

 Using Agent-Based Technology for Aspect-Oriented Development

Federico Trilnik
ISISTAN Research Institute, UNICEN University

 Campus Universitario, (B7001BOO) Tandil, Bs. As., Argentina
Also CONICET

E-mail: ftrilnik@exa.unicen.edu.ar

Abstract
Aspect-oriented technologies are increasingly promoting new ways of developing software in order to better control
change and improve software adaptability and evolution. However, aspect-oriented development still appears strongly
attached to the underlying programming approach used to support it, rather than to design mechanisms guiding
development. In this context, we propose an approach for enhancing aspect-oriented software development considering
aspects as first-class design entities. This work presents an agent-based tool called Smartweaver, which allows
developers to describe aspect designs using UML extensions and a special documentation method, and then provides
smart assistance through a planning agent to translate these specifications into particular AOP implementation
technologies.

Index Terms: Aspect orientation, frameworks, framework documentation, IA techniques, CASE tools

Introduction

Aspect-oriented technologies [5] are increasingly promoting new ways of developing software in
order to better control change and improve software adaptability and evolution. Current aspect
technologies such as aspect languages [4] and aspect-oriented frameworks [2, 3] make now
available novel means to achieve the principle of separation of concerns. However, instead of being
based on design mechanisms to guide the development, aspect-oriented development still appears
strongly attached to the underlying programming approach used to support it. Supporting aspects at
the design phase can greatly improve aspect-oriented development, because aspects can be
identified and incorporated earlier in the development process. Therefore, tools or CASE
environments assisting developers to bridge the gap between aspect-based design specifications and
current AOP technologies are becoming increasingly necessary.

In this context, we propose an approach for enhancing aspect-oriented software development
considering aspects as first-class design entities. The proposal puts together lines of research
coming from different fields, namely: aspect-oriented frameworks, aspect models extending UML
models, knowledge-driven framework documentation and agent-based planning.

The key idea of the approach is the concept of smart-weaving. This concept promotes essentially an
early incorporation of aspects in the development cycle, so that designers would be able to specify
their designs by means of aspect models, and also provide different strategies to map generic aspect
structures to specific implementations. With this purpose, we have built an experimental
environment called Smartweaver aiming to support this process. The kind of assistance provided by
the tool relies on the Smartbooks method [6], a method extending traditional techniques for
framework documentation. First, the user designs the application using aspect-oriented design
models, then an agent using a specially designed UCPOP-like algorithm [9] and special rules
generates a plan to implement the aspect-based application.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Smartbooks documentation method

The Smartbooks method conceives the instantiation of frameworks as an activity based on a well-
defined number of basic instantiation tasks, for example, class specialization or method overwriting,
among others. The method prescribes that the framework designer should describe the functionality
provided by the framework, how this functionality is implemented by different framework
components, and provide rules to somehow constraint the ways the framework can be specialized.
This knowledge is represented through what is called instantiation rules.

Smartbooks is based on agent technology [1], more precisely, it includes a special planning agent
that is able to derive the sequence of activities that should be executed to implement a given
functionality from a target framework. In order to do so, framework designers need to supply some
information to the agent in advance. This knowledge is described through a predefined format of
rules that we call the Smartbooks documentation method.

In particular, this method can be applied to the case of aspect-oriented frameworks. The
Smartweaver tool takes advantage of Smartbooks ideas and provides an UML-based environment
where developers can define classes, aspects and crosscutting relationships among them. All this
information is collected by a special tool, which is also provided with adequate knowledge about
how to map generic aspectual specifications into a given AOP implementation support. Then, the
Smartweaver engine is able to combine this domain knowledge to derive an instantiation plan to
implement the desired aspectual behavior (see Figure 1).

Figure 1. Assisting framework instantiation using the Smartbooks approach

Applying smart guidance

The developer/designer that uses the Smartweaver tool should go through a sequence of phases in
order to implement their applications. The user should develop or acquire Smartbooks
documentation of support technology, then he has to design the application, next he has to add

smart-weaving information and, finally, the user has to follow the instantiation plan to implement
his application. In the different phases, the application developer adds diverse documentation and
information to the tool. All this knowledge is collected by the Smartweaver tool and is used by the
planning agent to propose an instantiation plan to the user.

In the following, a brief description of the necessary stages is presented:

• Building SmartBook of Support Technology: At the beginning, the approach requires the
definition of the core Smartbooks knowledge documenting a given aspect implementation
technology to build later applications on top of it. We have developed a study case to prove
these ideas. In our case study, we have used the Aspect-Moderator(AMF) framework [2];
therefore we had to express AMF-related knowledge in terms of functional rules.

• Designing the Target Application: Here, the target application is designed through the
specification of core components as well as the crosscutting properties affecting
component’s functionality. The specification is made using both UML models and aspects
diagrams. These aspects diagrams are extended UML models that include special
stereotypes and relationships to support different AOP features [7].

• Adding Smart-Weaving Documentation: During this phase, developers should give more
details about their previous aspects diagrams, that is, they should specify the ways
crosscutting relationships and aspect interactions should be implemented, according to the
aspectual support included in the first stage.

• Putting it all together: Finally, the application requirements list has to be generated. In this
task, the Smartweaver tool uses information from the previous stages and new information
provided by a special wizard in order to obtain the required functionality. That is, once
aspect models have been defined using the documentation tool, it is possible to translate
them to rules expressing a portion of the functionality required by the final application.
Additionally, the wizard collects more user requirements on the basis of the initial available
functionality, based on the instantiation knowledge previously provided by the designer.
When the list of selected requirements is determined, the Smartweaver engine is able to
build an instantiation plan. This plan consists of a sequence of tasks that should be carried
out in order to build the application.

Conclusion and Future work

The presented approach joins different research lines, aspect-oriented frameworks, aspect models
extending UML models, knowledge-driven techniques for framework documentation and agent-
based planning, to assist the user in the development of aspect-based applications from aspect
design models.

The smart-weaving notion proposes an earlier incorporation of aspects in the development cycle.
The visual formalism developed to specify aspect models, as an extension of conventional UML
diagrams, intends to be independent of particular AOP implementation technologies. This favors
communication among aspect developers, promoting a common documentation model for aspect-
based applications. In later design stages, developers are free to decide which rules will map these
models into a given AOP technology, for instances AspectJ, Hyper/J[8] or the Aspect-Moderator
framework. From this perspective, it would be possible to have a general-purpose tool, and add such
aspect technologies as plug-in packages. These packages would define a corpus of Smartbooks-
based knowledge to map aspect models into particular AOP technologies. This could be also
complemented with wizards to collect desired functionality.

At this moment, a basic UML-compliant CASE environment integrated with the Smartweaver
engine has been developed. This prototype currently supports a part of the features provided by
commercial tools such as Rational Rose or Together, however, we are planning to improve these
capabilities in the future. Regarding the Smartweaver engine, it still presents some limitations. Not
all the instantiation actions can be derived if there is not enough knowledge available. In addition,
the design of similar applications cannot be detected, loosing some opportunities to make simpler
the instantiation process. For these reasons, we have started to explore the possibilities of increasing
the agent's reasoning capabilities with more advanced reasoning techniques, as case-based
reasoning and bayesian networks.

References
1. Bradshaw, J. Software Agents. AAAI Press, Menlo Park, USA. 1997
2. Constantinides C., Bader A., Elrad T., Fayad M. Designing an Aspect-Oriented Framework. Computing

Surveys 32(1es):41. 2000.
3. Fayad M., Schmidt D., Johnson R. Building Application Frameworks: Object-Oriented Foundations of

Framework Design. Wiley Eds. 1999
4. Homepage of AspectJ. Xerox Palo Alto Research Center (Xerox Parc), Palo Alto, California.

http://aspectj.org/
5. Kickzales G., Lamping J., Mendhekar J., Maeda C., Videira Lopes C, Loingtier J., Irwin J. Aspect-

Oriented Programming. Proceedings of the European Conference on Object-Oriented Programming
(ECOOP), Finlad. Springer-Verlag LNCS 1241. June 1997.

6. Ortigosa A., Campo M. Towards Agent-Oriented Assistance for Framework Instantiation. Proceedings
of OOPSLA 2000, October 2000.

7. Suzuki J., Yamamoto, Y. Extending UML with Aspects: Aspect Support in the Design Phase. 3rd
Workshop on Aspect-Oriented Programming at ECOOP’99. 1999

8. Tarr P., Ossher H. Hyper/J User and Installation Manual. Homepage of Hyper/J. IBM Research.
http://www.research.ibm.com/hyperspace/HyperJ

9. Weld D. An Introduction to Least Commitment Planning. AI Magazine, Summer/Fall 1994.

http://www.research.ibm.com/hyperspace/HyperJ

