
Properties for a Formal Model
of Collaborative Dialogue ∗

M. Julieta Marcos Marcelo A. Falappa Guillermo R. Simari
Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),

Laboratorio de Investigación y Desarrollo en Inteligencia Artificial,
Departamento de Ciencias e Ingenieŕıa de la Computación, Universidad Nacional del Sur,

Avenida Alem 1253,(B8000BCP), Bah́ıa Blanca, Argentina
Tel: (0291) 459-5135 / Fax: (0291) 459-5136
Email: {mjm,mfalappa,grs}@cs.uns.edu.ar

Abstract

We propose a basic set of desirable properties for an abstract model of collaborative dialogue among
agents. The abstraction comprehends the underlying logic of the agents, as well as the interaction
protocol. The properties pursue the characterization of finite dialogues, with reasonable conclusions
(based on what the participants have said), in which everything said is relevant and everything relevant
is said. To this end, two levels of relevance (direct and potential) are defined, based on the notions
of inference and abduction, respectively. Illustrative examples, using mainly the DeLP formalism, are
provided.

Keywords: Multi-agent Systems, Collaborative Dialogue, Properties, Relevance, Abduction.

1 INTRODUCTION & BACKGROUND

Agents in a multi-agent system need to communicate for different reasons: to resolve differences
of opinion or conflicts of interests, to cooperate for solving problems or finding proofs, or simply
to communicate each other about pertinent facts [14]. This gives rise to a variety of dialogue
types. The following are some particular types of dialogue, as characterized in [15], which have
gained special attention:

Information Seeking Dialogue. One participant seeks the answer to some question(s) from
another participant, who is believed to know the answer(s) by the first one.

Inquiry Dialogue. The participants collaborate to answer some question or questions whose
answers are not known to any of the participants.

Persuasion Dialogue. One party seeks to persuade another party to adopt a belief or point
of view he or she does not currently hold.

Negotiation Dialogue. The participants bargain over the division of some scarce resources
in a way acceptable to all, with each individual party aiming to maximize his or her share.

∗This work is partially supported by Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (PIP 5050),
Universidad Nacional del Sur (PGI 24/ZN11).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301042126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Deliberation Dialogue. Participants collaborate to decide what course of action to take in
a certain situation.

A distinction can be made between collaborative and non-collaborative dialogues. In the
former, there is a common goal shared by all the participants: to obtain, from the union of
their knowledge, a unified conclusion about certain topic. Thus, collaborative agents (these
could be denoted as unbiased agents) will expose any knowledge that is relevant for the de-
termination of the conclusion. On the other hand, in a non-collaborative dialogue, the agents
may have individual goals which lead them to prefer some conclusions over others. Thus,
non-collaborative agents (these could be denoted as biased agents) may hide knowledge, being
aware of its relevance, because it does not favor the achievement of their individual goals. In
the above typology, the first and second are collaborative dialogue types, whereas the third and
fourth ones are clearly non-collaborative (the persuader is biased to obtain the predetermined
conclusion he is trying to convince the others of, and the negotiating agents are biased to obtain
the conclusion that maximize their own profit).

Much work has been done to develop formal models of these dialogues, in order to achieve
their automatization. The aim of this work is to formalize some properties that should be
satisfied by collaborative-dialogue formal models in general. In order to do that, we will define
a dialogue operator as a black box that takes the inputs (agents knowledge bases and dialogue
topic), and returns the conclusion achieved, together with the sequence of steps that conform
the dialogue. It is assumed that a single step of the dialogue consists in an assertion made by
one of its participants, and everything that an agent asserts is a subset of its private knowledge
base. It is also assumed that there is a common underlying inference mechanism which allows
to obtain a conclusion about a topic, on the basis of an individual set of knowledge. Based on
all these elements, we will characterize the expected behavior of the dialogue operator through
its properties. The intuitions behind these properties are simple-minded: we look for finite
dialogues with reasonable conclusions (based on what the participants have said), in which
everything said is relevant and everything relevant is said. In other words, we point to: a
reasonable connection between the steps and the conclusion, the relevance of each step, and
the completeness, and finiteness, of the sequence of steps.

Within a context of incomplete information, as a dialogue is (since each agent ignores the
other agents private knowledge), it may be not so easy to know that certain information is
relevant for achieving the conclusion. For example, suppose that agents A1 and A2 engage
in dialogue to determine whether certain individual x flies or not. A1 knows that x is a bird
and x is green, and A2 knows that all birds fly and also that all planes fly. Considering the
knowledge of both agents as a whole, it is easy to see that they should conclude that x flies,
and that the relevant information to achieve that conclusion is “x is a bird” and “all birds
fly”. However, if we want to define a criterion for an agent to use in any step of the dialogue,
in order to determine the relevance of its knowledge, then some questions arise, for instance:
how can it be determined, before A1 says anything, that A2 has some relevant information
(or viceversa)? Is it possible to distinguish, before A1 says anything, that “all birds fly” is
relevant but “all planes fly” is not? In this work, the notion of abduction will be used for
determining relevance in a context of incomplete information. An abduction mechanism will
allow to discover what information (facts) is missing to obtain certain conclusion. Then, a set
of knowledge will be considered relevant if its addition changes the current conclusion (direct
relevance), or if it changes the possible sets of facts that are missing to change the current
conclusion (potential relevance). As we shall see, this potential relevance notion captures the
idea of guessing what may be relevant in the future, after some other pieces of information are

considered. Reconsidering the situation illustrated above, both “all birds fly” and “all planes
fly” will be considered potentially relevant, before A1 says anything, whereas “x is a bird” will
be considered (directly) relevant only after “all birds fly” has been said.

The incompleteness of knowledge, discussed above, is an intrinsic feature of dialogues, caused
by the distribution of knowledge among several sources. Another characteristic of dialogues,
due to the same cause, is the potential inconsistency of knowledge. In this work, we will
take into account that different agents may have inconsistent information, although it will be
assumed that there is common agreement among the participants on the way this inconsistency
is handled (this will be reflected on a unified consolidation function, as well as a common
preference criterion in the case of argumentative systems).

This work is organized as follows: in section 2 a brief summary of an argumentative for-
malism (DeLP), which will be extensively used in examples throughout this paper, is given. In
section 3 we define abstract versions of some well known concepts in logic (namely: consistency,
consolidation, inference and abduction) so that we can refer to them without being tied to any
particular logic system, and we also give two concrete instantiations of these concepts using
Classical Propositional Logic on one side, and DeLP on the other. In section 4 a basic set
of desirable properties for an abstract collaborative dialogue model is proposed. To this end,
the notion of relevance is discussed, defining two levels of relevance in dialogues. Illustrative
examples using DeLP are provided. Finally, in section 5 we comment on some existing works in
the area, and in section 6 we summarize the main contributions of this work, as well as pointing
out some issues that have been left for further research in future works.

2 DELP OVERVIEW

Defeasible Logic Programming (DeLP) is a formalism which combines results of Logic Pro-
gramming and Defeasible Argumentation. It has the declarative capability of representing weak
information in the form of defeasible rules, and a defeasible argumentation inference mechanism
for warranting the entailed conclusions. A brief explanation is included below (see [8] for full
details).

2.1 The Language

A defeasible logic program (de.l.p.) P is a set of facts, strict rules and defeasible rules, defined
as follows. Facts are ground literals representing atomic information, or the negation of atomic
information using the strong negation “∼” (e. g. bird(tweety) or ∼flies(tweety)). Strict Rules
represent non-defeasible information and are denoted L0 ← L1, . . . , Ln, where L0 is a ground
literal and {Li}i>0 is a set of ground literals (e. g. bird ← penguin or ∼innocent ← guilty).
Defeasible Rules represent tentative information that may be used if nothing could be posed
against it, and are denoted L0 —< L1, . . . , Ln, where L0 is a ground literal and {Li}i>0 is a
set of ground literals (e. g. flies —< bird or ∼flies —< bird, broken wing). Observe that strict
and defeasible rules are ground. However, following the usual convention, some examples
use “schematic rules” with variables. To distinguish variables, as usual, they start with an
uppercase letter.

When required, P is denoted (Π, ∆) distinguishing the subset Π of facts and strict rules, and
the subset ∆ of defeasible rules. From a program (Π, ∆) contradictory literals could be derived,
since Strong negation is allowed in the head of rules. Nevertheless, the set Π (which is used to
represent non-defeasible information) must possess certain internal coherence. Therefore, no

pair of contradictory literals can be derived from Π.

2.2 The Inference Mechanism

For the treatment of contradictory knowledge, DeLP incorporates a defeasible argumentation
formalism. This formalism allows the identification of the pieces of knowledge that are in
contradiction, and a dialectical process is used for deciding which information prevails as war-
ranted. This dialectical process involves the construction and evaluation of arguments that
either support or interfere with the query under analysis.

In short, an argument for a literal L, denoted 〈A, L〉, is a minimal set A of defeasible rules,
(A⊆∆), such that A∪Π is non-contradictory and there is a derivation for L from A∪Π. A
literal L is warranted if there exists a non-defeated argument A supporting L. To establish if
〈A, L〉 is a non-defeated argument, defeaters for 〈A, L〉 are considered, i.e., counter-arguments
that by some criterion are preferred to 〈A, L〉. In the examples in this paper we assume that
the comparison criterion is generalized specificity (see [8]). Since defeaters are arguments, there
may exist defeaters for them, and defeaters for these defeaters, and so on. Thus, a sequence of
arguments called argumentation line is constructed, where each argument defeats its predeces-
sor. To avoid undesirable sequences, that may represent circular or fallacious argumentation
lines, in DeLP an argumentation line is acceptable if it satisfies certain constraints (see [8]).
Clearly, there might be more than one defeater for a particular argument. Therefore, many
acceptable argumentation lines could arise from one argument, leading to a tree structure. In
a dialectical tree, every node (except the root) represents a defeater of its parent, and leaves
correspond to non-defeated arguments. A dialectical tree provides a structure for considering
all the possible acceptable argumentation lines that can be generated for deciding whether an
argument is defeated. Given a literal h and an argument 〈A, h〉, every node in the dialectical
tree T 〈A, h〉 is recursively marked as “D” (defeated) or “U” (undefeated), obtaining a marked
dialectical tree T ∗〈A, h〉 (see [8] for a detailed explanation of the marking procedure). If the
root of T ∗〈A, h〉 is marked as “U”, then we will say that T ∗〈A, h〉 warrants h and that h is
warranted from P . There are four possible answers for a query h: yes if h is warranted, no if
∼h is warranted, undecided if neither h nor ∼h are warranted, and unknown if h is not in
the language of the program.

Example 1 Consider the following de.l.p. and the query h = flies(tweety).

P =

{
bird(X) ← penguin(X) flies(X) —< bird(X)
penguin(tweety) ∼flies(X) —< penguin(X)

}
An argument for literal h is A1 = {flies(X) —< bird(X)}. An argument for ∼h is A2 =
{∼flies(X) —< penguin(X)}. A2 is a defeater for A1 (using generalized specificity). ∼h results
warranted after the dialectical process, while h results not warranted. The answer to the query
is no.

3 PRELIMINARY DEFINITIONS

We assume the existence of three logical languages: the Knowledge Representation Language
L, the Query Language LQuery, and the Answer Language LAnswer. We also assume that
L = LFacts ∪ LRules, with LFacts ∩ LRules = ∅. On top of these three languages, abstract
operators for inference and abduction are defined. The inference operator allows to answer

queries based on an individual set of knowledge. The abduction operator, defined in terms
of the former, allows to discover what information is missing for inferring certain conclusion
(that is, what are the minimal sets of facts that could be added so that the inference operator
obtains a predetermined answer to a query). Since different agents may have contradictory
information, a consistency notion and a consolidation operator (for resolving the inconsistency)
are also abstractly defined. It is important to mention that the inference operator will be always
applied to consistent sets.

Definition 1 (Consistency) A consistency notion is a function Consistent: 2L ⇒ {true,
false}.

Definition 2 (Consolidation) A consolidation operator is a function ! : 2L ⇒ 2L such that
(al least) the following conditions hold for all K ⊆ L:

• Inclusion: K! ⊆ K.

• Consistency: Consistent(K!) = true.

• Vacuity: if (Consistent(K) = true) then K! = K.

It is worth mentioning that we are not concerned here with technical details of the consoli-
dation mechanism. We will just assume that there exists a function which returns a consistent
subset of the original inconsistent one, so that the inference operator can be applied. Other
properties, regarding the idea of minimal change, are usually required from a consolidation
operator, but these are out of the scope of this particular work. Further information on these
topics can be found in the belief revision literature ([1], [9], [10] and [11], among others).

Definition 3 (Inference) An inference operator is a function Infer: 2L × LQuery ⇒ LAnswer,
such that (at least) the following condition holds for all K ⊆ L and Q ∈ LQuery:

• Compactness: if Infer(K, Q) = A then there exists a finite subset S ⊆ K such that
Infer(S, Q) = A.

As mentioned above, the inference function is defined over consistent sets of knowledge.
Thus, it will be always applied over consolidated sets. However, the consolidation step will be
omitted, for simplicity reasons, when it is clear that the regarding set is already consistent.

Definition 4 (Abduction) An abduction operator is a function Abduce: 2L × LQuery ×
LAnswer ⇒ 22LFacts , such that X ∈ Abduce(K, Q, A) if and only if:

1. Infer((K ∪ X)!, Q) = A, and

2. @ S ⊂ X such that Infer((K ∪ S)!, Q) = A.

Two concrete instantiations of these concepts are given next. In example 2, Classical Propo-
sitional Logic is used for representing knowledge and reasoning. In example 3, the DeLP for-
malism is used. All subsequent examples in this paper use the instantiation of languages and
operators provided in example 3. The reason we have chosen DeLP for exemplifying the con-
cepts introduced in this paper, is that this formalism allows for interesting and, at the same
time, simple examples.

Example 2 Let L be the language of Classical Propositional Logic (PL), LQuery the set of
atomic formulas in PL, and LAnswer the set {true, false, undetermined}. The consistency
notion is defined as usual: Consistent(K) iff K 0⊥. The inference function is defined as usual:
Infer(K, α) is true if K ` α, false if K ` ∼α, and undetermined otherwise (i.e. K 0 α
and K 0 ∼α). The consolidation function considered in this example returns the intersection
of all the maximal consistent subsets of K 1. For instance, the set {a,∼a} has two maximal
consistent subsets: {a} and {∼a}, whose intersection is the empty set. The abduction operator
is constructed according to definition 4, based on the inference and consolidation functions.
Some representative examples showing the behavior of this last operator are given next. Note
that in some cases the result is a unitary set containing the empty set, while in others the result
itself is the empty set.

• K1 = {b→ a, c ∧ d→ b}
– Abduce(K1, a, true)= {{a}, {b}, {c, d}}

• K2 = {a, b→ a}
– Abduce(K2, a, true)= {∅}

• K3 = {∼a}
– Abduce(K3, a, false)= {∅}
– Abduce(K3, a, undetermined)=
{{a}}

– Abduce(K3, a, true)= ∅

Example 3 Let L be the DeLP language, LQuery the set of literals of the DeLP language, and
LAnswer the set {Yes, No, Undecided, Unknown}. The consistency notion and the consolidation
function are defined in the same way as in example 2, but over the set Π of strict rules and
facts: Consistent((Π, ∆)) iff Π 0⊥, and (Π1, ∆)! = (Π2, ∆) where Π2 is the intersection of all
the maximal consistent subsets of Π1. The inference function is defined as explained in section
2: Infer(P, h) returns Yes if h is warranted, No if ∼h is warranted, Undecided if neither h
nor ∼h are warranted, and Unknown if h is not in the language of the program. The behavior
of the resulting abduction operator is illustrated by the following example.

• K =
{

bird(X) ← penguin(X), ∼flies(X) —< penguin(X), f lies(X) —< bird(X)
}

– Abduce(K, f lies(tweety), Y es) = {{flies(tweety)}, {bird(tweety)}}
– Abduce(K, f lies(tweety), No) = {{∼flies(tweety)}, {penguin(tweety)}}

4 PROPERTIES FOR COLLABORATIVE DIALOGUES

A collaborative dialogue is one in which all the participants have the same goal: to obtain a
unified conclusion about the topic under discussion. Collaborative agents have no preferences
for particular conclusions, so they share any knowledge considered relevant to the progress of
the dialogue. Next, an abstract dialogue operator is defined, under the following assumptions:
(1) all agents use the same language for representing knowledge, and (2) each single move in
the dialogue consists in an agent publishing a subset of its private knowledge base.

Definition 5 (Collaborative Dialogue) A collaborative dialogue operator is a non-deterministic
function C-dialogue: (2L)n × LQuery ⇒ LAnswer × (2L)m × Nm, where 2L is the powerset of
L, N is the set of natural numbers, n ∈ N is the number of agents involved in the dialogue,
and m ∈ N is the number of steps (or moves) of the resulting dialogue.

1Different consolidation functions, satisfying the conditions of definition 2, could be defined. The one chosen
here is called full meet ([1]) consolidation.

The collaborative dialogue operator takes a tuple (K1. . .Kn, Q) and returns a tuple (A, X1 . . .Xm,
i1 . . . im), where: K1 . . .Kn are the private knowledge bases of the agents (these are assumed to
be consistent), Q is the query (or topic) of the dialogue, A is the outcome of the dialogue, and
X1 . . .Xm along with i1 . . . im represent the sequence of moves made by the agents. Each move
is a pair < X , i >, meaning that agent i, with knowledge base Ki, said X . As mentioned above,
we assume that X ⊆ Ki for every move < X , i >. The non-determinism captures the idea of
several possible moves at each step of the dialogue, and the model not specifying a particular
one. The choices may involve different agents, as well as different utterances by the same agent.

4.1 The Notion of Relevance

The relevance of knowledge is a key notion when studying properties of dialogue models. Hence,
we will define it accurately before enunciating any property. The difficulty that emerges when
determining relevance within a context of incomplete information, such as a dialogue (where
each agent has to discover relevant subsets of its own knowledge, but ignores what the oth-
ers know), was already addressed in section 1. Suppose that, in a first approach, we adopt
the following notion of relevance: “a contribution made by an agent in a dialogue is rele-
vant if it changes the current conclusion about the topic at issue”. It seems reasonable and
it works, for example, in the following case: agents A1 and A2 engage in dialogue to de-
termine whether tweety flies or not, A1 knows that all birds fly and that tweety is a bird,
and A2 knows that tweety is a penguin and penguins are a special kind of bird which does
not fly. The knowledge of agents A1 and A2 is represented using DeLP as follows: K1 =
{flies(X) —< bird(X), bird(tweety)} and K2 = {penguin(tweety), bird(X) ← penguin(X),
∼flies(X) —< penguin(X)}. In this case, the knowledge of A1 can change the current conclu-
sion at the initial step of the dialogue (Unknown to Yes), and after that is said, the knowl-
edge of A2 can change again the current conclusion (Yes to No). However, consider now this
other situation: A1 only knows that penguins do not fly and A2 only knows that tweety is
a penguin, which is represented in DeLP as follows: K1 = {∼flies(X) —< penguin(X)} and
K2 = {penguin(tweety)}. In this case both agents know relevant things, though none of them
can, by itself, change the current conclusion.

A more sophisticated notion of relevance is needed. More precisely, we need to model not
only when something is directly relevant (that is, when something actually changes the current
conclusion), but also when something is potentially relevant (that is, when something might
help to change the current conclusion in a further step in the dialogue). We capture this idea
of potential relevance as follows: “a contribution made by an agent in a dialogue is potentially
relevant if there might exist some knowledge (facts) of some other agent(s) such that they might
together change the current conclusion”. In other words, a contribution is potentially relevant
if it changes the set of facts that are missing for changing the current conclusion. We restrict
the missing information to be only facts (no rules) because otherwise any knowledge would be
considered potentially relevant.

The following terminology formalizes the previous ideas, and then an illustrative example
using the DeLP formalism is provided. Given K ⊆ L, X ⊆ L and Q ∈ LQuery, we define the
conditions under which the set X is considered a relevant contribution to the set K, in the
context of a dialogue about Q. We assume underlying inference (Infer) and consolidation (!)
mechanisms.

Definition 6 (Direct Q-Relevant Contribution) Given K ⊆ L and Q ∈ LQuery, we say
that X ⊆ L is a direct Q-relevant contribution to K if and only if Infer(K!, Q) 6= Infer((K∪X)!,

Q).

Definition 7 (Potential Q-Relevant Contribution) Given K ⊆ L and Q ∈ LQuery, we
say that X ⊆ L is a potential Q-relevant contribution to K if and only if Abduce(K, Q, A)
6= Abduce(K ∪ X , Q, A) for some A ∈ LAnswer.

Definition 8 (Q-Relevant Contribution) Given K ⊆ L and Q ∈ LQuery, we say that X ⊆
L is a Q-relevant contribution to K if and only if X is either a direct or potential Q-relevant
contribution to K.

Example 4 Consider the set K = {flies(X) —< bird(X), bird(X) ← penguin(X)} and the
query Q = flies(tweety), where Infer(K, Q) = Unknown. Some Direct Q-relevant contribu-
tions to K are, for instance: X1 = {bird(tweety)} and X2 = {∼flies(X) —< penguin(X),
penguin(tweety)}, where X1 changes the conclusion from Unknown to Yes, and X2 changes the
conclusion from Unknown to No. Besides, we could think of some Potential Q-relevant contri-
butions to K, for instance: X3 = {∼flies(X) —< penguin(X)}, X4 = {flies(X) —< plane(X)} and
X5 = {bird(X) —< chicken(X)}, where X3 adds a potential reason for answering No (the ele-
ment {penguin(tweety)} is added to Abduce(K, Q, No)), and the other two sets add potential
reasons for answering Yes (the element {plane(tweety)} in the case of X4, and {chicken(tweety)}
in the case of X5, is added to Abduce(K, Q,Yes)).

Observe that the relevance notion is non-monotonic, i.e.: a set which is not a Q-relevant
contribution to K may contain a Q-relevant contribution to K. This will be reminded later, in
relation to the completeness property for collaborative dialogues.

4.2 Dialogue Properties

Having specified the formal meaning of relevance, we are now able to define some desirable
properties for collaborative dialogues. As anticipated in section 1, the properties point to: (1)
a reasonable connection between the steps and the conclusion, (2) the relevance of each step,
(3)the completeness of the sequence of steps, and (4)the finiteness of the sequence of steps. It
is assumed, as in section 4.1, that there are inference and consolidation operators associated
to the dialogue (Infer and !, respectively). The formal definitions will be introduced first, and
then a more detailed explanation of each property will be given, as well as an example dialogue
that violates it. The examples are written using the DeLP formalism, and consolidations are
omitted for simplicity when the set under consideration is already consistent. Let C-dialogue
be a collaborative dialogue operator, then it is desirable that the following conditions hold for
every tuples s= (K1. . .Kn, Q) and t= (A, X1 . . .Xm, i1 . . . im) such that t is a possible result of
applying C-dialogue to s.

1. Correctness: Infer((X1 ∪ . . . ∪ Xm)! , Q) = A.

2. Relevance: ∀1≤j≤m, Xj is a Q-relevant contribution for X1 ∪ . . . ∪ Xj−1.

3. Termination: i1 . . . im is a finite sequence of natural numbers.

4. Completeness: ∀1≤i≤n : Ki is not a Q-relevant contribution for X1 ∪ . . . ∪ Xm.

The Correctness property states that the outcome of the dialogue should follow from all
what the agents have said. It prevents situations like the following: suppose that agents A1

and A2 want to determine whether tweety flies or not. A1 says that all birds fly, A2 says that
tweety is a bird, and then they conclude that tweety does not fly, which is clearly not the
expected conclusion. Example 5 illustrates this situation using the DeLP formalism.

Example 5 Consider the tuples s= (K1, K2, Q) and t= (A, X1, X2, 1, 2) instantiated below.
It can be seen in this example that the correctness property is violated, since Infer(X1 ∪X2, Q)
= Yes but the conclusion achieved (A) is No.

K1 = {flies(X) —< bird(X)} X1 (A1 says) = {flies(X) —< bird(X)}
K2 = {bird(tweety)} ⇒ X2 (A2 says) = {bird(tweety)}
Q = flies(tweety) A = No

The Relevance property prevents the agents from saying something which is not related to
the topic of the dialogue, or which is not influential in the determination of the conclusion.
Taking the previous example, it prevents situations like the following: A1 says that all birds
fly and then A2 says that it is raining outside. Example 6 illustrates this situation using the
DeLP formalism.

Example 6 Consider the tuples s= (K1, K2, Q) and t= (A, X1, X2, 1, 2) instantiated below.
It can be seen in this example that the relevance property is violated, since X2 is not a Q-
relevant contribution to X1 (Infer(X1, Q) = Infer(X1 ∪ X2, Q), and Abduce(X1, Q, Ans) =
Abduce(X1 ∪ X2, Q, Ans) for any element of LAnswer).

K1 = {flies(X) —< bird(X)} X1 (A1 says) = {flies(X) —< bird(X)}
K2 = {raining outside} ⇒ X2 (A2 says) = {raning outside}
Q = flies(tweety) A = Unknown

The Completeness property prevents the agents from not saying something that is relevant
for the determination of the conclusion. Notice that the whole knowledge base of each agent is
required to be non-relevant at the end of the dialogue (in contrast with requiring the bases not to
contain relevant subsets). The reason is that, as remarked in section 4.1, an agent’s knowledge
base may contain a Q-relevant contribution without being relevant itself. The completeness
property prevents situations like the following: A1 says that all birds fly, A2 says that tweety
is a bird (specifically a penguin, which is a kind of bird) and then the dialogue terminates.
However, A2 knows that penguins are a special kind of bird which does not fly. Example 7
illustrates this situation using the DeLP formalism, and example 8 illustrates a similar situation
where the incompleteness of the dialogue is not so evident to each agent.

Example 7 Consider the tuples s= (K1, K2, Q) and t= (A, X1, X2, 1, 2) instantiated below.
It can be seen in this example that the completeness property is violated, since K2 is a direct
Q-relevant contribution to X1 ∪ X2 (adding the rule ∼flies(X) —< penguin(X) would change
the conclusion from Yes to No).

K1 = {flies(X) —< bird(X)} X1 (A1 says) = {flies(X) —< bird(X)}

K2 =

bird(X) ← penguin(X),
penguin(tweety)
∼flies(X) —< penguin(X)

 ⇒ X2 (A2 says) =

{
bird(X) ← penguin(X),
penguin(tweety)

}

Q = flies(tweety) A = Yes

Example 8 Consider the tuples s= (K1, K2, Q) and t= (A, X1, X2, 1, 2) instantiated below.
It can be seen in this example that the completeness property is violated, since K1 is a potential
Q-relevant contribution to X1 ∪ X2.

K1 =

{
flies(X) —< bird(X),
∼flies(X) —< bird(X), broken wing(X)

}
X1 (A1 says) = {flies(X) —< bird(X)}

K2 =

{
bird(tweety),
broken wing(tweety)

}
⇒ X2 (A2 says) =

{
bird(tweety)

}
Q = flies(tweety) A = Yes

Finally, the Termination property states that every dialogue should terminate after a finite
sequence of steps. It prevents situations like the one illustrated in example 9. Observe that the
dialogue of example 9 does not satisfy relevance either (only the first two steps are relevant). In
fact, since we assume that agents publish subsets of their private knowledge, it can be proven
that Termination is implied by Relevance.

Example 9 Consider the tuples s= (K1, K2, Q) and t= (A, X1, X2, X3, . . . 1, 2, 1, . . .)
instantiated below. It can be seen in this example that the termination property is violated,
since tuple t contains an infinite sequence of steps. Also notice that for all j ≥ 3: Xj is not a
Q-relevant contribution to X1 ∪ . . . ∪ Xj−1, so the relevance property is also violated.

K1 = {flies(tweety)} X1 (A1 says) = {flies(tweety)}
K2 = {∼flies(tweety)} ⇒ X2 (A2 says) = {∼flies(tweety)}
Q = flies(tweety) X3 (A1 says) = {flies(tweety)}

...
Xj (A2 says) = {∼flies(tweety)}
Xj+1 (A1 says) = {flies(tweety)}
...

5 RELATED WORK

There are in the literature a variety of works that investigate dialogues from different per-
spectives. Most of them propose a formal model for some type of dialogue, and identify some
properties of the dialogues generated by their system (these include [3], [6], [4], [12], [5] and
[7]). In [3], the authors propose a general framework for argumentation-based negotiation, and
study some properties of the outcomes: termination, and what they called completeness and
soundness (although the motivation may be similar, the concept captured by these last two
properties differs from the one captured by our properties of completeness and correctness). In
[6], a formal framework for argumentation-based dialogue between autonomous agents which
are looking for a common agreement about a collective choice, is proposed. Properties of the
framework are studied (termination and optimal outcome). In [4], [12] and [5] together, the
authors study argumentation-based dialogues between agents, focusing in dialogues over beliefs
(namely: inquiry, persuasion and information-seeking). They define a set of locutions by which
agents can trade arguments, a set of agent attitudes which relate what arguments an agent can
build and what locutions it can make, and a set of protocols by which dialogues can be carried
out. They consider some properties of dialogues under the protocols (in particular termination
and complexity), and then extend their work by examining the outcomes of the dialogues, and
investigating the extent to which outcomes are dependent on tactical play by the agents. In [7],
an inquiry dialogue protocol, based on argumentation, is defined. A strategy that selects one

of the legal moves to make is also defined. The authors propose a benchmark against which
they compare the dialogues, being the arguments that can be constructed from the union of
the agents beliefs, and use this to define soundness and completeness properties for inquiry
dialogues. This completeness property captures almost the same idea as ours, although it is
enunciated for a system constructed on the basis of a particular reasoning (argumentative)
model. Besides, our way of designing that property is more constructive, in the sense that it
gives an idea on how to construct a dialogue model which satisfies it.

There is a minority of works, including [2] and [13], which focus on properties of dialogues
in general, without proposing any particular protocol. In [2] different measures for analyzing
persuasion dialogs, from the point of view of an external agent, are defined. In particular,
three kinds of measures are proposed: measures of the quality of the exchanged arguments,
measures of the behavior of each agent (in terms of its coherence, aggressiveness, and novelty),
and measures of the quality of the dialog itself in terms of the relevance and usefulness of its
moves. In [13], the authors investigate the relevance of utterances in an argumentation based
dialogue. They study three notions of relevance, and show how they can affect the outcome of
the dialogue.

6 CONCLUSIONS AND FUTURE WORK

In this work, we have presented a set of common sense properties (namely: termination, cor-
rectness, relevance and completeness) that should be satisfied by formal models of collaborative
dialogue, showing in this way that it is possible to identify, and formally define, these properties
without specifying a particular underlying logic or a particular dialogue protocol. To that end,
we have also introduced an abstract notion of relevance in dialogue, which is able to handle
the problem of the incompleteness of knowledge. Some assumptions have been made over the
nature of the dialogues being considered here: (1) agents can assert only subsets of their pri-
vate knowledge, (2) agents share a common knowledge representation language and inference
mechanism, and (3) agents share a common criterion for resolving inconsistencies (i.e. there is
a unified consolidation function).

Some issues have been left for further investigation in future works. First, we aim at
relaxing some of the assumptions made here, for instance allowing agents to disagree about
the consolidation criterion. Second, and considering the constructive nature of the properties
presented here, we aim at investigating efficient implementations of models that satisfy them
(this is mainly concerned with methods of finding relevant subsets of knowledge). Last, we plan
to extend this work to non-collaborative dialogue types, such as negotiation and persuasion.

REFERENCES

[1] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic Logic,
50(2):510–530, 1985.

[2] Leila Amgoud and Florence Dupin de Saint-Cyr. Measures for persuasion dialogs: A
preliminary investigation. In 2nd International Conference on Computational Models of
Argument, COMMA’08, Toulouse - France, May 2008.

[3] Leila Amgoud, Yannis Dimopoulos, and Pavlos Moraitis. A unified and general frame-
work for argumentation based negotiation. In 6th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), Honolulu, Hawai’i, May 2007.

[4] Leila Amgoud, Nicolas Maudet, and Simon Parsons. Modelling dialogues using argumen-
tation. In 4th International Conference on MultiAgent Systems, ICMAS’2000, Boston,
USA. IEEE Press, 2000. July.

[5] Leila Amgoud, Simon Parsons, and Michael Wooldridge. On the formal outcomes of formal
inter-agent dialogues. In 2nd International joint conference on Autonomous Agents and
Multi-Agent systems, AAMAS’03, Melbourne, Australie. ACM Press, pages 616–623, July
2003.

[6] Leila Amgoud, Henri Prade, and Sihem Belabbes. Towards a formal framework for the
search of a consensus between autonomous agents. In the proceedings of the 4th Interna-
tional joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS’2005,
Utrecht. Franck Dignum, Michael Wooldridge, Sven Koenig, Sarit Kraus (Eds.), ACM
Press, pages 537–543, July 2005.

[7] Elizabeth Black and Anthony Hunter. A generative inquiry dialogue system. In 6th Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS’07),
Honolulu, Hawai’i, May 2007.

[8] Alejandro J. Garćıa and Guillermo R. Simari. Defeasible logic programming: An argu-
mentative aproach. 2004.

[9] Sven Ove Hansson. Belief Base Dynamics. PhD thesis, Uppsala University, Department
of Philosophy, Uppsala, Sweden, 1991.

[10] Sven Ove Hansson. Kernel contraction. The Journal of Symbolic Logic, 59:845–859, 1994.

[11] Sven Ove Hansson. Semi-revision. Journal of Applied Non-Classical Logic, 7:151–175,
1997.

[12] Simon Parsons, Leila Amgoud, and Michael Wooldridge. An analysis of formal inter-agent
dialogues. In 1st International Joint Conference on Autonomous Agents and Multi-Agent
systems, AAMAS’2002, Bologna, Italy. ACM Press, pages 394–401, July 2002.

[13] Simon Parsons, Peter McBurney, Elizabeth Sklar, and Michael Wooldridge. On the rele-
vance of utterances in formal inter-agent dialogues. In 6th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS’07), Honolulu, Hawai’i, May
2007.

[14] Simon Parsons, Michael Wooldridge, and Leila Amgoud. Properties and complexity of
some formal inter-agent dialogues. Journal of Logic and Computation, 13:347–376, 2003.

[15] Douglas Walton and Erik C. W. Krabbe. Commitment in Dialogue: Basic Concepts of
Interpersonal Reasoning. State University of New York Press, Albany, NY, 1995.

