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tIn this work we use the re
ently introdu
ed PKNNG metri
, asso
iated with a simpleHierar
hi
al Clustering (HC) method, to �nd a

urate an stable solution for the 
lusteringof gene expression datasets. On real world problems it is important to evaluate the qualityof the 
lustering pro
ess. A

ording to this, we use a suitable framework to analyze thestability of the 
lustering solution obtained by HC+PKNNG. Using an arti�
ial problemand two gene expression datasets, we show that the PKNNG metri
 gives better solutionsthan the Eu
lidean method, and that those solutions are stable. Our results show the po-tential of the asso
iation of the PKNNG metri
 based 
lustering with the stability analysisfor the 
lass dis
overy pro
ess in high�throughput data.1 Introdu
tionClustering is a fundamental topi
 in ma
hine learning and pattern re
ognition. Its �nal aim isto �nd any arbitrary stru
ture hidden in a set of data, whi
h is 
riti
al in biologi
al appli
ationslike mi
roarrays data analysis [3℄. In those 
ases, when resear
hers evaluate thousends of genesat on
e, it is important to provide them with analysis tools that 
an help to understand thedata [1, 3℄.In a previous work we introdu
ed the Penalized K�Nearest�Neighbor�Graph based metri
(PKNNG)[16℄, a new method 
apable of �nding 
lusters lo
ated on non-linear manifolds (non-linear low dimensional surfa
es embedded in high dimensional spa
es). PKNNG follows the ideabehind ISOMAP [8℄, Lo
ally Linear Embedding [9℄ or Lapla
ian Eigenmaps [11℄, looking for lo
alneighborhood relations that 
an be used to produ
e low dimensional proje
tions of the data athand. The new metri
 naturally extends the appli
ation of most previously introdu
ed 
lusteringmethods [4℄ to these 
ases. The PKNNG algorithm has two stages. Following ISOMAP, it �rstsear
hes for lo
ally uniform manifolds (whi
h 
ould be disjoint) and then a 
onne
tion algorithmis used to group the disjoint manifolds found in the �rst stage. Using three arti�
ial problemswe showed that the method 
an easily �nd 
luster with arbitrary shapes in high dimensionaldatasets. 1
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The main drawba
k of 
lustering methods is that they always �nd a data grouping, evenwhen there is none. We need methods that 
an �nd natural groupings, the stru
tures that
an be truly inferred from the data and not obtained as an artifa
t of the 
lustering algorithm.Unfortunately, there is no general 
onsensus yet of the de�nition of natural groupings, butseveral relevant works [12, 7, 13℄ relate the 
on
ept with 
lustering solutions that are highlystable under small perturbations. Ben-Hur & Guyon [12℄ introdu
ed a method for assessingstability, based on 
lustering perturbed versions of the dataset under analysis and evaluatingthe stability of the solutions. Using arti�
ial and real world examples, the authors showedthat their algorithm is a valid method for dete
ting stable stru
tures, also dete
ting the la
k ofstru
ture in the data. Monti et. al. [13℄ used a similar 
on
ept, also showing good results, buttheir method was developed as a visual tool.Inherently hierar
hi
al algorithms (HC) [5℄ are more stable than partitional algorithms. Di-visive HC methods have a "bottom-up" approa
h to 
onstru
t a dendrogram, where ea
h levelof the dendrogram represents a parti
ular 
lustering of the data. Thus, 
onse
utive levels of thedendrogram are related. Partitional algorithms [6℄, on the other side, determine a �xed numberof 
lusters, all at on
e starting from k random 
lusters, sear
hing iteratively for a lo
ally optimalsolution of the 
lustering problem. As a result, solutions with 
onse
utive k are not related asin dendrogram.In this work we evaluate the possibility of using the new PKNNG metri
 to �nd naturalgroupings in gene expression datasets. We 
ouple the new metri
 with a hierar
hi
al 
lusteringmethod, in order to �nd more stable solutions. We evaluate the stability of our 
lusteringsolutions using the pro
edure introdu
ed by Ben-Hur & Guyon. We show the potential of thissetup with an arti�
ial dataset, and then we apply it to �nd natural groupings in two geneexpression datasets.The rest of this paper is organized as follows. In Se
tion 2 we review the Isomap-basedmethod to 
onstru
t a fully 
onne
ted non-linear manyfold, the PKNNG metri
, and we dis
ussin detail the stability analysis developed by Ben-Hur & Guyon. In Se
tion 3 we apply this setupto 
luster the three datasets and evaluate their stability, and also we 
ompare our results tothose previously obtained with other methods. Finally we draw some 
on
lusions and dis
ussfuture lines of resear
h.2 Methods2.1 The PKNNG Metri
In previous works [15, 16℄ we introdu
ed an ISOMAP based metri
 that is useful to 
opewith 
lusters of arbitrary shape. The method follows the idea behind Isomap [8℄, whi
h statesthat in a 
urved manifold the geodesi
 distan
e between neighbouring points 
an be 
orre
tlyapproximated by the Eu
lidean input spa
e distan
e, but for faraway points geodesi
 distan
esare better approximated by adding a series of short hops between neighbouring points.In Table 1 we show the PKNNG algorithm. PKNNG takes as inputs a dataset, a given
onne
tion method and the value of k, the number of neighbours to be used, and outputs adistan
e matrix, whi
h is 
onstru
ted measuring distan
es in a spe
i�
ally 
reated graph.



Input: a Dataset {Data}, {k} the number of neighbours and {method} a 
onne
tion methodOutput: {D} the distan
e matrix.Pro
edure:1. Obtain the k�nearest�neighbours�graph using K neighbours: KnnGraph = Knng(Data, k)2. Remove outlayers and symmetrize: KnnGraph =Clean(KnnGraph)3. Conne
t the graph with the sele
ted method: GraphPKNNG = connect(KnnGraph, method).4. Cal
ulate all pairs distan
es using the graph: D = Distances(GraphPKNNG)Table 1: The PKNNG algorithmAs a �rst step, the method sear
hes for lo
ally dense stru
tures. The goal of this stage is toobtain several disjoint stru
tures, where ea
h stru
ture gather highly similar points. To this end,PKNNG 
onstru
ts the k�nearest�neighbours�graph of the data, i.e. the graph with one vertexper observed example, and ar
s between ea
h vertex and its k near neighbours with weightsequal to the Eu
lidean distan
e between them1. Then, using an appropriate strategy [16℄, weadd edges with a penalized metri
, in order to 
onne
t all stru
tures, giving as result a single
onne
ted graph. Using this graph we 
an now 
ompute geodesi
 distan
es between farawaypoints using 
omputational e�
ient algorithms like Floyd or Dijkstra [10℄.As we mentioned before, after step 2 in Table 1 we 
an have several disjoints subgraphs.The number of stru
tures and their 
onne
tion degree are dire
tly related to the number ofneighbours k used to 
onstru
t the knn�graph. In all our previous simulations [16℄ we veri�edthat this method 
aptures the true topology of the data for a wide range of values of k. We alsoveri�ed that the key fa
tor of the method is the use a penalized metri
 for the edges added inthe step 3 of Table 1:
w = d ed/µ, (1)where w is the graph weight 
orresponding to the added edge between stru
tures, d is theEu
lidean distan
e between the verti
es being 
onne
ted by that edge and µ is the mean Eu-
lidean distan
e between nearest neighbours in the graph. For the purpose of this work we usethe AllSubGraphs 
onne
tion method [16℄, whi
h 
onne
ts ea
h stru
ture to all the remainingstru
tures through their nearest pair of points, of 
ourse using the penalized metri
.2.2 StabilityIn this se
tion we present the stability analysis introdu
ed by Ben-Hur & Guyon [12℄. Themethod is based on a simple idea: If a problem has a natural grouping, we should be able toarrive to that solution starting from perturbed versions of the dataset. Or, equivalently, if wefound the same solution starting from slightly diverse datasets, that solution should not be anartifa
t introdu
ed by the 
lustering method. They propose to 
reate perturbed datasets bysub-sampling the original data, 
luster ea
h one of them, and measure how similar the diverse1After this pro
ess we eliminate outliers from the graphs. We 
onsider that an ar
 is an outlier if it is notre
ipro
al (i.e. one of the vertex is not a k-nn of the other) and the length of the ar
 is an outlier of its distribution(i.e. if it is bigger than the 3rd quartile plus 1.5 times the inter-quartile distan
e of its distribution).




lustering solutions are. The authors suggest to evaluate solutions with a growing number of
lusters and to sele
t the stable solution with the biggest number of 
lusters.In Table 2, we present a high level pseudo-
ode of the stability algorithm. The inputs of thealgorithm are Data, whi
h is the Dataset to be 
lustered, Kmax, the maximum number 
lusterto 
onsider and Rep, the number of resamplings of the dataset to use for ea
h k. The pro
eduresoutputs S(i, k), whi
h is a list that for every k 
ontains Rep similarities s
ores. The methoditself starts at line 1 by de�ning f whi
h is the size of the sub-samples of Data that will beusing. Line 2 sweeps all values of k from 2 to Kmax, then line 3 repeats Rep times the operationsmade for ea
h k of line 2. This operations 
onsist of taking two sub-samples of data: sub1 and
sub2, 
lustering them and then obtaining labels L1 and L2 respe
tively. From sub1 and sub2 we
an 
al
ulate the interse
tion points and then we 
an measure their similarity using s(a, b).Assume that is given a dataset X = {x1, x2, x3, ..., xn}, where xi ∈ R

d. The labeling L de�nes
k partitions in X (for example, L 
an be a 
lustering method that produ
es k non-overlappingpartitions S1, S2, ..., Sk of the dataset). Then we de�ne a matrix C (n × n) where:

Ci,j =

{1 if xi and xj belongs to the same 
luster0 otherwise (2)Two labellings L1 and L2 have a 
orresponding pair of matri
es C(1) and C(2). The dotprodu
t of this pair of labellings would be:
〈L1,L2〉 = 〈C(1), C(2)〉 =

∑

i,j

C
(1)
i,j · C

(2)
i,j (3)This dot produ
t represents the 
ommon edges in a graph represented by C(1) and C(2), whi
halso tells as whi
h pairs of points are 
lustered together. As a dot produ
t 〈L1,L2〉 satis�es thefollowing inequality: 〈L1,L2〉 6

√

〈L1,L1〉 · 〈L2,L2〉 and so we 
an derive a normalized form:
cor(L1,L2) =

〈L1,L2〉
√

〈L1,L1〉 · 〈L2,L2〉
(4)where equation 4 is a 
orrelation similarity measure.The only problem remaining is that the same 
luster 
an be assigned a di�erent arbitrarynumber by two di�erent labellings. Altough we follow the framework presented by Ben-Hur &Guyon in [12℄ to this point, they used an aproximated method to solve this problem. Instead,we 
hoose to use the exa
t value, whi
h only requires more 
omputation [12℄.Also following Ben-Hur & Guyon [12℄, we present the results (the s
ores 
orresponding to theset of Rep similarities for ea
h possible value of k) as plots of 
umulative distribution fun
tions(CDF). Stable solutions are fun
tions lo
ated near the right�bottom 
orner of CDF plots (withhigh similarities in almost all runs), and unstable solutions lies near the top�left of the plots.The idea is that it should be a noti
eable gap between the set of CDF 
urves 
orresponding tostable solution and the set 
orresponding to in
orre
t solutions.



Input: a Dataset {Data}, {Kmax} the maximum number of 
lusters and {Rep} the number of repetitions ofthe sampling pro
edure.Output: {S(i, k)} a list of {Rep} similarities for ea
h k, where i = 1, 2, ..., Rep and k = 1, 2, ..., KmaxPro
edure: cluster(X, k) is a 
lustering algorithm that takes as input parameters a Dataset X and k a numberof 
lusters. s(Set1, Set2(Intersect)) a similarity measure between two sets1. f = 0.82. for k in 1 to Kmax3. for i in 1 to Rep4. sub1 = sample fra
tion f of Data5. sub2 = sample fra
tion f of Data6. L1 = cluster(sub1, k). Cluster solution on subsample 1 using k 
lusters.7. L2 = cluster(sub2, k)8. Intersect = sub1 ∩ sub29. S(i, k) = s(L1(Intersect), L2(Intersect)). Computation of similarity on the interse
tion of sub1and sub2.10. end for11. end for Table 2: Stability algorithm.3 Results and Dis
ussionIn this se
tion we report the results of applying our method to three di�erent datasets, onearti�
ial and two real. In all three 
ases we know the true 
lasses of the data and we suppose thatthe natural grouping is represented by these 
lasses. We always 
ompare the stru
ture foundby the 
lustering algorithm with the original 
lasses using 
onfusion matri
es. Also, we analyzethe stability of the solutions using the pro
edure des
ribed in Table 2. In all experiments we set
f = 0.8 and Rep = 100. As 
lustering algorithm we use HC with average linkage [5℄. HC has anunwanted e�e
t, it sometimes produ
es singleton 
lusters. To solve this problem we stablished athreshold of 3 points as the minimum numbers of elements that is 
onsidered to form a 
luster.3.1 Three�RingsThis is an arti�
ial two dimensional dataset 
omposed by 1200 points. As 
an be seen onFigure 1, this dataset has �ve true 
lases, ea
h one represented by a di�erent 
olour.We 
lustered the dataset using the PKNNG metri
 and the 
lasi
al Eu
lidean metri
. In �gure2 we show the stability analysis for PKNNG (left panel) and Eu
lidean metri
 (right panel).For PKNNG there are stable stru
tures for k = {2, 3, 5}. For k = 2 the algorithm separatesthe bla
k 
luster at the 
enter from the other 4 
lusters, for k = 3 the 
lusters 
orrespond to



Figure 1: The Three�Rings dataset.
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(b) Eu
lideanFigure 2: Stability analysis for the Three�Rings Dataset. Left panel: PKNNG metri
. Rightpanel: Eu
lidean metri
.the three rings and, �nally, for k = 5 HC with PKNNG metri
 �nds the right �ve 
lusters. Asit is stated on Ben-Hur & Guyon [12℄ k is 
hosen as the bigest value that shows good stability.In this example k = 5 is the right solution. Bigger values of k (k ≥ 5) are 
onsiderably lessstable. For the Eu
lidean metri
 (right panel) we 
an see that CDF 
urves for all values of kare tangled. There is no stable solution in that 
ase.In Table 3 we show the 
orresponding 
onfusion matri
es for �ve 
lusters, whi
h is the stablesolution for HC+PKNNG-metri
 and also the true number of 
lusters. It is 
lear from the tablesthat the stable solution found by HC+PKNNG-metri
 is the right solution, and that HC 
annot�nd an appropriate 
lustering using the Eu
lidean metri
.3.2 YeastThe Yeast DNA dataset was introdu
ed by Eisen et. al. [1℄, where they noted that this dataset
lustered well. Subsequently, Brown et. al. [2℄ used MYGD fun
tional annotations to sele
t themost learnable examples by SVM a

ording to 5 fun
tional 
lasses. As a result they obtained a�ve 
lass dataset with 208 genes and 79 features (ea
h feature 
orrespond to an experiment, and



(a) Eu
lidean1 2 3 4 55 128 24 0 23 1253 0 126 0 0 742 65 0 28 107 01 0 0 200 0 04 0 141 61 98 0
(b) PKNNG1 2 3 4 55 300 0 0 0 03 0 200 0 0 02 0 0 200 0 01 0 0 0 200 04 0 0 0 0 300Table 3: Confusion matri
es for the Three�Rings dataset. Rows 
orrespond to the true 
lasses,
olumns to the resulting 
lusters.
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(b) PCA - 3 
omponentsFigure 3: Stability analysis for the Yeast Dataset. Left panel: PKNNG metri
. Right panel:Eu
lidean metri
 using the �rst 3 
omponents of the PCA proje
tion.the goal is to 
luster the genes). The �ve 
lasses 
orrespond to Tri
arbox
yli
 A
id Cy
le (TCA,14 genes, 
lass 0), Respiration 
hain 
omplexes (27 genes, 
lass 1), Cytoplasmati
ribosomalproteins (121 genes, 
lass 2), proteasomes (35 genes, 
lass 3), and histones (11 genes, 
lass 4).In this 
ase we 
ompared HC+PKNNG-metri
 in the original 79�dimensional spa
e withusing HC with the Eu
lidean metri
 on the �rst three 
omponents of the PCA proje
tion of thedataset. This last setting was found to be optimal in previos works on the yeast dataset [12℄.Figure 3 shows the stability of both approa
hes. Analizing Panel a (PKNNG), we found a gapbetween the CDF for k = 4 and k = 5. A

ording to this, there are stable 
lustering solutionsfor k = {2, 3, 4} and we should 
hoose k = 4 as the solution with PKNNG. Analizing panel b(Eu
lidean on PCA proje
tion), we found the same kind of gap between CDFs at k = 4 and
k = 5, so for this setting the problem solution is also k = 4. Table 4 presents the 
onfusionmatri
es for both settings using four 
lusters. Both approa
hes show 
omparable performa
es,though there are small di�eren
es. PCA Confusion matrix shows that this method miss
lasifytwo more patterns, one of 
lass 3 and one of 
lass 4, while PKNNG solutions presents twooutlayers (in 
olumns 5 and 6) that 
an not be 
onsidered as 
lusters, as we stated before.3.3 LeukemiaThis dataset, introdu
ed by Golub et. al. [3℄, is a set of bone marrow samples preparedat the time of diagnosis: 11 samples of A
ute Myeloid Leukemia (AML 
lass), 8 of A
ute



(a) PCA - 3 
omponents1 2 3 43 8 0 3 02 0 121 0 04 0 0 32 31 0 0 0 270 0 0 2 12(b) PKNNG1 2 3 4 5 63 9 0 2 0 0 02 0 121 0 0 0 04 0 0 33 2 0 01 0 0 0 27 0 00 0 0 0 12 1 1Table 4: Confusion matri
es for the Yeast dataset.
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(b) Eu
lideanFigure 4: Stability analysis for the AML-ALL Dataset. Left panel: PKNNG metri
. Rightpanel: Eu
lidean metri
.Lymphoblasti
 Leukimia T-linage (T�ALL 
lass) and 19 of the B-linage (B�ALL 
lass). RNAprepared from bone marrow 
ells was hybridized to a Human Genome HU6800 A�ymetryxmi
roarray. From the 6817 genes present in the mi
roarray we sele
ted 1000 using the methoddes
ribed by Monti et. al. [13℄. We 
entered the data (substra
ting the mean expression of ea
hgene). The resulting dataset 
omprises 1000 genes measured on 38 patients, and the goal is touse the genomi
 expresion information to 
luster the patients by their desease.In �gure 4 we present the stability analysis for this problem. In the left panel we showthe results of HC+PKNNG-metri
 and in the right panel of HC with the Eu
lidean metri
.PKNNG shows stable 
lustering solutions for k = {2, 3}, being k = 3 the a
tual solution. ForEu
lidean metri
 (the original method used by Golub et. al. [3℄) we observe stable stru
turesfor k = {2, 3, 4, 5} and the solution for this 
ase is k = 5. This last result agrees to the onepresented by Monti et. al. [13℄, although we applied a di�erent normalization pro
edure.



(a) Eu
lidean1 2 3 4 5 6 70 17 1 1 0 0 0 01 0 0 0 8 0 0 02 1 0 0 0 6 2 2
(b) PKNNG1 2 30 18 1 01 0 8 02 1 0 10Table 5: Confusion matri
es for the AML-ALL dataset.In Table 5 we 
ompare the 
onfusion matri
es for both metri
s. As we explained before,gropus with two or less samples are not 
onsidered as 
lusters, as for example 
olumns 3 and 4from the left Table. The results for PKNNG (right Table) represent a very a

urate solution,whi
h is very similar to the one obtained by Golub et. al. [3℄. Both solutions (our and Golub's)in
orre
tly asso
iates a B-ALL to a T-ALL 
luster and an AML to a B-ALL 
luster.4 Con
lusionsIn this paper we applied the new PKNNG metri
, 
oupled with a hierar
hi
al 
lusteringmethod, to �nd a

urate and stable 
lustering solutions for two genomi
 expression dataset. Af-ter reviewing our metri
 and des
ribing a simple method to evaluate the stability of a 
lusteringsolution (developed by Ben-Hur and Guyon), we used an arti�
ial dataset to show the potentialof these methods to �nd stable 
lustering solutions for problems where 
lasi
al Eu
lidean�metri
�based solutions fail.The results on the two dataset under analysis are en
ouraging. In the 
ase of the yeastdataset, the PKNNG method found the same stable solution as the Eu
lidean metri
 evaluatedon a PCA proje
tion, and overall returns a slightly better 
lustering solution. The PKNNGmethod worked dire
tly over the original spa
e, avoiding the possible information loss asso
iatedwith the linear PCA proje
tion. For the AML-ALL dataset we obtained the right number of
lusters as stable solution, where the original method (Eu
lidean metri
) found more 
lusters.Evaluating the a

ura
y of both methods, again PKNNG produ
ed a better 
lustering solutionin this dataset.Overall, these results show the potential of the asso
iation of the PKNNG metri
 based
lustering with the stability analysis for the 
lass dis
overy pro
ess in high�throughput data.As future work we plan to evaluate other datasets, and to use the full method (PKNNG metri
plus stability analysis) in the sear
h for redu
ed sets of genes that behaves in a 
oherent way(sometimes 
alled metagenes).A
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