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Abstract. Large bandwidth on hand in WDM networks is the best
choice for increasing traffic demand; although, routing and wavelength
assignment (RWA) problems still remain a challenge. This work proposes
a novel method to solve multicast-RWA problems, using multi-objective
Particle Swarm Optimization (PSO), implementing four competitive ap-
proaches of state-of-the-art. Such algorithms minimize simultaneously
the hop count, the number of splitting power light, the number of split-
ter node and the balancing of multicast tree for a given set of multicast
demands. This way, a set of optimal solutions (known as Pareto set) is
obtained in one run of the algorithms, without a priori restrictions. Sim-
ulation results prove the viability of the PSO proposal and the advantage
compared on classical approaches as Multicast Open Shortest Path First
routing algorithm and Least Used wavelength assignment algorithm.

1 Introduction

Wavelength Division Multiplexing (WDM) technology applied to optical net-
works has largely solved the problem of underemployed bandwidth for fiber
optics, what is especially useful in already large deployed infrastructure. WDM
divides potential bandwidth in different wavelengths avoiding electronic bot-
tleneck [1]. The selection of paths and wavelengths for the interconnection of
source-destination pairs (lightpath) is another problem related to optical net-
works. This problem is known as Routing and Wavelength Assignment (RWA).
This work focuses on static traffic for Wide Area Networks (WANs), where
changes in the reserved bandwidth only occur occasionally and there is no real
time restriction; therefore, calculation may be afforded to find a good solution.

Since RWA belongs to the class of NP-Complete problems [2], the research
community focuses on the development of heuristic methods [3] [5]. One of the
first works dealing with this problem proposed the optimization of the number of
transceivers and the end-to-end mean delay, using a Simulated Annealing (SA)
metaheuristic [5]. Saha and Sengupta proposed a simple Genetic Algorithm (GA)
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to solve a virtual static topology design [3]. Considering a restriction on the wave-
lengths, they looked for an optimization of the generated traffic weighted sum,
the hop count and other objective functions. In [4], Chlamtac et al. presented
an evolutionary algorithm for the simultaneous optimization of the number of
wavelengths and the mean delay, considering wavelengths and continuity con-
flicts. Varela and Sinclair proposed a single-objective Ant Colony Optimization
(ACO) approach for the routing problem, while the wavelength assignment is
solved by means of a greedy method [13].

This work proposes the resolution of a more challenging problem, multicast
Routing and Wavelength Assignment (multicast-RWA). Multicast-RWA is one
central problem in Optical Telecommunication due to its use in different critical
applications as high definition TV (HDTV), IP routing, traffic grooming and
1+1 optical layer protection [2]. In this context, the lightpath is generalized to a
light-tree, seeking to optimize simultaneously: a) the hop count, b) the number
of splitting power light, c) the number of splitter node and d) the balancing of
light-tree under the minimal power light at destination and the wavelength con-
tinuous constraints [2]. The most important approach that solved multicast-RWA
problem, Xin and Rouskas [12], proposed a heuristic to balance multicast-tree
subject to the minimal power light at destination and the wavelength continuous
constraint.

For the resolution of a multicast-RWA, this work proposes to implement
four competitive multi-objective PSO algorithms proposed by (1) Coello and
Lechuga (CL) [7], (2) More and Chapman (MC) [8], (3) Hu and Eberhart (HE)
[9] and (4) Mostaghim and Teich (MT) [10]. These PSO algorithms have been
chosen due their proven success in solving different multi-objective combinatorial
optimization problems [11]. In our best knowledge, the proposed approach to the
problem in question has not been addressed yet.

The remainder of this work is organized as follows: section 2 presents the for-
mal definition of a multi-objective optimization problem. The multicast-RWA
problem formulation is given in section 3. The basic concept of PSO algorithm
is shown in section 4, and the our approach is presented in section 5. The envi-
ronment and experimental results are presented in section 6. Finally, section 7
gives the conclusions and guidelines for future research.

2 Multi-objective Optimization

A Multi-Objective Optimization Problems (MOP) generally consists of a set of
n decision variables, a set of k objective functions and a set of m restrictions
[7]. Objective functions and restrictions are function of the decision variables.
Therefore, MOP generally optimizes:

z = f (x) = (f1 (x) , f2 (x) , . . . , fk (x)) (1)

subject to
g (x) = (g1 (x) , g2 (x) , . . . , gm (x)) ≥ 0 (2)
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where x = (x1, x2, . . . , xn) ∈ X is a decision vector, X denotes the decision
space of f (x) , z = (z1, z2, . . . , zk) ∈ Z is an objective vector while Z denotes
the objective space of f (x). The feasible solution set Ω ⊂ X is defined as a set
of decision vectors x that satisfies g (x). A vector u ∈ Ω is said to dominate
v ∈ Ω (denoted by u � v) if u is at least as good as v in every objective
function and strictly better in at least one objective function. For a given MOP,
the Pareto optimal set P ∗ is defined as the set of non-dominated solutions of
Ω. The objective space of P ∗, known as Pareto Front, is denoted as PF ∗, i.e.
PF ∗ = f (P ∗).

Performance figures [7] used in this work aim to compare different approaches
in a multi-objective context, and are presented following next:

Contributed Solution: CSa = |PFa ∩ PF ∗| /|PF ∗| (3)

Values of CSa close to 1.0 indicates that many solutions from PFa belong to
PF ∗, where PFa is a Pareto Front calculated by algorithm a.

Extension: EXa =

(
b∑

i=1

max(d(pi, qi))|p, q ∈ FPa

)1/2

(4)

where b is the number of objectives and d(p, q) is Euclidean distance between two
points in the objective space. In general, an algorithm whose calculated front
obtains the highest value in this EXa metric is the best one.

Error: ERa = 1− (|PFa ∩ PF ∗|) / (|PFa|) (5)

If all solutions of PFa belong to PF ∗ then the error of PFa is zero.

3 Problem Formulation

In the present work an optical network is modeled as a graph G = (V,E,C),
where V is the set of nodes, E the set of optical links between a pair of nodes
and C the set of wavelengths available for each link belonging to E. Let:

cij ∈ C maximum number of available wavelengths at link (i, j) ∈ E;
m = (s,D) multicast request m with source node s and destination nodes D,

where s ∈ V and D ⊂ V − s;
M set of multicast requests, M = {m1,m2, . . . ,m|M |}

| · | denote cardinality;
lm light-tree connecting a node s to a set of destination nodes D

with a wavelength assigned to each link;
λlm

ij wavelength λ assigned to link (i, j) ∈ lm;
pathsd(m) path between a source node and a destination node of request m;

note that pathsd(m) ⊂ lm;
LM multicast-RWA solution for request set M, i.e. LM = {lm|m ∈M};

LM is the decision variable x of previous section.
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ptm power of transmitted light by source node s ∈ m;
it is possible considered ptm = 1 as normalized value.

prm(d) power of received light in a destination node d ∈ Dm;
pmm average of power light received in set of destination node Dm,

i.e. pmm = 1
|Dm|

∑
d∈Dm

prm(d).

A multicast-RWA problem can be expressed as a MOP searching for the best
solution LM which simultaneously minimize the following objective functions:

1- Hop Count:
y1 =

∑
m∈V

|lm| (6)

2- Number of Splitting:

y2 =
∑

i∈V ;lm∈LM

ϕlm
i where ϕlm

i =
{

1 if node i is a bifurcation node of lm
0 otherwise

}
(7)

3- Number of Splitter Node 1:

y3 =
∑

i∈V ;lm∈LM

⌈
ϕlm

i

|LM |

⌉
(8)

4- Balancing of light-trees:

y4 = maxm∈M {σm} where σm =
1
|Dm|

∑
d∈Dm

(prm(d)− pmm)2 (9)

Subject to optical layer constraint:
a. Wavelength assigned: two multicast requests can not be assigned with the

same wavelength λ on the same optical link (i, j):

λ
lma
ij 6= λ

lmb
ij ∀(i, j) ∈ E (10)

b. Wavelength continuity: the same wavelength λ should be assigned on all
optical link of light-tree:

λ = λlm
ij ∀(i, j) ∈ lm (11)

c. Minimal power at destination: the power light received at destination node
should be bigger than the minimum power sensitivity (prmin) defined by optical
technology [12]:

prm(d) ≥ prmin,∀d ∈ m ∧ ∀m ∈M (12)

In general, prm(d) ≤ ptm because the splitter nodes divide the power light
according at number of exit branches. This loss of power is solved partially by
power amplifier [2].

The following example is presented to clarify the problem formulation and
the objective functions. Figure 1 shows a small optical network with possible
1 dxe is the minimum integer bigger than x.



Multicast Routing and Wavelength Assignment 5

solutions LM for a multicast requests M = {m}, where m = {{0}, {2, 5, 8, 10}}.
Table 1.d summarizes the calculations for the objective functions (equation 6 to
9). Notice that, a simple node without splitting is called OXC (Optical Cross-
Connect) [2].

Fig. 1. Routing and wavelength assignment for LM . Note that light-tree LM1 does
not have the minimum of power light and became a unfeasible solution (pr8 < prmin).
Light-trees LM2 and LM3 got a good power light on their destination node, additionally,
their are trade-off solutions. On stage (a), the nodes B, E and H are splitter nodes and
that divide the input power received where we can see from the minimum power at the
nodes 8 and 10 (pr8 = pr10 = 1/8).

4 Particle Swarm Optimization

PSO metaheuristic is a class of algorithm inspired in the foraging behavior of
swarm of different animal species as fishes, birds and others [11]. PSO proved to
be successful in the resolution of combinatorial optimization problems [8]-[11].
For a mono-objective optimization approach, the basic elements for an PSO algo-
rithm at t iteration are: a population of current particles P t =

{
xt

1, x
t
2, . . . , x

t
|P |

}
,

a memory of best solutions calculated by each particle in its history P t
lb ={

yt
1, y

t
2, . . . , y

t
|P |

}
and the global best solution st

global calculated by all parti-
cles. A particle is a position in the decision space given by coordinates whose
new position is made in two steps: first, it calculates a particle velocity and next
it is obtained a new particle according following equation (see [8]-[11]):

vt+1
i = c0 · vt

i + r1 · c1 · (yt
i − xt

i) + r2 · c2 · (st
global − xt

i) (13)
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xt+1
i = xt

i + vt+1
i ∀i ∈ {1, 2, . . . , |P |} (14)

v is the particle velocity, r1 and r2 are random numbers between (0, 1), c0 is an
inertial factor, c1 and c2 are learning factors. Typically, c0 = 1, c1 = c2 = 2 [8].

5 Proposed Approach

When a multi-objective optimization problem (MOP) is considered, PSO algo-
rithm is extended to multi-objective PSO (MOPSO) approach [8]-[11]. The main
difference between PSO and MOPSO is a set of solutions PF which stores better
solutions in trade-off, i.e. let be s, s′ ∈ FP then s 6� s′ and s′ 6� s. Ideally, the
PF set is near to Pareto Front at end of an iteration.

PSO and MOPSO are optimization approaches of general purpose. To solve
a multicast-RWA problem, each particle should represent a set of light-trees or a
solution LM . In this context, it is necessary to define a structure of particle and
and how to calculate a new solution LM . This work proposes a novel approach
to generate a new light-tree based in the PSO concept but in a constructive way.
This mechanics is different to the classic PSO for continuous problems given
in equations (13) and (14). Let be: Lc

M a current solution, Ll
M a best local

solution, Lg
M a best global solution, and Y ϕ

mij a binary variable. If (i, j) ∈ lϕmij
then Y ϕ

mij = 1 and otherwise Y mij
ϕ = 0 considering ϕ ∈ {current, local, global}.

A new light-tree Lnew, for a set of multicast request M , is obtained according
to Algorithm 1.

Basically, the Multicast-PSO algorithm constructs a new light-tree beginning
at a source node and then adds new links up to all destination nodes. In this
construction process, each link is selected according to the probability obtained
by the weights assigned. The weight of a link (kij , (i, j) ∈ E) depends on the
cognitive factors (c0, c1, c2) and the number of trees that the link belongs. All
optical layer constraints (equations (10) to (12)) are satisfied in the process (see
line 10 Algorithm 1).

Considering the above described, the following Algorithm 2 shows the per-
formance of a generic MOPSO. In each iteration it builds a new set of solutions
which replaces the old solutions (line 11). Depending on the MOPSO algorithm
implemented, a solution Lg

M is selected from the set of Pareto Front FPknown

in line 8. A new set of solution Pnew is calculated iteratively using Multicast-
PSO algorithm (line 7 to 9). After being assessed the new set of solutions, they
updated the best set of solutions Plocal and the Pareto Front PFknown. Finally,
when the end-condition is reached, the algorithm returns a set of good solutions
given for the PFknown. For space constraint, details on MOPSO approaches im-
plemented (CL, MC, HE, MT) and MOSPF-LU (state-of-the-art) will be omitted
(see references [7]-[10]).

6 Environment and Experimental Results

Algorithms were implemented on a personal computer with a 1.25 GHz Athlon
microprocessor and 512 MB RAM. The source code was compiled using DevC++
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Multicast-PSO[G, M , LcM , LlM , LgM , c0, c1, c2, prmin]

1: Lnew ← �
2: for all m ∈M do
3: Assign to lnewm a wavelength (λ

′
) least used

4: R← �, R← sm
5: for all (i, j) ∈ E do
6: kij ← 1 + c0 · Y cmij + c1 · Y lmij + c2 · Y gmij /* assign weights
7: while R 6= � and Dm 6⊂ lnewm do
8: n← Randomly to select a node of R
9: for all i ∈ V do

10: if (n, j) /∈ lnewm and (n, j)λ′ = free and prm(j) ≥ prmin then
11: Nn ← Nn ∪ i
12: if Nn = � then
13: R← R− n /* delete node without valid neighborhood nodes
14: else
15: Calculate of selection probability Pr(j ∈ Nn) = knj/(

∑
g∈Nn

kng)

16: Select a node t ∈ Nn by the roulette method /* see [7]
17: lnewm ← lnewm ∪ (n, t) /* building the tree
18: Delete links (i, j) ∈ lnewm not used in any path (pathsd(m))
19: Lnew ← Lnew ∪ lnewm

20: return Lnew

Algorithm 1: Pseudocode for Multicast-PSO approach proposed by this paper.

MOPSO[G, M , c0, c1, c2, prmin]

1: Initialize randomly Pcurrent
2: Update Plocal with particles of Pcurrent
3: FPknown ← �
4: Update FPknown with Pcurrent
5: while end-condition = false do
6: Pnew ← �
7: for all i ∈ {1, 2, . . . , |P |} do
8: Select a solution LgM of FPknown
9: Build Pnew(i) according to Pcurrent(i), Plocal(i) and LgM {Multicast-PSO}

10: Evaluate y = (y1, y2, y3, y4) of the Pnew
11: Update Plocal with particles of Pnew
12: Update FPknown with particles of Pnew
13: Pcurrent ← Pnew
14: return FPknown

Algorithm 2: Pseudocode for a generic MOPSO approach.
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compiler v4.9.9.2. The MOPSO algorithms implemented are: (1) Coello and
Lechuga (CL) [7], (2) More and Chapman (MC) [8], (3) Hu and Eberhart (HE)
[9] and (4) Mostaghim and Teich (MT) [10]. Furthermore, in order to verify the
effectiveness of the implemented algorithms, classical algorithms reported in the
literature were also implemented: the Multicast Open Shortest Path First (MO-
SPF) routing algorithm and Least Used (LU) wavelength assignment algorithm
[5].

For simulations, we considered three sets of multicast demands M for low,
half and high load and five classical networks topologies [14]: (a) GINAnet (15
nodes and 44 links), (b) NSFnet (14 nodes and 42 links), (c) EUROFRANCEnet
(43 nodes and 75 links), (d) ARPANET (21 nodes and 25 links) and (e) NTTnet
(55 nodes and 69 links). This is a total 15 different instances. In each network
topology was considered 10 wavelength per fiber (cij = 10 ∀(i, j) ∈ E). The
following default parameters were used: |P | = 20 particles and c0 = c1 = c2 = 1
adopted experimentally. For all algorithms the stop criterion was 100 iterations.

A set of near optimal solutions (FPknown) was found for each multicast set
M by means of the following procedure:

1. each algorithm was run 5 times;
2. each solution of those 5 runs was saved in a set;
3. all dominated solutions were deleted from this set, creating a set FPknown

that may be considered as a good approximation of FP ∗ (Pareto Front true).

In order to measure the quality of the solutions calculated by algorithms in
5 runs, each solution set M from each run was compared against FPknown. Note
that, all experimental test consist of 375 runs in total (3 loads, 5 topologies, 5
algorithms and 5 runs).

The experimental results to small network topologies are shown in Table
1 while the Table 2 presents the results for large network topologies. Average
results for all experimental are exposed in Table 3. The best value corresponds to
one in all result tables (normalized values). Destination nodes blocked correspond
to column DB. Other columns indicate figures performances (ER, EX, CS) that
were presented in Section 2.

Overall, the results indicate that MOPSO approaches are promising to get
better results than MOSPF-LU in all instances problems (see Tables 1 and 2).
Moreover, it is not clear which MOPSO algorithm is better considering all in-
stances. In this context, the Table 3 presents the average of all tests. Notice
that the MU algorithm obtained the better average in blocking (DB) and error
(ER) than other algorithms, but, the MC algorithm is very good to blocking
(DB), extension (EX) and contributed solutions (CS). With the aim of defining
a unique performance for MOPSO algorithms, the column Ranking (Table 3)
presents the average for the all multi-objective performance figures and destina-
tions blocked. The ranking of algorithms indicated similar averages obtained by
MOPSO approaches. However, the MC algorithm is better with 0.83, which has
reached a difference of 0.06 with respect to CL and MT approaches. Considering
the Table 3 we suggest that no MOPSO algorithm is significantly superior to
the problem in question.
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Table 1. Experimental results for different traffic loads and small networks.

Load Algorithm
GINA NSF ARPANET

DB ER EX CS DB ER EX CS DB ER EX CS

L
ow

M
O

P
S
O CL 1 0.14 1 1 1 0.02 0.79 0.71 0.96 0.41 0.66 0.41

MC 1 0.12 0.97 0.89 1 0 1 0.63 1 0.33 0.30 0.33
HE 1 0.12 0.82 0.84 1 0.03 0.81 0.75 1 0.98 0.89 0.98
MT 1 1 0 0 1 1 0 0 1 1 1 1

MOSPF-LU 0 0 0 0 1 0.08 0 1 0 0 0 0

H
a
lf

M
O

P
S
O CL 1 0.43 0.61 1 1 0.15 0.81 1 0.92 1 0.31 1

MC 1 0.32 1 0.73 1 0.13 1 0.91 0.92 0 0.38 0
HE 1 0.27 0.51 0.63 1 0.14 0.73 0.93 0.84 0 0.69 0
MT 1 1 0 0 1 1 0 0 1 0 1 0

MOSPF-LU 0 0 0.53 0 0 0 0.32 0 0 0 0.22 0

H
ig

h

M
O

P
S
O CL 0.35 0 0.49 0 0.86 0 0.08 0 1 1 0.68 1

MC 0.95 0.10 1 1 0.96 0.10 1 1 0.96 0 0 0
HE 0.72 0 0.10 0 0.87 0 0.32 0 0.95 0 0.42 0
MT 1 1 0 0 1 1 0 0 0.93 0 0.39 0

MOSPF-LU 0 0 0 0 0 0 0.44 0 0 0 1 0

Table 2. Experimental results for different traffic loads and large networks.

Load Algorithm
NTT EUROFRANCE

DB ER EX CS DB ER EX CS

L
ow

M
O

P
S
O CL 0.99 0 0.11 0 0.99 0 1 0

MC 0.99 0 1 0 0.98 0 0.82 0
HE 1 0 0.07 0 1 1 0 1
MT 1 1 0.11 1 0.98 0 0.62 0

MOSPF-LU 0 0 0 0 0 0 0 0

H
a
lf

M
O

P
S
O CL 0.98 0 0.38 0 0.99 0 0.05 0

MC 1 1 0.21 1 1 1 0 1
HE 0.98 0 0.25 0 0.98 0 0.07 0
MT 1 0 1 0 0.98 0 1 0

MOSPF-LU 0 0 0.09 0 0 0 0.02 0

H
ig

h

M
O

P
S
O CL 1 0 1 0 0.96 0 0.60 0

MC 0.99 0 0.30 0 0.97 0 0 0
HE 1 0 0.06 0 1 1 0 1
MT 1 1 0 1 0.96 0 1 0

MOSPF-LU 0 0 0 0 0 0 0 0

Table 3. Average of all experimental.

Algorithm DB ER EX CS Ranking

CL 0.94 0.35 0.96 0.82 0.77

MC 0.99 0.34 1 1 0.83

HE 0.97 0.39 0.64 0.82 0.70

MT 1 1 0.68 0.40 0.77

MU 0.07 0.01 0.31 0.13 0.13

7 Conclusions and Future Work

This work presents a new approach based on PSO to solve the multicast-RWA
problem in optical networks, considering WDM technology and optical layer
constraints. MOPSOs were successfully adapted to solve this problem simulta-
neously optimizing four objective functions: (1) the hop count, (2) the number
of splitting, (3) the number of splitter node and (4) the balancing of light-tree.
To solve the multicast-RWA problem, a new constructive approach to calcu-
late a light-tree was provided. Simulations were performed over five well known
topologies showing that MOPSO approaches clearly outperforms MOSPF-LU
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in all tested cases. In particular, no MOPSO algorithm is superior when the all
multi-objective performance figures are considered.

Even though the feasibility of using PSO based algorithms was clearly es-
tablished for the multicast-RWA problem, a lot of work remains to be done for
other topologies and different traffic demands. Also, comparisons of the proposed
methods to other metaheuristics and integer linear programming could be done.
Furthermore, other objective functions as the quantity of transceivers may also
be easily optimized with the proposed approach.
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