
Prior Knowledge in Evolutionary Fuzzy Recurrent
Controllers Design

Javier Apolloni, Carlos Kavka and Patricia Roggero

LIDIC
Departamento de Informática

Universidad Nacional de San Luis
Ejército de los Andes 950

D5700HHW - San Luis - Argentina
Tel: 02652-420823 Fax: 02652-430224

e-mail: {javierma,ckavka,proggero}@unsl.edu.ar

Abstract

A fuzzy controller is usually designed by formulating the knowledge of a human expert into
a set of linguistic variables and fuzzy rules. As it is well known, the use of prior knowledge can
dramatically improve the performance and quality of the fuzzy system design process. In previ-
ous works we have introduced the RFV model, a representation for recurrent fuzzy controllers
based on Voronoi diagrams that can represent fuzzy systems with synergistic rules, fulfilling the
completeness property and providing a simple way to introduce prior knowledge. In this work we
present our current approach in the study of the inclusion of prior knowledge in the context of the
RFV model.

1 Introduction
The development of controllers by using fuzzy logic techniques has been subject of fundamental re-
search with many successful applications produced during last years [1]. The main reason is that
fuzzy logic controllers (FLC) provide satisfactory performance in face of uncertainty and impreci-
sion [5], while keeping an equivalence in knowledge representation with other methods like neural
networks and automata [4]. An FLC represents a non linear model as the combination of a set of
local linear models, where each one represents the dynamics of a complex system in a single local
region [3]. Each local model is specified by a fuzzy rule, which defines the local region in which the
rule applies through the membership functions used in the antecedent, while the consequent defines
the output of the model.

One of the advantages of fuzzy systems is the possibility to use prior knowledge, a well known
concept that specifies the information about the desired form of a solution which is additional to the
information provided by the training data [2]. The correct use of prior knowledge during model design
leads to better models even in the presence of deficient and incomplete data sets [10].

Most non linear problems in control require the processing of temporal sequences, or in other
words, in these problems the output depends on the current input and previous values of inputs and/or
outputs. Fuzzy recurrent models can deal with this kind of problems. In previous works, we have
introduced the Recurrent Fuzzy Voronoi (RFV) model, a recurrent model that supports the learning

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

z−1

LAYER 4

LAYER 3

LAYER 2

LAYER 1

v1 vm yl yr

yry1xlx1

A1 A2 Aω

R1 R2 Rω. . .

. . .

.

.

Figure 1: The structure of the RFV model

of temporal sequences providing a clear semantic interpretation of recurrent units and the possibility
of prior knowledge insertion.

This paper is organized as follows. Section 2 describes the structure of the RFV model. In
section 3, the design of fuzzy controllers by using genetic algorithms is introduced and section 4
presents experimental results with the RFV model. Section 5 details current experiments and future
works in the area.

2 The RFV model
A schematic diagram of the model is shown in figure 1, which is organized in four layers and consists
of l input variables, r internal variables, m output variables and ω rules. Units in layer 1 are called
input units. There are two types of input units: external inputs and internal units that are used also
as standard inputs in rule definition. Units in layer 2 are called partition units. They act as multidi-
mensional fuzzy membership functions defined in terms of Voronoi diagrams. Units in layer 3 are
called rule units. Each fuzzy rule in the fuzzy system has a corresponding rule unit. There is a one to
one correspondence with units in layer 2. Units in layer 4 are called output units. They compute the
outputs as a weighted linear combination of input units, generating both the external outputs and the
values of the internal units to be made available as inputs in the next time step.

The rules defined in the RFV controller are standard TS (Takagi Sugeno) type fuzzy rules [1], with
their own inputs and outputs. The complete system is recurrent because some outputs are connected
to inputs, but each rule by itself is a standard TS type fuzzy rule. This fact contributes to provide a
clear interpretation of the rules and make easy to define the prior rules for the RFV controller. This
approach contrasts with other models like RFNN, RSONFIN, DFNN or the TRFN [7], where the
rules themselves include backward connections.

3 RFV design with evolutionary algorithms
Evolutionary algorithms are selected as the optimization tool for RFV controller design, since they
have been very successful on problems where training data or gradient information is very difficult or

Figure 2: The performance of the best controller when evaluated in a scenario not used during evolu-
tion.

costly to obtain, like most control problems. A floating point coding scheme is selected, where each
individual (or chromosome) represents all free parameters of the RFV controller as a variable length
vector of floating point values. An individual I with ω rules is defined as the vector:

Ind = R1 : . . . : Rω (1)

where each sub-vectorRi(1 ≤ i ≤ ω) is the floating point vector defined by the real valued parameters
associated to the rule Ri. The evolutionary algorithm is described in details in [8]. The crossover
operator is based on geometrical exchange of Voronoi sites between the parents with respect to a
random hyperplane. The mutation operator can either modify the parameters of a particular rule by
some standard Gaussian mutation, or add or delete a Voronoi site, i.e. a rule.

4 Evolutionary robotics
As a test base for experiments, a simulated Khepera robot was used for experimentation. A Khepera
robot has 8 sensors that can be used to measure proximity of objects and ambient light levels, and
two independent motors to control the speed and direction of the robot. The problem consists in
driving the robot while avoiding collisions, starting from a fixed initial position, to a target position
that depends on light based signals that are set to on or off status in the trajectory. The presence of
an illuminated signal (on status) indicates to the robot that it has to turn left in the next intersection,
and its absence (or off status) that it has to turn right. The controller needs internal memory, since the
signal is not present in the intersection, but in a previous (and maybe distant) point in the trajectory.
The controller has to learn also when to forget light signals that affected the behavior in previous
intersections and have not to be considered in other point of the trajectory. The fitness of a RFV
controller is computed as mentioned in [6].

The controllers are defined with five inputs, two outputs and one internal variable. The inputs are,
respectively, the average of the two left sensors, the two front sensors, the two right sensors, the two
back sensors and an average of ambient light as measured by all sensors. The outputs correspond
to the speed of the two motors. Note that the presence of an internal variable forces the rules to be
defined with six inputs and three outputs (see figure 1).

The experiments were performed with and without prior knowledge. The rules defined beforehand
and inserted (as explained in [9]) are shown in table 1. The semantic of the rules is defined by
considering the internal variable y1 as a flag that indicates if a light signal was seen before. The first

Rule site v1 v2 y1

L,C,R,B,G,y1 a1
0 ,a1

1 ,a1
2 ,a1

3 ,a1
4 ,a1

5 ,a1
6 a2

0 ,a2
1 ,a2

2 ,a2
3 ,a2

4 ,a2
5 ,a2

6 a3
0 ,a3

1 ,a3
2 ,a3

3 ,a3
4 ,a3

5 ,a3
6

R1 0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0 0,0,0,0,0,0,0
R2 0,0,0,0,0,1 1,0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0
R3 0,0,0,0,1,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0
R4 0,0,0,0,1,1 1,0,0,0,0,0,0 1,0,0,0,0,0,0 1,0,0,0,0,0,0
R5 0,1,0,0,0,0 1,0,0,0,0,0,0 0,0,0,0,0,0,0 0,0,0,0,0,0,0
R6 0,1,0,0,0,1 0,0,0,0,0,0,0 1,0,0,0,0,0,0 0,0,0,0,0,0,0

Table 1: A Priori rules. The value of the site corresponds to the center of the Voronoi region defined
by the rule. It is specified by the normalized values of the left (L), center (C), right (R), back (B) and
light (G) sensors, and the internal variable y1. The values aij correspond to the parameters used to
define the approximators.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

8007006005004003002001000
-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

8007006005004003002001000

(a) (b)

Figure 3: Value of the internal unit of the best controller obtained through evolution (a) without and
(b) with prior knowledge when evaluated on the test scenario of figure 2.

four rules correspond to the situation where there are no obstacles near the robot (all distance sensor
values are equal to 0). The output produced in all cases for the motors is maximum forward speed
(note the constant term of the approximator is 1 for both motor outputs v1 and v2). The value of the
internal variable y1 is set to 1 when light is present (rules 3 and 4) and to the previous value (can
be 0 or 1) if no light is measured (rules 1 and 2). Rule 5 produces a turn to the right (left motor at
maximum speed) if no light was detected before (y1 = 0) and rule 6 a turn to the left (right motor at
maximum speed) if light was detected (y1 = 1). In both cases, the flag (internal variable y1) is reset
to 0. It is important to note that the a priori knowledge is defined by specifying rules that determine
the expected behavior of the controller in specific points in the input domain, without specifying the
area of application of the rules.

The most important point is that a definite semantic interpretation of the internal unit is provided
with the a priori rules: the internal unit behavior indicates if light was or not detected before the
intersection. There is no guarantee that a clear semantic is provided with the approach without prior
knowledge. Figure 3 shows the value of the internal unit of the best controllers plotted when evaluated
on the test scenario from figure 2. The value of the internal unit for the controller evolved with prior
knowledge represents the expected semantics, with two peaks on the areas where light signals were
detected. This behavior was observed in most controllers obtained after evolution.

5 Current and Future Developments
The previous experiment showed that it is possible to define internal units with a clear semantic. One
of the advantages of this approach is that an RFV system can be used as a component of a combined
fuzzy system. A hierarchically combined fuzzy system can be defined in terms of a set of independent
fuzzy systems, by using outputs from some of them as inputs of others. Considering RFV systems,
the value of the internal units with clear semantic can also be used as inputs of other fuzzy systems
together with the external inputs defined by human experts. Usually, a hierarchically combined fuzzy
system is developed more easily and the number of rules is smaller.

We are currently performing an analysis of the convergence of the algorithm by using more in-
ternal units. Experiments are being carried by considering a larger number of internal units with a
semantic defined by the problem (as in section 4) and also free internal units with no prior semantics.
The objective of free internal units is to provide more freedom degrees to the algorithm in order to
enhance its search capabilities. We are currently performing the experiments in evolutionary robotics,
but experiments in other control areas are also foreseen.

References
[1] R. Babuška. Fuzzy modeling: Principles, methods and applications. In C. Bonivento, C. Fan-

tuzzi, and R. Rovatti, editors, Fuzzy Logic Control: Advances in Methodology, pages 187–220.
World Scientific, 1998.

[2] Christopher Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.

[3] Gang Feng. An approach to adaptive control of fuzzy dynamic systems. IEEE Transactions on
Fuzzy Systems, 10(2):268–275, April 2002.

[4] Lee Giles, Christian Omlin, and Karvel Thornber. Equivalence in knwoledge representation:
Automata, recurrent neural networks and dymical fuzzy systems. Proc. of the IEEE, 87(9):1623–
1640, September 1999.

[5] Hani A. Hagras. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile
robots. IEEE Transactions on Fuzzy Systems, 12(4):524–539, 2004.

[6] Carlos Kavka, Patricia Roggero, and Javier Apolloni. Evolución de controladores difusos recur-
rentes basados en diagramas de voronoi. In Proceedings of the X CACIC, 2004.

[7] Carlos Kavka, Patricia Roggero, and Marc Schoenauer. Evolution of voronoi based fuzzy recur-
rent controllers. Accepted for publication in GECCO, 2005.

[8] Carlos Kavka and Marc Schoenauer. Voronoi diagrams based function identification. GECCO,
Lecture Notes in Computer Science, 2723:1089–1100, 2003.

[9] Carlos Kavka and Marc Schoenauer. Evolution of voronoi based fuzzy controllers. PPSN,
Lecture Notes in Computer Science, 3242:541–550, 2004.

[10] Biing-Tsair Tien and G. Van Straten. The incorporation of qualitative information into t-s fuzzy
model. In Proceedings of the Annual Meeting of the North American Fuzzy Information Pro-
cessing Society, pages 148–153. NAFIP, 1997.

