
Fuzzy Prolog with Default Knowledge

Claudio Vaucheret
Departamento de Ciencias de la Computación -Fa.E.A.

Universidad Nacional del Comahue
Buenos Aires 1400 - 8300 Neuquén - Argentina

Tel/Fax (54) (299) 4490312/3
e-mail: cvaucher@uncoma.edu.ar

Abstract

This work extends the semantics and implementation of fuzzy prolog presented in [VGM02] in order to
include Default Knowledge capability. The new semantic allows non-uniform default assumptions and has
Closed World Assumption (CWA) and Open World Assumption (OWA) as particular cases.

1 Introduction

In [VGM02] we presented a definition of a Fuzzy Prolog Language that models B([0, 1])-valued Fuzzy Logic, and
subsumes former approaches because it uses a truth value representation based on a union of sub-intervals on [0,1]
and it is defined using general operators that can model different logics. We also presented the implementation
of an interpreter for this conceived language using Constraint Logic Programming over Real numbers CLP(R)).
It was straightforward to extend the implementation in order to include Default Knowledge. In this paper we
adapt the formal semantics given including Default Knowledge.

An assumption defines default knowledge to be used to complete the available knowledge provided by the
facts and rules of a program. For example, the Closed World Assumption (CWA) asserts that any atom whose
truth-value cannot be inferred from the facts and rules is supposed to be false, on the other hand, the Open
World Assumption (OWA) asserts that every such atom is supposed to be unknown or undefined.

2 Language

The following definitions describe the language presented in [VGM02]. Membership functions assign to each
element of the universal set one element of the Borel Algebra over the interval [0, 1]. These sets are defined by
functions of the form A : X → B([0, 1]), where an element in B([0, 1]) is a countable union of sub-intervals of
[0, 1].

Definition 2.1 (interval-aggregation) Given an aggregation f : [0, 1]n → [0, 1], an interval-aggregation F :
E([0, 1])n → E([0, 1]) is defined as follows:

F ([xl
1, x

u
1 ], ..., [xl

n, xu
n]) = [f(xl

1, ..., x
l
n), f(xu

1 , ..., xu
n)].

Actually, we work with union of intervals and propose the definition:

Definition 2.2 (union-aggregation) Given an interval-aggregation F : E([0, 1])n → E([0, 1]) defined over
intervals, a union-aggregation F : B([0, 1])n → B([0, 1]) is defined over union of intervals as follows:

F(B1, . . . , Bn) = ∪{F (E1, ..., En) | Ei ∈ Bi}.

When we talk about constraints, we refer, for example, to expressions as: (v ≥ 0.5 ∧ v ≤ 0.7) ∨ (v ≥
0.8 ∧ v ≤ 0.9) that represent the truth value [0.5, 0.7]

⋃
[0.8, 0.9].

The alphabet of our language consists of the following kinds of symbols: variables, constants, function
symbols and predicate symbols. A term is defined inductively as follows:

1. A variable is a term.

2. A constant is a term.

3. if f is an n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

1



If p is an n-ary predicate symbol, and t1, . . . , tn are terms, then p(t1, . . . , tn) is an atomic formula or, more
simply an atom.

A fuzzy program is a finite set of fuzzy facts, and fuzzy clauses and we obtain information from the program
through fuzzy queries. They are defined below:

Definition 2.3 (fuzzy fact) If A is an atom,
A← v

is a fuzzy fact, where v, a truth value, is an element in B([0, 1]) expressed as constraints over the domain [0, 1].

Definition 2.4 (fuzzy clause) Let A,B1, . . . , Bn be atoms,

A←F B1, . . . , Bn

is a fuzzy clause where F is an interval-aggregation operator, which induces a union-aggregation, as by definition
2.2, F of truth values in B([0, 1]) represented as constraints over the domain [0, 1].

Definition 2.5 (fuzzy query) A fuzzy query is a tuple

v ← A ?

where A is an atom, and v is a variable (possibly instantiated) that represents a truth value in B([0, 1]).

3 Semantics

3.1 Least Model Semantics

The Herbrand Universe U is the set of all ground terms, which can be made up with the constants and function
symbols of a program, and the Herbrand Base B is the set of all ground atoms which can be formed by using
the predicate symbols of the program with ground terms (of the Herbrand Universe) as arguments.

Definition 3.1 (default value) We assume there is a function default which implement the Default Knowl-
edge Assumptions. It assigns an element of B([0, 1]) to each element of the Herbrand Base. If the Closed World
Assumption is used, then default(A) = [0, 0] for all A in Herbrand Base. If Open World Assumption is used
instead, default(A) = [0, 1] for all A in Herbrand Base.

Definition 3.2 (interpretation) An interpretation I consists of the following:

1. a subset BI of the Herbrand Base,

2. a mapping VI , to assign

(a) a truth value, in B([0, 1]), to each element of BI , or

(b) default(A), if A does not belong to BI .

The Borel Algebra B([0, 1]) is a complete lattice under ⊆BI , that denotes Borel inclusion, and the Herbrand
Base is a complete lattice under ⊆, that denotes set inclusion, therefore a set of all interpretations forms a
complete lattice under the relation v defined as follows.

Definition 3.3 (interval inclusion ⊆II) Given two intervals I1 = [a, b], I2 = [c, d] in E([0, 1]), I1 ⊆II I2 if
and only if c ≤ a and b ≤ d.

Definition 3.4 (Borel inclusion ⊆BI) Given two unions of intervals U = I1 ∪ . . . ∪ IN , U ′ = I ′1 ∪ . . . ∪ I ′M
in B([0, 1]), U ⊆BI U ′ if and only if ∀Ii ∈ U ∃I ′j ∈ U ′ . Ii ⊆II I ′j where i ∈ 1..N , j ∈ 1..M .

Definition 3.5 (interpretation inclusion v) I v I ′ if and only if BI ⊆ BI′ and for all B ∈ BI , VI(B) ⊆BI

VI′(B), where I = 〈BI , VI〉, I ′ = 〈BI′ , VI′〉 are interpretations.

Definition 3.6 (valuation) A valuation σ of an atom A is an assignment of elements of U to variables of A.
So σ(A) ∈ B is a ground atom.

Definition 3.7 (model) Given an interpretation I = 〈BI , VI〉

• I is a model for a fuzzy fact A← v, if for all valuation σ, σ(A) ∈ BI and v ⊆BI VI(σ(A)).

2



• I is a model for a clause A←F B1, . . . , Bn when the following holds: for all valuation σ, σ(A) ∈ BI and
v ⊆BI VI(σ(A)), where v = F(VI(σ(B1)), . . . , VI(σ(Bn))) and F is the union aggregation obtained from
F .

• I is a model of a fuzzy program, if it is a model for the facts and clauses of the program.

Every program has a least model which is usually regarded as the intended interpretation of the program
since it is the most conservative model. Let ∩ be the meet operator on the lattice of interpretations (I,v), then
we can prove the following result.

Theorema 3.1 (model intersection property) Let I1 = 〈BI1 , VI1〉,I2 = 〈BI1 , VI1〉 be models of a fuzzy
program P . Then I1 ∩ I2 is a model of P .

Proof. Let M = 〈BM , VM 〉 = I1∩ I2. Since I1 and I2 are models of P , they are models for each fact and clause
of P . Then for all valuation σ we have

• for all fact A← v in P ,

– σ(A) ⊆ BI1 and σ(A) ∈ BI2 then σ(A) ∈ BI1 ∩BI2 = BM ,

– v ⊆BI VI1(σ(A)) and v ⊆BI VI2(σ(A)), then v ⊆BI VI1(σ(A)) ∩ VI2(σ(A)) = VM (σ(A))

therefore M is a model for A← v

• and for all clause A←F B1, . . . , Bn in P

– since σ(A) ∈ BI1 and σ(A) ∈ BI2 , then σ(A) ∈ BI1 ∩BI2 = BM .

– if v = F(VM (σ(B1)), . . . , VM (σ(Bn))), since F is monotonic, v ⊆BI VI1(σ(A)) and v ⊆BI VI2(σ(A)),
then v ⊆BI VI1(σ(A)) ∩ VI2(σ(A)) = VM (σ(A))

therefore M is a model for A←F B1, . . . , Bn

and M is model of P .

Remark 3.1 (Least model semantic) If we let M be the set of all models of a program P , the intersection
of all of this models,

⋂
M, is a model and it is the least model of P . We denote the least model of a program

P by lm(P ).

3.2 Fixed-Point Semantics

The fixed-point semantics we present is based on a one-step consequence operator TP . The least fixed-point
lfp(TP ) = I (i.e. TP (I) = I) is the declarative meaning of the program P , so is equal to lm(P ).

Let P be a fuzzy program and BP the Herbrand base of P ; then the mapping TP over interpretations is
defined as follows:

Let I = 〈BI , VI〉 be a fuzzy interpretation, then TP (I) = I ′, I ′ = 〈BI′ , VI′〉

BI′ = {A ∈ BP | Cond}

VI′(A) =
⋃
{v ∈ B([0, 1]) | Cond}

where Cond = (A← v is a ground instance of a fact in P and solvable(v)) or
(A ←F A1, . . . , An is a ground instance of a clause in P, and solvable(v), v = F(VI(A1), . . . , VI(An))). Note
that since I ′ must be an interpretation, VI′(A) = default(A) for all A /∈ BI′ .

The set of interpretations forms a complete lattice so that, TP it is continuous. Recall the definition of the
ordinal powers of a function G over a complete lattice X:

G ↑ α =


⋃
{G ↑ α′ | α′ < α}

if α is a limit ordinal,
G(G ↑ (α− 1))

if α is a successor ordinal,

and dually,
G ↓ α =


⋂
{G ↓ α′ | α′ < α}

if α is a limit ordinal,
G(G ↓ (α− 1))

if α is a successor ordinal,

Since the first limit ordinal is 0, it follows that in particular, G ↑ 0 = ⊥X (the bottom element of the lattice
X) and G ↓ 0 = >X (the top element). From Kleene’s fixed point theorem we know that the least fixed-point
of any continuous operator is reached at the first infinite ordinal ω. Hence lfp(TP ) = TP ↑ ω.

3



Lemma 3.1 Let P a fuzzy program, M is a model of P if and only if M is a prefixpoint of TP , that is
TP (M) vM .

Proof. Let M = 〈BM , VM 〉 and TP (M) = 〈BTP
, VTP

〉.
We first prove the “if” direction. Let A be an element of Herbrand Base, if A ∈ BTP

, then by definition of
TP there exists a ground instance of a fact of P , A← v, or a ground instance of a clause of P , A←F A1, . . . , An

where {A1, . . . , An} ⊆ BM and v = F(VM (A1), . . . , VM (An)). Since M is a model of P , A ∈ BM , and each
v ⊆BI VM (A), then VTP

(A) ⊆BI VM (A) and then TP (M) vM . �. If A /∈ BTP
then VTP

(A) = default(A) ⊆BI

VM (A).
Analogously, for the “only if” direction, for each ground instance v = F(VM (A1), . . . , VM (An)), A ∈ BTP

and v ⊆BI VTP
(A), but as TP (M) ⊆M , BTP

⊆ BM and VTP
(A) ⊆BI VM (A). Then A ∈ BM and v ⊆BI VM (A)

therefore M is a model of P . �

Given this relationship, it is straightforward to prove that the least model of a program P is also the least
fixed-point of TP .

Theorema 3.2 Let P be a fuzzy program, lm(P ) = lfp(TP ).

Proof.
lm(P ) =

⋂
{M |M is a model of P}

=
⋂
{M |M is a pre-fixpoint of P} from lemma 3.1

= lfp(TP ) by the Knaster-Tarski Fixpoint Theorem [Tar55]�

3.3 Operational Semantics

The procedural semantics is interpreted as a sequence of transitions between different states of a system. We
represent the state of a transition system in a computation as a tuple 〈A, σ, S〉 where A is the goal, σ is a
substitution representing the instantiation of variables needed to get to this state from the initial one and S is
a constraint that represents the truth value of the goal at this state.

When computation starts, A is the initial goal, σ = ∅ and S is true (if there are neither previous instantiations
nor initial constraints). When we get to a state where the first argument is empty then we have finished the
computation and the other two arguments represent the answer.

A transition in the transition system is defined as:

1. 〈A ∪ a, σ, S〉 → 〈Aθ, σ · θ, S ∧ µa = v〉
if h← v is a fact of the program P , θ is the mgu of a and h, µa is the truth value for a and solvable(S∧µa =
v).

2. 〈A ∪ a, σ, S〉 → 〈(A ∪B)θ, σ · θ, S ∧ c〉
if h ←F B is a rule of the program P , θ is the mgu of a and h, c is the constraint that represents the
truth value obtained applying the union-aggregation F to the truth values of B, and solvable(S ∧ c).

3. 〈A ∪ a, σ, S〉 → 〈A, σ, S ∧ µa = v〉
if none of the above are applicable and solvable(S ∧ µa = v) where µa = default(a).

The success set SS(P ) collects the answers to simple goals p(x̂). It is defined as follows:

SS(P ) = 〈B, V 〉
where B = {p(x̂)σ|〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉} is the set of elements of the Herbrand Base that are instanti-

ated and that have succeeded; and V (p(x̂)) = ∪{v|〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉, and v is the solution of S} is the
set of truth values of the elements of B that is the union (got by backtracking) of truth values that are obtained
from the set of constraints provided by the program P while query p(x̂) is computed.

In order to prove the equivalence between operational semantic and fixed-point semantic, it is useful to
introduce a type of canonical top-down evaluation strategy. In this strategy all literals are reduced at each step
in a derivation. For obvious reasons, such a derivation is called breadth-first.

Definition 3.8 (Breadth-first transition) Given the following set of valid transitions:

〈{{A1, . . . , An}, σ, S〉 → 〈{{A2, . . . , An} ∪B1, σ · θ1, S ∧ c1〉
〈{{A1, . . . , An}, σ, S〉 → 〈{{A1, A3 . . . , An} ∪B2, σ · θ2, S ∧ c2〉

...
〈{{A1, . . . , An}, σ, S〉 → 〈{{A1, . . . , An−1} ∪Bn, σ · θn, S ∧ cn〉

4



a breadth-first transition is defined as
〈{A1, . . . , An}, σ, S〉 →BF 〈B1 ∪ . . . ∪Bn, σ · θ1 · . . . · θn, S ∧ c1 ∧ . . . ∧ cn〉

in which all literals are reduced at one step.

Theorema 3.3 Given a ordinal number n and TP ↑ n = 〈BTPn
, VTPn

〉. there is a successful breadth-first
derivation of lengh less or equal to n + 1 for a program P , 〈{A1, . . . , Ak}, σ, S1〉 →∗

BF 〈∅, θ, S2〉 iff Aiθ ∈ BTPn

and solvable(S ∧ µAi = vi) and vi ⊆BI VTPn
(Aiθ).

Proof. The proof is by induction on n. For the base case, all the literals are reduced using the first type of
transitions or the last one, that is, for each literal Ai, it exits a fact hi ← vi such that θi is the mgu of Ai and
hi, and µAi is the truth variable for Ai, and solvable(S1 ∧µAi = vi) or µAi = default(Ai). By definition of TP ,
each vi ⊆BI VTP1

(Aiθ) where 〈BTP1
, VTP1

〉 = TP ↑ 1.
For the general case, consider the successful derivation,

〈{A1, . . . , Ak}, σ1, S1〉 →BF 〈B, σ2, S2〉 →BF . . .→BF 〈∅, σn, Sn〉
the transition 〈{A1, . . . , Ak}, σ1, S1〉 →BF 〈B, σ2, S2〉

When a literal Ai is reduced using a fact or there is not rule for Ai the result is the same as in the base case,
otherwise there is a clause hi ←F B1i

, . . . , Bmi
in P such that θi is the mgu of Ai and hi ∈ Bσ2 and Bji

θi ∈ Bσ2,
by the induction hypothesis Bσ2 ⊆ BTPn−1

and solvable(S2 ∧ µBji
= vji

) and vji
⊆BI VTPn−1

(Bji
σ2) then

Bji
θi ⊆ BTPn−1

and by definition of TP , Aiθi ∈ BTPn
and solvable(S1 ∧µAi

= vi) and vi =⊆BI VTPn
(Aiσ1). �

Theorema 3.4 For a program P there is a successful derivation

〈p(x̂), ∅, true〉 →∗ 〈∅, σ, S〉

iff p(x̂)σ ∈ B and v is the solution of S and v ⊆BI V (p(x̂)σ) where lfp(TP ) = 〈B, V 〉

Proof. It follows from the fact that lfp(TP ) = TP ↑ ω and from the Theorem 3.3. �

Theorema 3.5 For a fuzzy program P the three semantics are equivalent, i.e.

SS(P ) = lfp(TP ) = lm(P )

Proof. the first equivalence follows from Theorem 3.4 and the second from Theorem 3.2. �

3.4 Conclusions

We have presented different semantics of our fuzzy language, and it is proved the equivalence between them.
These semantics support non-uniform default assumptions. The Ciao system including our Fuzzy Prolog im-
plementation can be downloaded from http://www.clip.dia.fi.upm.es/Software/Ciao.

References

[DP85] D. Dubois and H. Prade. A review of fuzzy set aggregation connectives. Information Sciences,
36:85–121, 1985.

[ET99] S. Cubillo E. Trillas, A. Pradera. A mathematical model for fuzzy connectives and its application
to operators behavioural study, volume 516, chapter 4, pages 307–318. Kluwer Academic Publishers
(Series: The Kluwer International Series in Engineering and Computer Sciences), 1999.

[KY95] G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, 1995.

[NW00] H. T. Nguyen and E. A. Walker. A first Course in Fuzzy Logic. Chapman & Hall/Crc, 2000.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics,
5:285–309, 1955.

[VGM02] C. Vaucheret, S. Guadarrama, and S. Muñoz. Fuzzy prolog: A simple general implementation us-
ing clp(r). In M. Baaz and A. Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, LPAR 2002, number 2514 in LNAI, pages 450–463, Tbilisi, Georgia, October 2002.
Springer.

[Zad78] L. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy sets and systems, 1(1):3–28, 1978.

5


