-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by El Servicio de Difusién de la Creacién Intelectual

Clustering gene expression data
with the PKNNG metric.

Ariel E. Baya, Pablo M. Granitto

CIFASIS, CONICET-UNR-UPC/Marselle
Bv 27 de Febrero 210 Bis
Rosario, 2000 (Republica Argentina)
{baya,granitto}@cifasis-conicet.gov.ar

Abstract

In this work we use the recently introduced PKNNG metric, associated with a simple
Hierarchical Clustering (HC) method, to find accurate an stable solution for the clustering
of gene expression datasets. On real world problems it is important to evaluate the quality
of the clustering process. According to this, we use a suitable framework to analyze the
stability of the clustering solution obtained by HC4+PKNNG. Using an artificial problem
and two gene expression datasets, we show that the PKNNG metric gives better solutions
than the Euclidean method, and that those solutions are stable. Our results show the po-
tential of the association of the PKNNG metric based clustering with the stability analysis
for the class discovery process in high—throughput data.

1 Introduction

Clustering is a fundamental topic in machine learning and pattern recognition. Its final aim is
to find any arbitrary structure hidden in a set of data, which is critical in biological applications
like microarrays data analysis [3]. In those cases, when researchers evaluate thousends of genes
at once, it is important to provide them with analysis tools that can help to understand the
data [1, 3]

In a previous work we introduced the Penalized K Nearest Neighbor Graph based metric
(PKNNG)|16], a new method capable of finding clusters located on non-linear manifolds (non-
linear low dimensional surfaces embedded in high dimensional spaces). PKNNG follows the idea
behind ISOMAP [8|, Locally Linear Embedding |9] or Laplacian Eigenmaps [11], looking for local
neighborhood relations that can be used to produce low dimensional projections of the data at
hand. The new metric naturally extends the application of most previously introduced clustering
methods [4] to these cases. The PKNNG algorithm has two stages. Following ISOMAP; it first
searches for locally uniform manifolds (which could be disjoint) and then a connection algorithm
is used to group the disjoint manifolds found in the first stage. Using three artificial problems
we showed that the method can easily find cluster with arbitrary shapes in high dimensional
datasets.


https://core.ac.uk/display/301042127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The main drawback of clustering methods is that they always find a data grouping, even
when there is none. We need methods that can find natural groupings, the structures that
can be truly inferred from the data and not obtained as an artifact of the clustering algorithm.
Unfortunately, there is no general consensus yet of the definition of natural groupings, but
several relevant works [12, 7, 13| relate the concept with clustering solutions that are highly
stable under small perturbations. Ben-Hur & Guyon [12] introduced a method for assessing
stability, based on clustering perturbed versions of the dataset under analysis and evaluating
the stability of the solutions. Using artificial and real world examples, the authors showed
that their algorithm is a valid method for detecting stable structures, also detecting the lack of
structure in the data. Monti et. al. |13]| used a similar concept, also showing good results, but
their method was developed as a visual tool.

Inherently hierarchical algorithms (HC) |5| are more stable than partitional algorithms. Di-
visive HC methods have a "bottom-up" approach to construct a dendrogram, where each level
of the dendrogram represents a particular clustering of the data. Thus, consecutive levels of the
dendrogram are related. Partitional algorithms [6], on the other side, determine a fixed number
of clusters, all at once starting from k random clusters, searching iteratively for a locally optimal
solution of the clustering problem. As a result, solutions with consecutive k are not related as
in dendrogram.

In this work we evaluate the possibility of using the new PKNNG metric to find natural
groupings in gene expression datasets. We couple the new metric with a hierarchical clustering
method, in order to find more stable solutions. We evaluate the stability of our clustering
solutions using the procedure introduced by Ben-Hur & Guyon. We show the potential of this
setup with an artificial dataset, and then we apply it to find natural groupings in two gene
expression datasets.

The rest of this paper is organized as follows. In Section 2 we review the Isomap-based
method to construct a fully connected non-linear manyfold, the PKNNG metric, and we discuss
in detail the stability analysis developed by Ben-Hur & Guyon. In Section 3 we apply this setup
to cluster the three datasets and evaluate their stability, and also we compare our results to
those previously obtained with other methods. Finally we draw some conclusions and discuss
future lines of research.

2 Methods

2.1 The PKNNG Metric

In previous works |15, 16| we introduced an ISOMAP based metric that is useful to cope
with clusters of arbitrary shape. The method follows the idea behind Isomap [8|, which states
that in a curved manifold the geodesic distance between neighbouring points can be correctly
approximated by the Euclidean input space distance, but for faraway points geodesic distances
are better approximated by adding a series of short hops between neighbouring points.

In Table 1 we show the PKNNG algorithm. PKNNG takes as inputs a dataset, a given
connection method and the value of k, the number of neighbours to be used, and outputs a
distance matrix, which is constructed measuring distances in a specifically created graph.



Input: a Dataset {Data}, {k} the number of neighbours and {method} a connection method
Output: {D} the distance matrix.

Procedure:

1. Obtain the k nearest neighbours graph using K neighbours: KnnGraph = Knng(Data, k)
2. Remove outlayers and symmetrize: KnnGraph =Clean(KnnGraph)
3. Connect the graph with the selected method: GraphPKNNG = connect(KnnGraph, method).

4. Calculate all pairs distances using the graph: D = Distances(GraphPKNNG)

Table 1: The PKNNG algorithm

As a first step, the method searches for locally dense structures. The goal of this stage is to
obtain several disjoint structures, where each structure gather highly similar points. To this end,
PKNNG constructs the k-nearest-neighbours—graph of the data, i.e. the graph with one vertex
per observed example, and arcs between each vertex and its k& near neighbours with weights
equal to the Euclidean distance between them'. Then, using an appropriate strategy [16], we
add edges with a penalized metric, in order to connect all structures, giving as result a single
connected graph. Using this graph we can now compute geodesic distances between faraway
points using computational efficient algorithms like Floyd or Dijkstra [10].

As we mentioned before, after step 2 in Table 1 we can have several disjoints subgraphs.
The number of structures and their connection degree are directly related to the number of
neighbours &k used to construct the knn—graph. In all our previous simulations |[16] we verified
that this method captures the true topology of the data for a wide range of values of k. We also
verified that the key factor of the method is the use a penalized metric for the edges added in
the step 3 of Table 1:

w=d e’* (1)

where w is the graph weight corresponding to the added edge between structures, d is the
Euclidean distance between the vertices being connected by that edge and p is the mean Eu-
clidean distance between nearest neighbours in the graph. For the purpose of this work we use
the AllSubGraphs connection method [16], which connects each structure to all the remaining
structures through their nearest pair of points, of course using the penalized metric.

2.2 Stability

In this section we present the stability analysis introduced by Ben-Hur & Guyon [12|. The
method is based on a simple idea: If a problem has a natural grouping, we should be able to
arrive to that solution starting from perturbed versions of the dataset. Or, equivalently, if we
found the same solution starting from slightly diverse datasets, that solution should not be an
artifact introduced by the clustering method. They propose to create perturbed datasets by
sub-sampling the original data, cluster each one of them, and measure how similar the diverse

L After this process we eliminate outliers from the graphs. We consider that an arc is an outlier if it is not
reciprocal (i.e. one of the vertex is not a k-nn of the other) and the length of the arc is an outlier of its distribution
(i.e. if it is bigger than the 3rd quartile plus 1.5 times the inter-quartile distance of its distribution).



clustering solutions are. The authors suggest to evaluate solutions with a growing number of
clusters and to select the stable solution with the biggest number of clusters.

In Table 2, we present a high level pseudo-code of the stability algorithm. The inputs of the
algorithm are Data, which is the Dataset to be clustered, K4, the maximum number cluster
to consider and Rep, the number of resamplings of the dataset to use for each k. The procedures
outputs S(7, k), which is a list that for every k contains Rep similarities scores. The method
itself starts at line 1 by defining f which is the size of the sub-samples of Data that will be
using. Line 2 sweeps all values of k from 2 to K., then line 3 repeats Rep times the operations
made for each k of line 2. This operations consist of taking two sub-samples of data: sub, and
suby, clustering them and then obtaining labels L; and L, respectively. From sub; and suby we
can calculate the intersection points and then we can measure their similarity using s(a, b).

Assume that is given a dataset X = {z1, x9, x3, ..., T, }, where z; € R?. The labeling £ defines
k partitions in X (for example, £ can be a clustering method that produces k non-overlapping
partitions Si, Ss, ..., Sk of the dataset). Then we define a matrix C (n x n) where:

(2)

{1 if z; and x; belongs to the same cluster
(VA

0 otherwise

Two labellings £; and £, have a corresponding pair of matrices C and C®. The dot
product of this pair of labellings would be:

(L1, L) = (€D, 0y =3¢ ¢ (3)
,J

This dot product represents the common edges in a graph represented by CM and C®, which
also tells as which pairs of points are clustered together. As a dot product (L, L£,) satisfies the
following inequality: (L1, L2) < \/(L1,L1) - (L2, L2) and so we can derive a normalized form:

(L1, Lo)
VAL, L) - (L2, Lo)

where equation 4 is a correlation similarity measure.

cor(Ly, Lo) =

(4)

The only problem remaining is that the same cluster can be assigned a different arbitrary
number by two different labellings. Altough we follow the framework presented by Ben-Hur &
Guyon in [12]| to this point, they used an aproximated method to solve this problem. Instead,
we choose to use the exact value, which only requires more computation |12].

Also following Ben-Hur & Guyon [12|, we present the results (the scores corresponding to the
set of Rep similarities for each possible value of k) as plots of cumulative distribution functions
(CDF). Stable solutions are functions located near the right-bottom corner of CDF plots (with
high similarities in almost all runs), and unstable solutions lies near the top left of the plots.
The idea is that it should be a noticeable gap between the set of CDF curves corresponding to
stable solution and the set corresponding to incorrect solutions.



Input: a Dataset {Data}, {Kmnas} the maximum number of clusters and {Rep} the number of repetitions of
the sampling procedure.

Output: {S(i,k)} a list of {Rep} similarities for each k, where i = 1,2, ..., Rep and k = 1,2, ..., K;nau

Procedure: cluster(X, k) is a clustering algorithm that takes as input parameters a Dataset X and k a number
of clusters. s(Seti, Seta(Intersect)) a similarity measure between two sets

1. f=08

2. for kin 1 to K4z

3. for iin 1 to Rep

4. sub; = sample fraction f of Data

5. suby = sample fraction f of Data

6. Ly = cluster(suby, k). Cluster solution on subsample 1 using k clusters.

7. Ly = cluster(subs, k)

8. Intersect = suby N subsy

9. S(i, k) = s(Li(Intersect), La(Intersect)). Computation of similarity on the intersection of sub;

and subs.

10. end for
11. end for

Table 2: Stability algorithm.

3 Results and Discussion

In this section we report the results of applying our method to three different datasets, one
artificial and two real. In all three cases we know the true classes of the data and we suppose that
the natural grouping is represented by these classes. We always compare the structure found
by the clustering algorithm with the original classes using confusion matrices. Also, we analyze
the stability of the solutions using the procedure described in Table 2. In all experiments we set
f=0.8and Rep = 100. As clustering algorithm we use HC with average linkage |5|. HC has an
unwanted effect, it sometimes produces singleton clusters. To solve this problem we stablished a
threshold of 3 points as the minimum numbers of elements that is considered to form a cluster.

3.1 Three—Rings

This is an artificial two dimensional dataset composed by 1200 points. As can be seen on
Figure 1, this dataset has five true clases, each one represented by a different colour.

We clustered the dataset using the PKNNG metric and the clasical Euclidean metric. In figure
2 we show the stability analysis for PKNNG (left panel) and Euclidean metric (right panel).
For PKNNG there are stable structures for & = {2,3,5}. For k = 2 the algorithm separates
the black cluster at the center from the other 4 clusters, for £k = 3 the clusters correspond to



Figure 1: The Three-Rings dataset.
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Figure 2: Stability analysis for the Three-Rings Dataset. Left panel: PKNNG metric. Right
panel: Euclidean metric.

the three rings and, finally, for £ = 5 HC with PKNNG metric finds the right five clusters. As
it is stated on Ben-Hur & Guyon [12]| k is chosen as the bigest value that shows good stability.
In this example £ = 5 is the right solution. Bigger values of k& (k > 5) are considerably less
stable. For the Euclidean metric (right panel) we can see that CDF curves for all values of k
are tangled. There is no stable solution in that case.

In Table 3 we show the corresponding confusion matrices for five clusters, which is the stable
solution for HC4+PKNNG-metric and also the true number of clusters. It is clear from the tables
that the stable solution found by HC+PKNNG-metric is the right solution, and that HC cannot
find an appropriate clustering using the Euclidean metric.

3.2 Yeast

The Yeast DNA dataset was introduced by Eisen et. al. [1], where they noted that this dataset
clustered well. Subsequently, Brown et. al. [2] used MYGD functional annotations to select the
most learnable examples by SVM according to 5 functional classes. As a result they obtained a
five class dataset with 208 genes and 79 features (each feature correspond to an experiment, and
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Table 3: Confusion matrices for the Three—Rings dataset. Rows correspond to the true classes,
columns to the resulting clusters.
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Figure 3: Stability analysis for the Yeast Dataset. Left panel: PKNNG metric. Right panel:
Euclidean metric using the first 3 components of the PCA projection.

the goal is to cluster the genes). The five classes correspond to Tricarboxcylic Acid Cycle (TCA,
14 genes, class 0), Respiration chain complexes (27 genes, class 1), Cytoplasmaticribosomal
proteins (121 genes, class 2), proteasomes (35 genes, class 3), and histones (11 genes, class 4).

In this case we compared HC+PKNNG-metric in the original 79-dimensional space with
using HC with the Euclidean metric on the first three components of the PCA projection of the
dataset. This last setting was found to be optimal in previos works on the yeast dataset [12].
Figure 3 shows the stability of both approaches. Analizing Panel a (PKNNG), we found a gap
between the CDF for k = 4 and & = 5. According to this, there are stable clustering solutions
for £ = {2,3,4} and we should choose k = 4 as the solution with PKNNG. Analizing panel b
(Euclidean on PCA projection), we found the same kind of gap between CDFs at & = 4 and
k = 5, so for this setting the problem solution is also k = 4. Table 4 presents the confusion
matrices for both settings using four clusters. Both approaches show comparable performaces,
though there are small differences. PCA Confusion matrix shows that this method missclasify
two more patterns, one of class 3 and one of class 4, while PKNNG solutions presents two
outlayers (in columns 5 and 6) that can not be considered as clusters, as we stated before.

3.3 Leukemia

This dataset, introduced by Golub et. al. [3], is a set of bone marrow samples prepared
at the time of diagnosis: 11 samples of Acute Myeloid Leukemia (AML class), 8 of Acute
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Table 4: Confusion matrices for the Yeast dataset.
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Figure 4: Stability analysis for the AML-ALL Dataset. Left panel: PKNNG metric. Right
panel: Euclidean metric.

Lymphoblastic Leukimia T-linage (T-ALL class) and 19 of the B-linage (B-ALL class). RNA
prepared from bone marrow cells was hybridized to a Human Genome HUG6800 Affymetryx
microarray. From the 6817 genes present in the microarray we selected 1000 using the method
described by Monti et. al. [13]. We centered the data (substracting the mean expression of each
gene). The resulting dataset comprises 1000 genes measured on 38 patients, and the goal is to
use the genomic expresion information to cluster the patients by their desease.

In figure 4 we present the stability analysis for this problem. In the left panel we show
the results of HC+PKNNG-metric and in the right panel of HC with the Euclidean metric.
PKNNG shows stable clustering solutions for k& = {2,3}, being k = 3 the actual solution. For
Euclidean metric (the original method used by Golub et. al. [3|) we observe stable structures
for & = {2,3,4,5} and the solution for this case is & = 5. This last result agrees to the one
presented by Monti et. al. [13], although we applied a different normalization procedure.
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Table 5: Confusion matrices for the AML-ALL dataset.

In Table 5 we compare the confusion matrices for both metrics. As we explained before,
gropus with two or less samples are not considered as clusters, as for example columns 3 and 4
from the left Table. The results for PKNNG (right Table) represent a very accurate solution,
which is very similar to the one obtained by Golub et. al. [3]. Both solutions (our and Golub’s)
incorrectly associates a B-ALL to a T-ALL cluster and an AML to a B-ALL cluster.

4 Conclusions

In this paper we applied the new PKNNG metric, coupled with a hierarchical clustering
method, to find accurate and stable clustering solutions for two genomic expression dataset. Af-
ter reviewing our metric and describing a simple method to evaluate the stability of a clustering
solution (developed by Ben-Hur and Guyon), we used an artificial dataset to show the potential
of these methods to find stable clustering solutions for problems where clasical Euclidean—-metric—
based solutions fail.

The results on the two dataset under analysis are encouraging. In the case of the yeast
dataset, the PKNNG method found the same stable solution as the Euclidean metric evaluated
on a PCA projection, and overall returns a slightly better clustering solution. The PKNNG
method worked directly over the original space, avoiding the possible information loss associated
with the linear PCA projection. For the AML-ALL dataset we obtained the right number of
clusters as stable solution, where the original method (Euclidean metric) found more clusters.
Evaluating the accuracy of both methods, again PKNNG produced a better clustering solution
in this dataset.

Overall, these results show the potential of the association of the PKNNG metric based
clustering with the stability analysis for the class discovery process in high—throughput data.
As future work we plan to evaluate other datasets, and to use the full method (PKNNG metric
plus stability analysis) in the search for reduced sets of genes that behaves in a coherent way
(sometimes called metagenes).
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