space.
As can be seen in the mono-objective cases, the use of heuristic to solve optimization problems has
experienced a significative grow in the last ten years [7], [19], [4]. One of these heuristics is Particle
Swarm Optimization (PSO). Given the promising results reported in the mono-objective optimization
domain, to consider the application of PSO to the multi-objective domain, is a natural progression.
In this paper, we present a modified PSO algorithm in order to tackle unconstrained multi-objective
problems. This version is simpler than other PSO-based approaches [12], [20], [16], [18], [17] and
its performance is comparable with the performance of one ofthe best evolutionary algorithms of the
multi-objective optimization area.
The remainder of the paper is organized as follows: Section 2gives a brief description of the most
relevant previous work. Section 3 reviews the basic concepts of multi-objective optimization and
classical PSO algorithm. Section 4 describes our approach.Section 5 presents the test functions
taken from the specialized literature to validate our approach, and the metrics used to evaluate the
performance of the algorithms. Section 6 explains the experimental design. Section 7 shows and
discusses the results obtained. Section 8 shows statistical analysis for the results obtained. Finally,
our conclusions and possible future research lines are presented in Section 9.

2 RELATED WORK

Talbi et al. proposed a PSO algorithm hybridized with a continuation method. The idea is to combine
the global search of PSO with the local search inherent to continuation method. The convergence
results show that the performance of their algorithm is good. [18]
Toscano and Coello Coello proposed the use of clustering techniques to improve the performance of
a multi-objective PSO. They used Pareto dominance to guide the flight direction of a particle and had
a set of sub-swarms to focalize the search. A PSO algorithm isrun in each sub-swarm and at some
point the sub-swarms exchange information. Their results indicate that the approach is highly com-
petitive with respect to algorithms representative of the state-of-the-art in evolutionary multiobjective
optimization. [5]
Becerraet al. used different optimization techniques combined to solve hard multi-objective prob-
lems. They used theǫ-constraint method to obtain points near the true Pareto Front and then rough
sets were applied to spread the solution on the entire ParetoFront. Their algorithm performs well and
can solve some problems that any algorithm can. [15]
Jaeggiet al. presented a Tabu Search algorithm for multi-objective optimization enhanced with a
novel parameter selection strategy. Two variants are proposed and tested with several standard func-
tions. The results are compared with those of NSGA-II demonstrating the comparability of perfor-
mance. [11]
Hernandez-Diazet al. proposed a mechanism that can be seen as a variant ofǫ-dominance trying to
overcome the main limitation that has: the loss of several nondominated solutions. They tested the
mechanism using three algorithms: differential evolution, steady-state genetic algorithm and a varia-
tion of differential evolution. In all cases, their mechanism demonstrated the effectiveness in found
the best metric results. [8]
Reyes and Coello Coello presented a based-Pareto dominanceapproach (OMOPSO) with a crowding



factor for the selection of leaders and two external files: one for storing the leaders being used and
the other for saving the final solutions. They used theǫ-dominance concept to select the particles to
put at the final file and they included a scheme to subdivide theswarm into three subsets. A mutation
operator also was used. Their results demonstrated be highly competitive with respect to five algo-
rithms representative of the state-of-the-art in multiobjective optimization. [17]
Debet al. proposed a nondominated sorting genetic algorithm (NSGA-II) which alleviates the three
main difficulties of multi-objective evolutionary algorithms (with nondominated sorting and sharing):
the high computational complexity, the nonelitism and the need for specifying a sharing parameter.
A selection operator creates a mating pool by combining the parent and offspring population, and
selecting the best solutions for the new population. Their results showed that the algorithm is able to
find much better spread of solutions and convergence near theTrue Pareto front, when is compared
with other algorithms. [13]

We select the last two algorithms (OMOPSO and NSGA-II) to compare the performance of our
approach. The first because is a based-PSO algorithm with some similar characteristics of our G-
MOPSO and the second because is one of the best evolutionary algorithm representative of the multi-
objective optimization area.

3 BACKGROUND

3.1 The PSO algorithm: classical model

The Particle Swarm Optimization algorithm (PSO) proposed by J. Kennedy and R. Eberhart [14] in
1995 is based on the behavior of communities that have both social and individual behavior. In the al-
gorithm, population-based, each individual (namedparticle) represents a solution in an−dimensional
space. All the particles have knowledge of its previous bestexperience and know the global best ex-
perience (best solution) found by the entire population (swarm). Particles update their exploration
directions (flights) and position at every iteration (cycle) of the algorithm using the following equa-
tions:

vi,j = w × vi,j + c1 × r1 × (pi,j − xi,j) + c2 × r2 × (pg,j − xi,j) (1)

xi,j = xi,j + vi,j (2)

wherew is the inertia factor influencing the local and global abilities of the algorithm,vi,j is the
velocity of the particlei in the j − th dimension,c1 andc2 are weights affecting the cognitive and
social factors, respectively.r1 andr2 ∼ U(0, 1); pi stands for the best value found by particlei (pbest)
andpg denotes the global best found by the entire swarm (gbest).

After the velocity is updated, the new positioni in its j− th dimension is calculated. This process
is repeated for every dimension and for all the particles in the swarm.

In order to use PSO for multi-objective optimization problems, a classical version of PSO was
hybridized with some concepts taken from de multi-objective evolutionary algorithms field. This
version is described in Section 4.

3.2 Multi-Objective Optimization Problem

The unconstrained Multi-Objective Optimization Problem can be defined as follows [4]:
Definition 1: Find the vector

~x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]T



which optimizes (minimizes or maximizes) the vector function:

~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]
T (3)

The k components of the vector~f(~x) are the criteria to be considered. The vector~x∗ denotes the
optimum solutions.
When there are several objective functions, the concept of optimum changes, because in multi-
objective optimization problems the purpose is to find “trade-off” solutions rather than a single solu-
tion. The concept of optimum commonly adopted in multi-objective optimization is the one proposed
by Vilfredo Pareto in 1986 (and called Pareto optimality).
Definition 2 Pareto Optimality: A solution~x∗ ∈ Ω is Pareto optimal with respect toΩ if and only
if there is no~x ∈ Ω for which v = ~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]T dominatesv = ~f (~x∗) =
[f1(~x

∗), f2(~x
∗), . . . , fk(~x

∗)]T . That is,~x∗ is Pareto optimal if there exists no feasible vector~x which
would decrease some criteria without causing a simultaneous increase in at least one other criterion.
Definition 3 Pareto Dominance: A vector~x = (x1, x2, . . . , xk) is said to dominate~y = (y1, y2, . . . , yk),
denoted by~x � ~y, if and only if~x is partially less than~y, i.e.,∀i ∈ {1, 2, . . . , k}, xi ≤ yi and, at least
for onei, xi < yi.
Definition 4 Pareto Optimal Set: For a given multi-objective problem~f(x), the Pareto optimal set,
denoted byP∗ orPtrue, is defined as:

P∗ = {x ∈ Ω |6 ∃x
′ ∈ Ω~f(x

′

) � ~f (x)}. (4)

Definition 5 Pareto front: For a given multi-objective problem~f(x) and Pareto optimal setP∗, the
Pareto front, denoted byPF∗ orPF true, is defined as:

PF∗ = {~y = ~f = (f1 (x) , f2 (x) , . . . , fk (x)) | x ∈ P∗} (5)

4 OUR APPROACH

In this section, we describe our PSO-based approach for multi-objective optimization: G-MOPSO
(Gaussian Multi-Objective Particle Swarm Optimization).As we stated before, this is a version of
the algorithm for unconstrained problems. We extend the classical model described above with the
following characteristics.

4.1 Gaussian update

There are some multi-objective problems that require a considerably high number of objective func-
tion evaluations in order to obtain a front near the Pareto True front. For help the search process,
we combine the equation (2) for updating the particles with the equation (6) as we proposed in a
previous work [2]. The algorithm selects the equation to update the position of particles, depending a
probability value. For the Gaussian equation (6) the probability of be selected was set in 0.005. That
value was empirically found to be the best after performing aseries of experiments with all the test
functions evaluated. Then, Gaussian equation for updatingposition is defined as:

xi = N

(

pi + pg

2
, |pi − pg|

)

(6)

wherexi is the particle to be updated,N is the Gaussian random generator,pi is the best position
reached by the particlexi (that is,pbest), andpg is the best position reached by any particle in the
swarm (that is,gbest).



4.2 External file for elitist policy

The elitist policy was implemented maintaining the best solutions (non-dominated) found in the flight
cycles (iterations) in an external archive. This archive has a grid structure as it was proposed by K.
Deb [6], and is constructed as follows: each objective is divided into2d equal divisions. In this way
the entire search space is divided into2dk

unique equal sizek−dimensional hypercubes (d is a user
parameter andk is the number of objective functions). The stored solutionsare placed in one of
these hypercubes according to their locations in the objective space. The number of solutions in each
hypercube is counted. When the archive is full and there is a new non-dominated solution it cannot be
included automatically. First, the hypercube that has morenon-dominated solutions is found. If the
new solution does not belong to that hypercube it is insertedin the archive and at random one of the
solutions from the highest covered hypercube is deleted. So, non-dominated solutions are privileged
and placed in the archive. When non-dominated solutions compete for a space in the archive, they are
evaluated based on how crowded they are in objective function space. The one residing in the least
crowded area gets preference. In this manner, we obtain diversity in the non-dominated solutions.

4.3 Mechanism to select thepbest and gbest particles

The selection of the best particles is different from the mono-objective classical model. Our approach
updatespbest, the best experience found for a particle, only when the new particle is non-dominated
and it dominates the previouspbest. In order to selectgbest, the global best particle, at each iteration
we randomly select a non-dominated particle of the externalarchive, because by definition all the
Pareto optimal solutions are equally good.

4.4 Shake-Mechanism

For difficult functions, it is common to have some stagnationproblems when we try to obtain so-
lutions close to the Pareto True front. In order to overcome this problem, we incorporate ashake-
mechanism[1] to maintain diversity into the population. This mechanism is dynamic, that is, applied
with a high probability at the beginning of the search process but with a low probability at the end.
The probability value is decreased at each iteration of the algorithm. In order to implement theshake-
mechanism, all the dimensions of the particle are changed by a random value (within the allowable
range) depending the current probability. This process is applied to all particles into the swarm.

4.5 The pseudo-code of our approach: G-MOPSO

Figure 1 shows a pseudo-code of G-MOPSO. In that, the particle swarm is initialized with random
values corresponding to the ranges (depending on the test functions) and the velocities are initialized
with zero values (lines 2-3). Then, the swarm is evaluated using the corresponding objective functions
(line 4). Next, the fitness vectors are updated (line 5). As weare dealing with multi-objective opti-
mization, these vectors store the values of each decision variable, in which the particles obtained the
best values in a Pareto sense (that is, for each function). Atthis stage of the algorithm these vectors
are filled with the results of the initial particle evaluations. Analogously, these values are copied in
thepbestvectors (line 6) and all non-dominated particles are inserted in the grid, i.e. in the external
file (line 7). Globalgbestparticle is randomly selected (line 8) from the external file.
The flight cycles start at line 9, the velocity of each particle is updated, and its position is also updated
using the corresponding equation (lines 10-18). The keeping operation is carried out to maintain the
particles into the allowable range values (line 19). Then theshake-mechanismis applied (line 20), the



1. G−MOPSO{
2. Init Pop();
3. Init Velocity();
4. Evaluate Pop();
5. Update Fbest();
6. Update Pbest();
7. Insert nodom();
8. Gbestpos = rnd(0,nodomfileSize)
9. for(i=1 to MAXCYCLES){
10. for(j=0 to MAXPARTICLES){
11. Update Velocity with eq.(1);
12. Update Particle:
13. if rnd(0,1) > 0.005
14. Update with eq.(2)
15. else
16. Gaussian update with eq.(6)
17. end
18. }
19. Keeping();
20. Shake Mechanism();
21. Evaluate Pop();
22. Update Fbest();
23. Update Pbest();
24. Insert nodom();
25. Gbestpos = rnd(0,nodomfileSize)
26. }
27. Print Statistics();
28. Generate Outfile();
29. }

Figure 1: Pseudo-code G-MPSO.

particles evaluated and,pbestvectors updated (lines 21-23).
As the particles were moved in the search space because they changed positions, the dominance of
each particle (line 24) is verified and, if appropriate, theyare inserted in the grid. Then the newgbest
is randomly selected (line 25). The cycle is executed until the condition is false and at this point we
print the statistics and generate an output file, which contains the non-dominated particles (lines 27
and 28).

5 TEST FUNCTIONS AND METRICS

5.1 Test functions

In order to validate our approach, we selected the followingfour well-known unconstrained test func-
tions [3]. Each one was selected because has different characteristics:

Viennet3: Proposed by Viennet, it is an (unconstrained) three objective function that has itsPtrue

disconnected and unsymmetric, and itsPF true is connected. It is defined as:

F = (f1(x, y), f2(x, y), f3(x, y)) with −3 ≤ x, y ≤ 3

f1(x, y) = 0.5 ∗ (x2 + y2) + sin(x2 + y2)

f2(x, y) =
(3x − 2y + 4)2

8
+

(x − y + 1)2

27
+ 15

f3(x, y) =
1

(x2 + y2 + 1)
− 1.1e(−x2

−y2)



Fonseca2:Proposed by Fonseca and Fleming, it is an (unconstrained) two objective function that has
itsPtrue connected, and itsPF true is concave. It is defined as:

F = (f1(x, y), f2(x, y)) with −4 ≤ x, y ≤ 4

f1(x, y) = 1 − exp(−
3

∑

i=1

(xi −
1√
3
)2)

f2(x, y) = 1 − exp(−
3

∑

i=1

(xi +
1√
3
)2)

Viennet2: Proposed by Viennetet al., it is an (unconstrained) three objective function that hasits
Ptrue connected, and itsPF true is disconnected. It is defined as:

F = (f1(x, y), f2(x, y), f3(x, y)) with −4 ≤ x, y ≤ 4

f1(x, y) =
(x − 2)2

2
+

(y + 1)2

13
+ 3

f2(x, y) =
(x + y − 3)2

36
+

(−x + y + 2)2

8
− 17

f3(x, y) =
(x + 2y − 1)2

175
+

(−x + 2y)2

17
− 13

Schaffer: Proposed by Joneset al., it is an (unconstrained) two objective function that has itsPtrue

connected, and itsPF true is convex. It is defined as:

F = (f1(x, y), f2(x, y))

f1(x, y) = x2

f2(x, y) = (x − 2)2

5.2 Metrics

The performance analysis of multi-objective optimizationalgorithms is made assigning a measure of
quality to an approximation set, that is the Pareto front obtained by the algorithm. There are several
performance indicators having different properties and measuring different aspects of the solution set.
Normally, two issues are taken into account: minimize the distance of the Pareto front obtained with
respect to the Pareto True front, and maximize the distribution of solutions so we have vectors as
smooth and uniform as possible. For that, usually the metrics can be classified into three categories
depending if they evaluate the closeness to the Pareto True front, the diversity of solutions obtained,
or both factors [6]. We select one metric of each type: Generational Distance, Spread and Hypervol-
ume [4], respectively.

Spread: is a diversity metric that measures the extent of spread achieved among the Pareto front
obtained. It is defined as:

Spr = ∆ =
df + dl +

∑N−1
i=1 |di − d′|

df + dl + (N − 1)d′

wheredi is the Euclidean distance between consecutive solutions,d′ is the mean of these distances
and,df anddl are the Euclidean distances to the extremes (bounding solutions of the Pareto True
front) in the objective space. A zero-value indicates an ideal distribution (perfect spread).



Generational Distance:measures how far the elements are in the Pareto front obtained, from those
in the Pareto True front. It is defined as:

GD =
1

n

√

√

√

√

n
∑

i=1

d2
i

wheren is the number of vectors in the Pareto front obtained anddi is the Euclidean distance (mea-
sured in the objective space) between each of these solutions and the nearest member of the Pareto
True front. A zero-value indicates that all solutions foundare in the Pareto True front set.

Hypervolume: calculates the volumeQ (in the objective space) covered by each solution of the
Pareto front obtained. Mathematically, for each solutioni ∈ Q, a hypercubevi is constructed with a
reference pointw and the solutioni as the diagonal corners of the hypercube. The reference point can
simply be found using the vector with worst objective function value. Then, a union of all hypercubes
is found and its hypervolume calculated as:

Hyp = volume





|Q|
⋃

i=1

vi





Algorithms with large values ofHyp are desirable. The metric is only defined for minimizing prob-
lems with three objective functions as the maximum.

6 EXPERIMENTAL DESIGN

The experiments were designed to evaluate the performance of G-MOPSO. We use the test functions
described before. For each function, we obtained the Paretofront with our algorithm and, the value of
the metrics (maximum, minimum, mean and deviation standard). To compare the performance of our
algorithm, we also run other two algorithms: NSGA-II (one ofthe state-of-the-art-representative) and
OMOPSO (a PSO-based with some similar characteristics thatG-MOPSO) both described previously.
To run NSGA-II and OMOPSO we downloaded the codes, compiled and run with the JMetal-NEO
free on-line toolkit [10]. JMetal is a Java-based frameworkthat facilities the development, experi-
mentation and study of metaheuristics for multi-objectiveoptimization problems.
All the algorithms performed 50 independent runs with 25,000 evaluations (iterations×individuals)
of the objective function for each tested function, in orderto compare them on the basis of the same
amount of computational effort. The parameter setting for all the algorithms are summarized in Ta-
ble 1. For NSGA-II and OMOPSO we used the parameter settings proposed by the original authors.
The parameter values for G-MOPSO were empirically derived from a set of previous experiments.
The entry ‘Divisions’, in Table 1, indicates the number of hypercubes in the grid used to maintain
diversity and, ‘Upd eq prob.’ the probabilities of update ofparticles used to select the equation (2)
and (6), respectively.

7 RESULTS AND DISCUSSION

The values shown in Table 2 correspond to mean and standard deviation values calculated over the 50
runs performed in each experiment. The best value reached for each function is marked with boldface.

The performance of G-MOPSO across all functions studied outperforms OMOPSO in all metrics.
These results are notable because G-MOPSO, although share some characteristics with OMOPSO, is



Table 1: Parameter Settings.

Parameters G-M0PSO NSGA-II OMOPSO

Iterations 5000 250 250
Extern file size 100 100 100
Crossover prob. - 0.9(SBX) -
Mutation prob. - 0.5 0.5

eta - - 0.0075
Individuals 5 100 100
Divisions 4 - -

C1=C2/W 1.5/0.5 - -
SHAKE prob. 0.95 - -
Upd eq prob. 0.995/0.005 - -

Table 2: Values of the Metrics

Functions NSGA-II G-MOPSO OMOPSO

Spread
mean stdDev. mean stdDev. mean stdDev.

Viennet3 0.4179 0.0390 0.6993 0.0565 0.7454 0.1662
Fonseca2 0.3727 0.0362 0.5834 0.0669 0.7383 0.2459
Viennet2 0.7674 0.0462 0.8395 0.0438 0.9487 0.1736
Schaffer 0.2721 0.0312 0.7611 0.0705 0.9425 0.1807

Generational Distance
Viennet3 2.50E-4 4.92E-5 4.67E-4 2.50E-4 0.0447 0.0329
Fonseca2 0.0012 3.88E-5 0.0012 5.82E-5 0.1570 0.0626
Viennet2 1.90E-4 5.32E-5 1.33E-4 4.84E-5 0.0479 0.0668
Schaffer 2.40E-4 1.62E-5 2.34E-4 1.19E-5 91.1728 179.9310

Hypervolume
Viennet3 0.8325 7.50E-4 0.8304 0.0013 0.5786 0.1349
Fonseca2 0.3055 4.22E-4 0.3008 0.013 0.0335 0.0499
Viennet2 0.9956 9.18E-5 0.9958 1.60E-4 0.9573 0.0310
Schaffer 0.8294 1.14E-4 0.8260 0.0011 0.0503 0.1663

simpler. The G-MOPSO metrics results are comparable with those of NSGA-II. For the spread metric,
NSGA-II is better than our algorithm, although the values reached by G-MOPSO are not very different
in some cases. For the generational distance metric, NSGA-II is better in Viennet3 and Fonseca2, but
G-MOPSO outperforms NSGA-II in Viennet2 and Schaffer functions. The hypervolume values of
NSGA-II are almost the same obtained by G-MOPSO.
Figures 2 and 3 show the Pareto fronts obtained by NSGA-II andG-MOPSO, with respect to the
true Pareto fronts (obtained by enumeration). The graphicscorrespond to the fronts that obtained the
minimum value of spread in the total of runs. We do not includethe graphics of OMOPSO fronts
because considerate the metrics results obtained by OMOPSOare not comparable with G-MOPSO
neither NSGA-II.

8 STATISTICAL ANALYSIS

To analyze the performance of our algorithm we used a statistical test. We do an analysis of variance
between NSGA-II, OMOPSO and G-MOPSO using the mean values ofthe metrics obtained at the 50
independent runs. We analyze each metric separately. We apply the Kruskal-Wallis [9] nonparametric
one-way analysis because the values (the sample) do not havea normal distribution (determined with
the Shapiro-Wilk normality test) neither same variances (determined with the Bartlett test of homo-
geneity of variances).



(a) Viennet3 with NSGA-II (b) Viennet3 with G-MOPSO

(c) Fonseca2 with NSGA-II (d) Fonseca2 with G-MOPSO

Figure 2: Pareto Fronts obtained with the algorithms.

The Kruskal-Wallis test returns thep-valuefor the null hypothesis for all samples. If thep-value
is zero or near, that suggests that at least one sample is significantly different (orstatistically signi-
ficative) than the other samples. Usually, ifp-valueis less than 0.05, we declare that the results are
significative.
Table 3 shows thep-valuefor each function and each metric. The results indicate thatvalues reached
with G-MOPSO are statistically significative from those of NSGA-II and OMOPSO. Only for GD
metric for Schaffer problem, thep-valuewas higher than 0.05 so for that metric, G-MOPSO do not
obtained result statistical difference of NSGA-II. The test shows that G-MOPSO is statistically signif-
icant of OMOPSO, and if we observe Table 2, we can conclude that the performance of our algorithm
is higher. With respect a NSGA-II we conclude that, althoughsome results are almost similar, the
statistical analysis says that there are significative difference with G-MOPSO. This last result was ex-
pected because NSGA-II actually is one of best evolutionaryalgorithm in the field of multi-objective
optimization.

9 CONCLUSIONS AND FUTURE WORK

The performance of our approach G-MOPSO turned out to be satisfactory. The aim was to determine
if this version was able to obtain results at least comparable to those obtained with a well-known
multi-objective algorithm, and our algorithm did. We also compare these results with an existent
PSO-based algorithm and our version (simpler) obtained better results. For that, we conclude that G-



(a) Viennet2 with NSGA-II (b) Viennet2 with G-MOPSO

(c) Schaffer with NSGA-II (d) Schaffer with G-MOPSO

Figure 3: Pareto Fronts obtained with the algorithms.

Table 3: Kruskal-Wallis’ p-values.

Functions G-MOPSO vs NSGA-II G-MOPSO vs OMOPSO

Spr GD Hyp Spr GD Hyp
Viennet3 2.2E-16 1.8E-9 7.9E-13 0.039 2.2E-16 2.2E-16
Fonseca2 2.2E-16 8.7E-4 2.2E-16 2.0E-4 2.2E-16 2.2E-16
Viennet2 1.1E-10 1.94E-6 6.5E-7 1.3E-5 2.2E-16 2.2E-16
Schaffer 2.2E-16 0.089 2.2E-16 8.7E-14 2.2E-16 2.2E-16

MOPSO is a promising approach to multi-objective optimization because this study of performance
was satisfactory.
In our future work we will pretend enhance the results of thisversion and incorporate a mechanism to
handle constraints, so we also can study its performance using constrained multi-objective problems.
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