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Abstract 

MINIX 3.X is an open-source operating system designed to be highly reliable, flexible, and secure. The kernel is 

extremely small and user processes, specialized servers and device driver runs as user-mode insulated processes. 

These features, the tiny amount of kernel code, and other aspects greatly enhance system reliability. The 

drawbacks of running device drivers in user-mode are the performance penalties on input/output ports access, 

kernel data structures access, interrupt indirect management, memory copy operations, etc.. As MINIX 3.X is 

based on the message transfer paradigm, device drivers must request those operations to the System Task (a 

special kernel representative process) sending request messages and waiting for reply messages increasing the 

system overhead. 

This article proposes a direct call mechanism that keeps system reliability running device drivers in user-mode but 

avoiding the message transfer, queuing, dequeuing and scheduling overhead. 
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1 INTRODUCTION 

MINIX [1] is a complete, time-sharing, multitasking Operating System (OS) developed from 

scratch by Andrew S. Tanenbaum. It is a general-purpose OS broadly used in Computer Science 

degree courses. 

Though it is copyrighted, the source has become widely available for universities for studying and 

research. Its main features are: 

o Microkernel based: Provides process management and scheduling, basic memory 

management, interprocess communication, interrupt processing and low level 

Input/Output (I/O) support. 

o Multilayer system: Allows for modular design and clear implementation of new 

features. 

o Client/Server model: All system services and device drivers are implemented as 

server processes with their own execution environment. 

o Message Transfer Interprocess Communications (IPC): Used for process 

synchronization and data sharing. 

o Interrupt hiding: Interrupts are converted into message transfers. 

MINIX 3.X is a new open-source operating system [2] designed to be highly reliable, flexible, and 

secure. It is loosely based somewhat on previous versions of MINIX, but is fundamentally different 

in many key ways. MINIX 1 and 2 were intended as teaching tools; MINIX 3 adds the new goal of 
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being usable as a serious system on resource-limited and embedded computers and for applications 

requiring high reliability. 

MINIX 3.X kernel is very small (4000 lines of executable code) and it is the only code that runs 

under kernel privilege levels. User processes, system servers including device drivers are insulated 

one from another running with lower privileges (Figure 1). These features and other aspects greatly 

enhance system reliability [3]. This model can be characterized as a multiserver operating system. 

Figure 1:The Internal Structure of MINIX 3.X [From [4]] 

The drawbacks of running device drivers in user-mode are the performance penalties [5] on I/O 

ports operations, the access to kernel data structures, the indirect interrupt handling mechanism, the 

operations of copy memory blocks among different address spaces, etc. As MINIX 3.X is based on 

the message transfer paradigm, device drivers must request those operations to the System Task (a 

special kernel representative server process) sending request messages and waiting for reply 

messages. As sending/receiving messages with rendevous to another process implies several 

process switches (including system scheduler invocations), that approach impose a significative 

overhead to the system performance. 

This article propose a new Input/Output (I/O) model for MINIX 3.X that keeps system reliability 

running device drivers in user-mode but avoiding the message transfer overhead. 

The rest of this article is organized as follows. Section 2 and Section 3 are overviews of I/O 

management on MINIX 2.X. and MINIX 3.X respectively. Section 4 describes the proposed I/O 

model. Performance evaluation are detailed in Section 5. Finally, Section 6 presents conclusions 

and future works. 

2 OVERVIEW OF INPUT/OUTPUT IN MINIX 2.X  

For each class of I/O device present in a MINIX system, a separate I/O task (device driver) is 

present [6]. These drivers are full-fledged processes, each with its own state, registers, stack, and so 

on. Device drivers communicate with each other and with system server processes using message 

passing. 



Although each device driver is an independent process, in MINIX 2.X they share kernel memory 

address space as it is shown in Figure 2.  

Figure 2: MINIX 2.X User-System Communication (From [6]) 

As device drivers share kernel address space and run in privileged mode, they can access to kernel 

data structures (as the process table) to get needed information of processes, they can use kernel 

routines (as copy memory blocks), the can install their own interrupt handler, share code with other 

device drivers, and they can execute privileged I/O CPU instructions. 

All processes in the system can communicate using the following primitives: 

� send: to send a message to a process. 

� receive: to receive a message from a process. 

� sendrec: to send a request message to a process and then receive a reply message from it. 

Those primitives are implemented as CPU traps that change the processor from user-mode to 

kernel-mode. 

Hardware interrupts are masked converting them into a message transfer. When a hardware 

interrupt occurs, the kernel notifies the corresponding task simulating to send it a message. 

Figure 2 shows the message tranfers that a simple System Call as ioctl needs. 

1. The User process sends a message to the File System server for an ioctl operation on a 
device. 

2. The File System Server sends a message to the device task for an ioctl operation. 

3. The device driver task replies the File System Server. 

4. The File System replies the User-process. 



Although they are endless debates on performance penalties of microkernel based OSs against 

monolithic ones, the performance impact of message transfers is real, but it must be considered 

against the benefits of process isolation, clean interfaces, unprivileged server processes, 

extensibility, etc. of the microkernel approach. 

3 OVERVIEW OF INPUT/OUTPUT IN MINIX 3.X 

A drawback of MINIX 2.X structure is that device drivers run in privileged mode and they share the 

same address space with the microkernel. The overall system can be affected by a device driver 

with errors, as occurs in monolithic OSs. 

One of the main goals of MINIX 3.X is reliability [2], but greater reliability will also improve 

security. The design of MINIX 3.X is based on the following principles: 

� Small kernel size: It is based on the following statement “less code, less errors”. 

� Bugs isolation: In monolithic operating systems, device drivers reside in the kernel. A single 

bad line of code in a driver can bring down the system. Drivers cannot execute privileged 

instructions, perform I/O, or write to absolute memory. They have to make Kernel Calls for 

these services and the kernel checks each call for authority. 

� Limit drivers' memory access: In monolithic operating systems, a driver can write to any 

word of memory and thus accidentally trash user programs. In MINIX 3.X, the driver must 

the kernel to write, making it impossible for it to write to addresses outside the buffer. 

� Survive bad pointers: Dereferencing a bad pointer within a driver will crash the driver 

process, but will have no effect on the system as a whole. A Reincarnation Server (RS) will 

restart the crashed driver automatically. 

� Tame infinite loops: If a driver gets into an infinite loop, the scheduler will gradually lower 

its priority until it becomes the idle process.  

� Limit damage from buffer overruns: MINIX 3.X uses fixed-length messages for internal 

communication, which eliminates certain buffer overruns and buffer management problems. 

� Restrict access to kernel functions: Device drivers obtain kernel services (such as copying 

data to users' address spaces) by making Kernel Calls. The MINIX 3.X kernel has a bit map 

for each driver specifying which calls it is authorized to make.  

� Restrict access to I/O ports: The kernel also maintains a table telling which I/O ports each 

driver may access. As a result, a driver can only touch its own I/O ports. 

� Restrict communication with OS components: Not every driver and server needs to 

communicate with every other driver and server. Accordingly, a per-process bit map 

determines which destinations each process may send to.  

� Reincarnate dead or sick drivers: A special process, called the Reincarnation Server (RS), 

periodically pings each device driver. If the driver dies or fails to respond correctly to pings, 

the RS automatically replaces it by a fresh copy.  



� Integrate interrupts and messages: When a interrupt occurs, it is converted at a low level to 

a notification sent to the appropriate driver.  

Figure 3: MINIX 3.X User-System Communication (From [1]) 

All processes in the system can communicate using the following IPC primitives: 

� send: to send a message to a process but the sender is blocked until the destination process 

receives it. 

� receive: to receive a message from a process but the receiver is blocked until the sender 

process send it. 

� sendrec: to send a request message to a process and then receive a reply message from it. 

� notify: to send a message to a process but the sender is not blocked if the destination is not 

waiting for it. 

Those primitives are implemented as CPU traps that change the processor from user-mode to 

kernel-mode. 

A consequence of making major system components independent processes outside the kernel is 

that they are forbidden from doing actual I/O [1], manipulating kernel tables and doing other things 

operating system functions normally do. These special services are handled by the System Task 

through Kernel Calls. It offers services to Device Drivers and Servers processes to do I/O 

operations, access kernel tables, and do other things they need to, all without being inside the 

kernel. The System Task and the Clock Task are the only processes that run with kernel privileged 

levels sharing the kernel memory address space allowing them to access kernel tables and can 

execute privileged CPU instructions. 

The services provided by the System Task are described in [1]. The following is a reduced list of 

services requested by device drivers that are interesting for this article: 

- sys_devio: Read from or write to an I/O port. 

- sys_sdevio: Read or write string from/to I/O port. 



- sys_vdevio: Carry out a vector of I/O requests. 

- sys_umap: Convert virtual address to physical address. 

- sys_vircopy: Copy using pure virtual addressing. 

- sys_physcopy: Copy using physical addressing. 

- sys_virvcopy: Vector of  virtual copy requests. 

- sys_physvcopy:  Vector of physical copy requests. 

Some requests in MINIX 3.X need two additional messages (3 and 4) than on MINIX 2.X as it is 

shown in Figure 3,. Those messages are used to request the System Task for I/O operations that 

Device Drivers need to execute because they have not privileges for instructions like IN/OUT. The 

System Task, that has the required privileges, executes I/O operations and memory copy functions 

on behalf of Device Drivers tasks.  

Performance tests report that the average system overhead introduced by this approach is limited to 

5-10% [7] against MINIX 2.X.  

The following are all kinds of system services provided by MINIX 3.X in different levels (Figure 4) 

to clarify the terminology used in this article: 

- System Calls: They are required by the POSIX standard and are used by User 

processes. System Calls are transformed into messages to Server processes. 

- Task Calls: They are requests from Server processes to Tasks. 

- Kernel Calls: They are requests from Device Drivers or Servers processes to the 

System Task. 

- IPC Primitives: They are used for interprocess communication such as send, receive, 

and notify to implement System/Task/Kernel Calls. 

 

 

Figure 4: MINIX 3.X User-System Communication  

 



4 ENHANCING INPUT/OUTPUT PERFORMANCE  

A hardware abstraction layer (HAL) is a software layer between the physical hardware of a 

computer and the operating system that runs on that computer. Its function is to hide differences in 

hardware from most of the operating system kernel, so that most of the kernel-mode code does not 

need to be changed to run on systems with different hardware. 

A HAL allows operations from user level Device Drivers to communicate with lower level 

components, such as directly with hardware. HALs are as application programming interfaces (API) 

that interact directly with hardware instead of a system kernel, therefore HALs require less 

processing time than APIs.  

Some MINIX 3.X Kernel Calls can be seen as a HAL based on a Client/Server model but the 

message transfers used introduce an additional overhead to the system, particularly on I/O and 

memory copy operations that are frequently used by device drivers. 

Each I/O requested operation can be discomposed in the following operations to detail the 

overhead: 

1. A Device Driver Task makes a CPU Trap for the request using the sendrec() primitive. 

2. The kernel saves the context of the requesting Device Driver Task. 

3. The kernel checks the message destination against the permitted destinations. 

4. The kernel copies the message buffer from the requesting Device Driver Task address space 
to the System Task message buffer.  

5. The kernel puts the requesting Device Driver Task in UNREADY state, and removes it from 
the READY queue. 

6. The kernel puts the System Task in READY state, and inserts it into the READY queue. 

7. The kernel calls the scheduler. 

8. The kernel restores the System Task context. 

9. The kernel dispatches the System Task. 

10. The System Task checks the privileges of the requested operation. 

11. The System Task executes the requested operation. 

12. The System Task makes a trap to the CPU to request a SEND operation for the reply. 

13. The kernel saves the System Task context. 

14. The kernel checks the message destination against the permited destinations. 

15. The kernel copies the message buffer from the the System Task to the requesting Device 
Driver Task message buffer.  

16. The kernel puts the requesting Device Driver Task in READY state, and inserts it into the 
READY queue. 

17. The System Task traps the CPU making a receive(), waiting for a new request. 

18. The kernel puts the System Task in UNREADY state, and removes it from the READY 
queue. 

19. The kernel calls the scheduler. 



20. The kernel restores the Requesting Task context. 

21. The system returns to User mode. 

The performance penalty of the IPC model with destination checks is 22% as it is reported in [7] on 

executing a getpid System Call test.  

The proposed approach to enhance MINIX 3.X I/O performance is based on replacing I/O request 

and reply messages to the System Task (SYSTASK) by an I/O HAL based on CPU traps extending 

the set of kernel primitives.  

Using HAL based I/O Kernel Calls avoids calling the scheduler in the same way as if the I/O 

operations are done in kernel mode. 

Each HAL based I/O requested operation can be discomposed in the following operations to detail 

how the overhead is reduced: 

1. A Device Driver Task makes a CPU Trap for the request using I/O operation (HALINB or 
HALOUTB) for the request. 

2. The kernel saves the context of the requesting Device Driver Task. 

3. The kernel checks the privileges of the requested operation. 

4. The kernel executes the requested operation. 

5. The kernel restores the Requesting Task context. 

6. The system returns to User mode. 

The sys_privctl Kernel Call can be used to set the privileges of each process in the system. This call 

can only be used by a privileged User-mode Server, and is used, for example, to restrict the I/O 

ports that can be used by individual drivers [8]. 

4.1 MINIX3 HAL Implementation 

The following Kernel Calls (shown as library functions) were considered as an example: 

o int sys_inb(port t port, u8 t *byte): Read a value into byte from port. 

o int sys_outb(port t port, u8 t byte): Write a value byte into port. 

Two HAL Calls were added to the kernel in equivalence of those Kernel Calls: 

o int hsys_inb(port t port): Return a value read from port. 

o int hsys_outb(port t port, u8 t byte): Write a value byte into port. 

Obviously, the Device Drivers source code must be changed to use HAL Calls instead of Kernel 

Calls. As a proof of concept, the tests were carried out on the RS-232 code of the tty Device Driver.  

HAL Calls use a TRAP different from MINIX IPC primitives to avoid that the new code would 

affect the standard code and to permit that Device Drivers that use Kernel Calls still using them 

without affecting the normal device operation. 

All code changes and additions are preceded by #ifdef HAL and finished by #endif to avoid 

affecting the compilation of standard MINIX. The HAL macro controls the compilation of the HAL 

code and it is defined in /usr/include/minix/config.h.  

A diagram of the relations among changed/added files and functions is shown in Figure 5. 



 

Figure 5: HAL changed/added files and functions 



 

The kernel function hall_call() was added in the /usr/src/kernel/proc.c file.   

#ifdef HAL 
/*==================================================================================== 
 *     hal_call                                                                                                   
*===================================================================================*/ 
PUBLIC int hal_call (function, port, value, unused) 
int function;   /* IO function = HALINB or HALOUTB */ 
int port;   /* port to read or write */ 
int value;   /* value to write on a port */ 
long unused;                    /* unused  */ 
{ 
/* HAL calls are done by trapping to the kernel with an INT instruction. 
 * The trap is caught and hal_call() is called to OUTB or INB a value to/from a port */ 
 
int result;    /* the system call's result */ 
 
/* See if the process have IO priviledges and try to handle it. */ 
if ( !(priv(proc_ptr)->s_call_mask & (1 << SYS_DEVIO)))  { 
             kprintf("hall_call: request %d from %d denied \n",function,proc_ptr->p_nr); 
             return(ECALLDENIED); 
} 
 
/* Now check if the call is known and try to perform the request. The  HAL calls that exist in MINIX-HAL are: 
 *  -HALOUTB: output a byte to a port 
 * -HALINB: input a byte from a port 
 */ 
switch(function) { 
 case HALOUTB: 
  outb(port, value); 
  result = OK; 
  break; 
 case HALINB: 
  result = inb(port); 
  break; 
 default: 
  kprintf("hall_call: bad_call %d from %d \n",function,proc_ptr->p_nr); 
  result = EBADCALL;  /* illegal HAL call */ 
  break; 
  } 
return(result); 
} 
#endif /* HAL */ 

4.2 I/O Performance Measuraments 

A set of mechanisms were introduced to evaluate I/O performance among the standard MINIX 3.X 

and the modified MINIX 3.X with I/O HAL layer. They are based on the Pentium CPU Time-

Stamp Counter (TSC). MINIX standard code has the kernel function to read TSC but it has not any 

Kernel Call that can be used by a Device Driver Task.  

All code changes and additions are preceded by #ifdef HAL_TEST and finished by #endif to avoid 

affecting the compilation of standard MINIX. The HAL_TEST macro controls the compilation of 

the performance test code and it is defined in /usr/include/minix/config.h.  

The Kernel Call added to get the TSC value has the following prototype: 

int sys_get_tsc (int function, unsigned long int *h32TSC, unsigned long int *l32TSC)); 

where: 



function: The value GETTSC. 

h32TSC: A pointer to the high order 32 bits of the TSC value read. 

l32TSC: A pointer to the low order 32 bits of the TSC value read. 

The kernel function get_tsc_k() was added in the /usr/src/kernel/proc.c file.   

/*===========================================================================* 
 *                              get_tsc_k                                                                                                                * 
 *===========================================================================*/ 
#ifdef HAL_TEST 
PUBLIC int get_tsc_k(function, h32TSC, l32TSC, unused) 
int function;     /* function = GETTSC   */ 
unsigned long int *h32TSC; /* high 32 bits of TSC */ 
unsigned long int *l32TSC; /* low 32 bits of TSC  */ 
int *unused; 
{ 
  unsigned long int kHigh, kLow; 
  phys_bytes src_phys, dst_phys; 
   
  read_tsc(&kHigh, &kLow); 
  src_phys = vir2phys(&kHigh); 
  dst_phys = numap_local(proc_ptr->p_nr, (vir_bytes) h32TSC, sizeof(unsigned long int)); 
 
  if ((src_phys != 0) && (dst_phys != 0)) 
    phys_copy(src_phys, dst_phys, sizeof(unsigned long int)); 
 
  src_phys = vir2phys(&kLow); 
  dst_phys = numap_local(proc_ptr->p_nr, (vir_bytes) l32TSC, sizeof(unsigned long int)); 
 
  if ((src_phys != 0) && (dst_phys != 0)) 
    phys_copy(src_phys, dst_phys, sizeof(unsigned long int)); 
 
  return (OK); 
} 
 
#endif 

5 PERFORMANCE EVALUATIONS  

This section describes the tests performed on MINIX Standard and MINIX with the I/O HAL 

modifications.  

The tests were performed sending and receiving files through the RS-232 serial port at 19200 and 

38400 Kbps.  The I/O performance test results are presented in Table 1.  The time units are CPU Hz 

reported by the TSC Register. 

Table 1: I/O Performance Tests  

  MINIX STANDARD MINIX-HAL 

  IN OUT IN  OUT 

Average 3268 3346 1435 1454 

Std Deviation 1053 785 754 687 

 

The avarage time to perform I/O operations with the I/O HAL is 43% of the avarage time used by 

MINIX Standard.  



The equipment used for the tests was an Intel Pentium MMX 233.9 MHz with a L1 Code Cache of 

16 KB., L1 Data Cache of 16 KB, RAM size of 96 MB, SDRAM Acces Time 12 [ns], EDO Dram 

Acces Time 60 [ns]. 

6 CONCLUSIONS AND FUTURE WORKS 

MINIX has proved to be a feasible testbed for OS development and extensions that could be easily 

added to it. Its modern architecture based on a microkernel and Device Drivers in User mode make 

it a reliable Operating System.  

The message transfer is the paradigm used by MINIX to implement System Calls, Task Calls and 

Kernel Calls. MINIX 3.X uses a new level of message transfer from Device Driver Tasks to the 

SYSTASK to execute privileged I/O instructions that the formers can not execute in user mode. 

This new level of message transfer cause an additional overhead, but it can be avoided breaking the 

paradigm with an I/O HAL based on CPU Traps limited to basic I/O operations. 

Comparative performance results presented in this article prove noticeable reduction of the I/O 

overhead using the proposed approach without sacrificing robustness and simplicity. 

Planed future works will allow User Mode Device Drivers to execute privileged I/O instructions 

that will be traped by privilege violations and they will be executed in Kernel Mode as is done by 

some Virtual Machine approaches. New calls will be included to extend  the HAL to support word 

I/O operations and to copy regions of memory, using either virtual or physical addresses to 

demonstrate that it is possible to build systems which employ user-level device drivers, without 

significant performance degradation [9].   
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