
Characterizing Defeat in

Observation-based Defeasible Logic Programming

M. Capobianco1,∗

mc@cs.uns.edu.ar

C. I. Chesñevar1,2

cic@eup.udl.es

1 Dpto. de Cs. e Ing. de la Computación – Universidad Nacional del Sur – Argentina
2 Departament of Computer Science – Universitat de Lleida – España

1 Introduction

In the last thirty years several ways to formalize defeasible reasoning have been studied. A
particular approach, defeasible argumentation [3, 9], has been particularly successful to achieve
this goal. Defeasible argumentation is built on the notions of arguments, counterarguments,
attack and defeat. The inference process is based on the interaction of arguments for and
against certain conclusions.

The relations of attack and defeat among arguments are key elements in argument-based
frameworks. Attack (also called counterargument) denotes conflict among arguments. Evalu-
ating conflicting pairs of arguments (that is, determining whether an attack among arguments
is successful) is the function of the defeat relation. Usually a preference criterion is used to
analyze which argument is preferred over its contender.

The field of defeasible argumentation has not yet reached a full maturity, and researchers
disagree on many issues, such as which preference criterion should be used to choose among
competing arguments. Some authors believe that general principles for measuring arguments
do not exist, and therefore rely on user-defined criteria, dependent on particular domains [9].

Specificity is a domain independent principle that has been used in several formalisms.
[7, 10, 4] Specificity prefers arguments which are more direct or more informed (i.e., contain
more specific information). It has been argued by some researchers that this criterion cannot
be used as a general principle of common sense reasoning [9]. Nevertheless, specificity is the
only known syntactic-based principle that uses domain-specific information to decide among
arguments.

In this work we analyze the problem of incorporating specificity to characterize defeat in
a particular argumentative framework, called observation based defeasible logic programming
(ODeLP) [1]. Efficiency is an important issues in ODeLP, since this framework has been defined
for representing the knowledge of intelligent agents in real world applications. Computing
specificity using domain knowledge is a demanding operation. Thus, have devised a new version
of this criterion, that optimizes the computation of the defeat relation.

The rest of the paper is structured as follows. First, in Section 2 we detail the main elements
of the ODeLP formalism, particularly the defeat relationship. Section 3 discusses the proposed

∗Becaria de estudio de la Comisión de Investigaciones Cient́ıficas de la provincia de Bs. As.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

poor performance(john).

sick(john).

poor performance(peter).

suspend(X) –≺ ∼responsible(X).
∼suspend(X) –≺ responsible(X).
∼responsible(X) –≺ poor performance(X).
responsible(X) –≺ good performance(X).
responsible(X) –≺ poor performance(X), sick(X).

Figure 1: An ODeLP program for assessing the status of employees in a company

alternative to computing specificity in ODeLP. Finally Section 4 present some conclusions and
outlines future work.

2 Argumentation in ODeLP

Defeasible Logic Programming (DeLP) [4] provides a language for knowledge representation
and reasoning that uses defeasible argumentation to decide between contradictory conclusions
through a dialectical analysis. Codifying the knowledge base of the agent by means of a DeLP

program provides a good trade-off between expressivity and implementability. DeLP has been
used to model the behavior of a single intelligent agent in a static scenario (e.g. clustering
algorithms [5] and intelligent web search [2]), but lacks the appropriate mechanisms to represent
knowledge in dynamic environments, where agents must be able to perceive the changes in the
world and integrate them into its existing beliefs [6].

The ODeLP framework aims at solving this problem by modeling perception and optimizing
inference system, to cope with time restrictions of dynamic environments. The language of
ODeLP is based on the language of logic programming. Concepts like signature, alphabet and
atoms are used in their description with their usual meaning. Literals are atoms that may
be preceded by the symbol “∼” denoting strict negation, as in ELP. ODeLP programs are
formed by observations and defeasible rules. Observations correspond to facts in the context
of logic programming, and represent the knowledge an agent has about the world. Defeasible
rules provide a way of performing tentative reasoning as in other argumentation formalisms
[10, 8]. These rules have the form L0

–≺ L1, L2, . . . , Lk, where L0 is a literal and L1, L2, . . . , Lk is
a non-empty finite set of literals. Based on these elements, program in ODeLP are defined as
follows:

Definition 1 ([ODeLP Program])An ODeLP program is a pair 〈Ψ, ∆〉, where Ψ is a finite set
of observations and ∆ is a finite set of defeasible rules. In a program P, the set Ψ must be
non-contradictory (i.e., it is not the case that Q ∈ Ψ and ∼Q ∈ Ψ, for any literal Q). �

Example 2.1 Fig. 1 shows an ODeLP program. Observations describe that John has a poor
performance at his job, John is currently sick, and Peter also has a poor performance. Defeasible
rules deal with the evaluation of the employees’ performance, according with their responsibility
in the job. If a given person is not responsible in his/her job then he/she should usually be
suspended, a responsible person should not be suspended, and a person is hold as responsible
(or not responsible) considering his/her performance in the company. �

Given an ODeLP program P, a query posed to P corresponds to a ground literal Q which
must be supported by an argument [10, 4]. Arguments are built on the basis of a defeasible

derivation computed by backward chaining applying the usual SLD inference procedure used
in logic programming. Observations play the role of facts and defeasible rules function as
inference rules. In addition to provide a proof supporting a ground literal, such a proof must
be non-contradictory and minimal for being considered as an argument in ODeLP. Formally:

Definition 2 ([Argument – Sub-argument])Given a ODeLP program P, an argument A for a
ground literal Q, also denoted 〈A, Q〉, is a subset of ground instances of the defeasible rules
in P such that: (1) there exists a defeasible derivation for Q from Ψ ∪ A, (2) Ψ ∪ A is non-
contradictory, and (3) A is minimal with respect to set inclusion in satisfying (1) and (2). Given
two arguments 〈A1, Q1〉 and 〈A2, Q2〉, we will say that 〈A1, Q1〉 is a sub-argument of 〈A2, Q2〉
iff A1 ⊆ A2. �

In this particular framework the notion of counterargument characterizes attack among
arguments.

Definition 3 ([Counter-argument])An argument 〈A1, Q1〉 counter-argues an argument 〈A2, Q2〉
at a literal Q if and only if there is a sub-argument 〈A, Q〉 of 〈A2, Q2〉 such that Q1 and Q are
complementary literals. �

The defeat relation is defined combining the counterargument relationship and a preference
criterion “�”.

Definition 4 ([Defeater])An argument 〈A1, Q1〉 defeats 〈A2, Q2〉 at a literal Q if and only if
there exists a sub-argument 〈A, Q〉 of 〈A2, Q2〉 such that 〈A1, Q1〉 counter-argues 〈A2, Q2〉 at
Q, and either: (1) 〈A1, Q1〉 is strictly preferred over 〈A, Q〉 according to the preference criterion
“�” (then 〈A1, Q1〉 is a proper defeater of 〈A2, Q2〉), or

(2) 〈A1, Q1〉 is unrelated to 〈A, Q〉 by “�” (then 〈A1, Q1〉 is a blocking defeater of 〈A2, Q2〉).
�

Leaving the defeat relation parameterized with respect to the preference relation gives more
flexibility to the system, allowing the use of different criteria according to the particular domain
under consideration.

Defeaters are arguments and may in turn be defeated. Thus, a complete dialectical analysis
is required to determine which arguments are ultimately accepted. Such analysis results in
a tree structure called dialectical tree, in which arguments are nodes labeled as undefeated
(U-nodes) or defeated (D-nodes) according to a marking procedure. An argument A for a
literal Q is said to be a warrant for iff it is the root of a dialectical tree T〈A,Q〉 and is marked as
a U-node. Solving a query Q in ODeLP accounts for trying to find a warrant for Q, as shown
in the following example.

Example 2.2 Consider the program shown in Example 2.1, and let suspend(john) be a
query wrt that program. The search for a warrant for suspend(john) will result in an ar-
gument 〈A, suspend(john)〉 with two associated counterarguments 〈B, ∼suspend(john)〉 and
〈C, responsible(john)〉, where

• A = {suspend(john) –≺ ∼responsible(john);
∼responsible(john) –≺ poor performance(john)}.

• B = {∼suspend(john) –≺ responsible(john);
responsible(john) –≺ poor performance(john),sick(john)}.

• C = {responsible(john) –≺ poor performance(john),sick(john)}.

�
�
�

L
L

L
B

U

�
�
�

L
L

L
C

U
�

�
�

@
@

@
�
�
�

L
L

L
A

D

Figure 2: Dialectical tree from Example 2.2

Suppose the preference criterion favors the argument 〈B, ∼suspend(john)〉 and the argu-
ment 〈C, responsible(john)〉 over 〈A, suspend(john)〉 Then the associated dialectical tree
for suspend(john) is shown in Fig.2. The marking procedure determines that the root node
〈A, suspend(john)〉 is a D-node and hence suspend(john) is not warranted. �

3 Characterizing Defeat in OdeLP

In the past section we presented the defeat definition parameterized wrt to the preference
criterion, like in the DeLP system. Nevertheless, we also propose a defeat criterion that can
be used when no specific information about the domain is provided by the user. We aim to
define a particular version of specificity, adapted for ODeLP. In DeLP, an special version of this
criterion was defined [4]. This version could be adapted for ODeLP in a simple manner:

Definition 5 (ODeLP Specificity (1)) Let P be an ODeLP program and litP the set of ground
literals that can be derived from P. An argument 〈A1, h1〉 is strictly more specific than an
argument 〈A2, h2〉 (noted as 〈A1, h1〉 � 〈A2, h2〉) iff: (1) For every H ⊆ litP holds that H ∪
A1

|∼ h1 and H /|∼ h1 imply that H ∪ A2
|∼ h2; and (2) There exists H ′ ⊆ litP such that

H ′ ∪ A2
|∼ h2, h2 6∈ H ′ and H ′ ∪A1 /|∼ h1. �

To understand definition 5, lets analyze the first condition. As a general rule this holds for
a non-empty set H , given that arguments do not contain facts, and H is said to activate A1.
The restriction H /|∼ h1 avoids trivial cases, forcing the use of H to derive h1. Thus, definition
5 can be paraphrased as 〈A1, h1〉 is more specific than 〈A2, h2〉 iff for every set H such that H
non-trivially activates 〈A1, h1〉 it holds that H non-trivially activates 〈A2, h2〉.

Example 3.1 The argument 〈C, responsible(john)〉 in example 2.2 is more specific than
〈D, ∼responsible(john)〉, where D = {∼responsible(john) –≺ poor performance(john)}. Ap-
plying definition 5, every subset of litP that activates C also activates D, but there is a subset
of litP ({poor performance(john)}) that activates D and does not activate C. �

Definition 5 retains the underlying idea of specificity according to Poole’s work [7]. Even
though it is technically correct, it could have practical drawbacks. Computing the subsets of
litP is a demanding operation. ODeLP is an argumentative formalism intended for real-world
applications in dynamic environments, and therefore efficiency is an important issue. Hence,
we have devised a new version of specificity, where a smaller number of activation sets must be
considered.

Definition 6 (ODeLP specificity (2)) An argument 〈A1, h1〉 is strictly more specific than an
argument 〈A2, h2〉 (noted as 〈A1, h1〉 � 〈A2, h2〉) iff: (1) for every H ⊆ literals(A1) it holds
that H ∪ A1

|∼ h1 and H /|∼ h1 imply that H ∪ A2
|∼ h2; and (2) there exists H ′ ⊆ literals(A1)

such that H ′ ∪A2
|∼ h2, h2 6∈ H ′ and H ′ ∪A1 /|∼ h1. �

In definition 6 only the subsets of the literals in A1 must be taken into account. This
optimizes the preference criterion and speeds up its implementation. In example 3.1 we can
verify that the subset {poor performance(john)} is also a subset of the literals in C, and thus
the example still complains with the new definition.

4 Conclusions and future work

Even though domain-dependent criteria can be useful in many situations, they set an extra
burden on the user. In many domains, codifying the preference relation is not straightforward.
We have devised a new version of specificity tailored for the ODeLP system. The proposed
definition is computationally attractive and provides a default criterion to be used in case no
particular criterion has been defined. As future work we will study equivalence results between
definition 5 and definition 6 with respect to the ODeLP domain.

The defeat relation is an important component of argumentative systems, and its definition
directly affects the behavior of the formalism. If user-defined criteria are permitted, a set
of standard conditions should be specified over it. Some author believe that the preference
criterion should induce a partial order on the set of arguments [10, 4]. Nevertheless, developing
an agreed set of adequate conditions is still an open problem.

References

[1] Capobianco, M. Argumentación rebatible en entornos dinámicos. PhD thesis, Universidad Nacional del
Sur, Bah́ıa Blanca, Argentina, June 2003.

[2] Chesñevar, C., and Maguitman, A. ArgueNet: An Argument-Based Recommender System for
Solving Web Search Queries. In Proc. of Intl. IEEE Conference on Intelligent Systems (IS-2004). Varna,
Bulgaria (to appear) (June 2004).

[3] Chesñevar, C. I., Maguitman, A., and Loui, R. Logical Models of Argument. ACM Computing
Surveys 32, 4 (Dec. 2000), 337–383.

[4] Garćıa, A., and Simari, G. Defeasible Logic Programming: An Argumentative Approach. Theory and
Practice of Logic Programming 4, 1 (2004), 95–138.

[5] Gomez, S., and Chesñevar, C. A Hybrid Approach to Pattern Classification Using Neural Networks
and Defeasible Argumentation. In Proc. of Intl. FLAIRS Conference. Florida, USA (to appear) (May
2004).

[6] Pollock, J. L. Taking Perception Seriously. In Proceedings of the 1st International Conference on
Autonomous Agents (Feb. 1997), pp. 526–527.

[7] Poole, D. L. On the Comparison of Theories: Preferring the Most Specific Explanation. In Proceedings
of the Ninth International Joint Conference on Artificial Intelligence (1985), IJCAI, pp. 144–147.

[8] Prakken, H., and Sartor, G. Argument-based extended logic programming with defeasible priorities.
Journal of Applied Non-classical Logics 7 (1997), 25–752.

[9] Prakken, H., and Vreeswijk, G. Logical systems for defeasible argumentation. In Handbook of
Philosophical Logic, D. Gabbay, Ed., vol. 4. Kluwer Academic Publisher, 2002, pp. 219–318.

[10] Simari, G. R., and Loui, R. P. A Mathematical Treatment of Defeasible Reasoning and its Implemen-
tation. Artificial Intelligence 53, 1–2 (1992), 125–157.

