
Dynamic Selection of Suitable Pivots for Similarity
Search in Metric Spaces

Claudia Deco1, Mariano Salvetti1, Nora Reyes2 and Cristina Bender1

1 Facultad de Ciencias Exactas, Ingenieria y Agrimensura,

Universidad Nacional de Rosario, (2000) Rosario, Argentina
deco@fceia.unr.edu.ar, salvettimariano@hotmail.com, bender@fceia.unr.edu.ar

2 Departamento de Informática,
Universidad Nacional de San Luis, (5700), San Luis, Argentina

nreyes@unsl.edu.ar

Abstract. This paper presents a data structure based on Sparse Spatial Selection
(SSS) for similarity searching. An algorithm that tries periodically to adjust
pivots to the use of database index is presented. This index is dynamic. In this
way, it is possible to improve the amount of discriminations done by the pivots.
So, the primary objective of indexes is achieved: to reduce the number of
distance function evaluations, as it is showed in the experimentation.

Keywords: Metric databases, dynamic index, Sparse Spatial Selection.

1 Introduction

The digital age creates a growing interest in finding information in large repositories
of unstructured data that contain textual data, multimedia, photographs, 3D objects
and strings of DNA, among others. In this case, it is more useful a similarity search
than an exact search. Similarity search is usually an expensive operation.

The similarity search problem can be formalized through the concept of metric
space. Given a set of objects and a distance function between them, which measures
how different they are, the objective is to retrieve those objects which are similar to a
given one. An index is a structure that allows fast access to objects, and accelerates
the retrieval. There are several types of indexes proposed for metric spaces that have
differences, such as how they are explored, or how they store the information.

This paper presents an improvement to Sparse Spatial Selection (SSS). This
improvement consists on implementing new policies of incoming and outgoing
pivots, in order to that the index suits to searches, to dynamic collections, and to
secondary memory.

The rest of the paper is structured as follows: Section 2 presents basic concepts.
Section 3 describes the problem of pivots selection. Section 4 presents the proposed
method, and Section 5 shows experimental results. Finally, conclusions and future
lines of work are presented.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Basic Concepts

A metric space (Χ, d) consists of a universe of valid objects X and a distance function
d:X×X→ℜ+ defined among them. This function satisfies the properties: strictly
positiveness d(x,y)>0, symmetry d(x,y)=(y,x), reflexivity d(x,x)=0 and triangular
inequality d(x,y)≤d(x,z)+d(z,y). A finite subset DB of X, with |DB|=n, is the set of
elements where searches are performed. The definition of the distance function
depends on the type of objects. In a vector space, d may be a function of Minkowski
family: Ls((x1, ..., xk),(y1, ..., yk))=(∑ |xi–yi|

s)1/s. Some examples are: Manhattan
distance (p=1), Euclidean distance (p=2), and Chebychev distance (p=∞).

In metric databases queries of interest can be: range search and k-nearest neighbors
search. In the first, given a query q and a radius r, objects that are at a distance less
than r are retrieved: {u∈DB / d(u,q)≤r}. In k nearest neighbors search, the k objects
closest to q are retrieved, that is: A⊆DB such that |A|=k and ∀u∈A, v∈DB-A,
d(q,u)≤d(q,v). The basic way of implementing these operations is to compare each
object in the collection with the query. The problem is that, in general, the evaluation
of the distance function has a very high computational cost, so searching in this
manner is not efficient when the collection has a large number of elements. Thus, the
main goal of most search methods in metric spaces is to reduce the number of
distance function evaluations. Building an index, and using the triangular inequality,
objects can be discarded without comparing them with the query. There are two types
of search methods: clustering-based and pivots-based [1]. The first one splits the
metric space into a set of equivalence regions, each of them represented by a cluster
center. During searches, whole regions are discarded depending on the distance from
the cluster center to the query. Pivot-based algorithms select a set of objects in the
collection as pivots. An index is built by computing distances from each object in the
database to each pivot. During the search, distances from the query q to each pivot are
computed, and then some objects of the collection can be discarded using the
triangular inequality and the distances precomputed during the index building phase.
Some pivot-based methods are: Burkhard-Keller-Tree [2], Fixed-Queries Tree [3],
Fixed-Height FQT [3], Fixed-Queries Array [4], Vantage Point Tree [5],
Approximating and Eliminating Search Algorithm [6], Linear AESA [7] y SSS [8,9].

This paper presents an improving to the Sparse Spatial Selection (SSS) method,
implementing new policies for selecting incoming and outgoing pivots from the
index. The proposed method is dynamic, because the collection can be initially empty,
or can increase or decrease with time. Also, this proposal generates a number of
pivots based on the intrinsic dimensionality of the space.

3 Related Work on Pivots Selection

Pivots selection affects the efficiency of the search method in the metric space, and
the location of each pivot with respect to the others determines the ability to exclude
elements of the index without directly comparing them with the query. Most search
pivots-based methods select pivots randomly. Also, there are no guidelines to
determine the optimal number of pivots, parameter which depends on the specific

collection. Several heuristics have been proposed for the selection of pivots, as if the
distance function is continuous or discrete. In [7] pivots are objects that maximize the
sum of distances among them. In [10] a criterion for comparing the efficiency of two
sets of pivots of the same size is presented. Several selection strategies based on an
efficiency criterion to determine whether a given set of pivots is more efficient than
another are also presented. The conclusion is that good pivots are objects far away
among them and to the rest of the objects, although this does not ensure that they are
always good pivots.

In [8] the Sparse Spatial Selection (SSS) which dynamically selects a set of pivots
well distributed throughout the metric space is presented. It is based on the idea that,
if pivots are dispersed in the space, they will be able to discard more objects during
the search. To achieve this, when an object is inserted into the database, it is selected
as a new pivot if it is far enough from the other pivots. A pivot is considered to be far
enough from another pivot if it is at a distance greater than or equal to M×α. M is the
maximum distance between any two objects. α is a constant parameter that influences
the number of selected pivots and its takes optimal experimental values around 0.4.

In all of the analyzed techniques for selecting pivots, the number of pivots must be
fixed in advance. In [10] experimental results show that the optimal number of pivots
depends on the metric space, and this number has great importance in the method
efficiency. Because of this, SSS is important in order to adjust the number of pivots as
well as possible. To improve SSS, we propose that the index suits to searches, after
the index was adapted to the metric space.

4 Proposed Method

We present a new indexing and similarity searching method based on dynamic
selection of pivots. The proposed method is dynamic, because it could be applied to
an initially empty database that grows over time. The method is adaptive, because it is
not necessary to preset the number of pivots to be used because the algorithm selects
pivots as necessary to self-adapt it to space complexity.

In the construction of the index, SSS is applied to select the initial pivots. Then, as
time passes and searches are performed, we apply new policies for selecting pivots in
order to eliminate those least discriminating pivots from the index, and to select
objects as candidate pivots to put them into the index. In this way, we can adapt
dynamically the index to searches performed during a given time.

4.1 Initial construction of the index and growth of the collection

Let (X,d) be a metric space, where DB⊂X is the database. Let M be the maximum
distance between objects (M=max{d(x,y) | x,y ∈X}), and α a value between 0.35 and
0.40 [8]. The collection of elements is initially empty.

The first object x1 inserted into the database, is the first pivot p1. When the second
(or new) object is inserted in the database, its distance to all pivots that are already in
the index is calculated. If these distances are all greater than or equal to M×α, this

object is added to the set of pivots. That is, an object of the collection will be a pivot
if it is more than a fraction of the maximum distance of all pivots. Thus, the set of
pivots does not have to be selected randomly, because pivots are chosen as the
database grows. Then, distances from the new pivot against to all database objects are
calculated and stored. Also, the value of M is updated. The pseudo code is:

Input : (X,d), DB ,M , α
Output : Pivots
0 Pivots ← { x

1
}

1 FOR ALL x
i
 ∈ DB DO

2 IF(∀p ∈ Pivots, d(x
i
, p) >= M× α)

3 THEN Pivots ← Pivots ∪ { x
i
}

4 END IF
5 Recalculate the value of M, and update.
6 END FOR ALL

Pivots that were selected for the initial index are far apart (over M×α). For many

authors, this is a desirable feature of the set of pivots. The number of pivots depends
on the initial dimensionality of the metric space. When the construction begins, the
number of pivots should grow rapidly in the index, but this number will be stabilized
when the database grows.

4.2 Exchange of Pivots in the Index

Given a query (q,r), distances of q toward all pivots is calculated. Applying triangular
inequality, all elements xi∈ DB such that |d(xi,pj)−d(pj,q)|>r for some pivot pj are
discarded. Not discarded objects form the list of candidates, {u1,u2,... un}⊂ DB, and
should be compared directly with the query. From this list of candidates, the statistics
on the elements of the database that are part of search results is increased in a unit. If
max1≤j≤k |d(q,pj)-d(e,pj)|>r , then the element e is outside the query range. So, the pivot
pj discriminates the object e∈ DB. With searches, statistics of discrimination of each
pivot are stored. These statistics are calculated when search results are obtained.

Selection policy for the Outgoing Pivot. When a pivot is a "bad pivot"? In a query,
at most n elements (i.e., all elements of the database) can be eliminated. This
elimination would have split these n discriminations between k pivots. And in a query,
it is possible to know which pivot discriminates each element e∈ DB.

Taking into account the objects discriminated by the various pivots, and a set of B
queries, we define the percentage of discrimination for a pivot pi as
[%Disc(pi)]=Disc(pi))/(B×n), where Disc(pi) is the amount of items that pivot pi
discriminates and (B×n) represents the total of possible discriminations. Then, pi is a
“bad pivot” when [%Disc(pi)] < 1/k where 1/k is an experimental threshold, which is
proposed as a constant that depends on the number of pivots in the index. If
[%Disc(pi)] < 1/k, we say that pi is very little relevant to discriminate, at least in light
of the B searches made to the database. Then, it is selected as a victim, and it could be
replaced in a future. So, the selection policy of a victim pivot within the index is to
choose the "less discriminating pivot". After B searches the pivot with the lower

percentage of discrimination is determined. If it is less than a threshold of tolerance
with value T, it is replaced. Then, T = 1 / (1.1×k) represents a 10% of tolerance, used
to stabilize the algorithm. This parameter has been evaluated experimentally.
Recalling that k is the current number of pivots in the index, this constant of tolerance
is used in the next situation:

 0 IF (min

1≤j≤k discrimine [j] < 1 / (1.1 × k)) THEN {
1 OutgoingPivot ← GetPivot();
2 ChangePivot();

 3 GenerateIndex();
 4 }

In line 0, it is evaluated whether the proportion of j-th discrimination is less than

the tolerance threshold. If so, this pivot is defined as the “least discriminating pivot”
leaving it available for pivots exchanging (line 2). When a pivot is replaced, a whole
column of the distance matrix between the incoming pivot, which is returned from
GetPivot() method, and all elements of the database are recalculated (GenerateIndex()
method). The complexity of changing a pivot is n×Θ(distance function). If
discrimination percentage is not less than T, nothing is done.

Selection policy for the Incoming Pivot. To choose which object becomes a pivot,
the policy is to propose "the candidate pivot". The approach is similar than to select a
victim pivot. The idea is to use statistical data of database elements obtained from
queries. An object e∈ DB will be a candidate pivot if it is most of the times in the list
of candidates, because an element that was often part of the list of candidates is
difficult to discriminate with the current pivots. This implies that if this element is
selected as pivot, in future searches it will improve the percentage of discrimination
around the region that surrounds it. Another benefit is that it adapts automatically
pivots to the region where the majority of searches are made. This transforms the
index into a dynamic structure, achieving its main objective: to reduce distance
computations in searches. Then, the element that most often was a candidate will be
taken as the incoming pivot.

The following pseudo code shows the implementation of the policy for selecting
incoming pivot (GetPivot() method). In this method the account of times that i-th
element was part of the list of candidates is used. Thus, the element that most often
was taken as a candidate is chosen as the candidate pivot to enter to the index.

Input : DB, Stats
Output : Stats, an array with the time they get the items

in the database in the list of candidates.
0 Candidate = NULL; maxCurrentStats = 0;
1 FOREACH (e on Database)) DO
2 IF (Stats(e) > maxCurrentStats)
4 THEN Candidate = e;
5 maxCurrentStats = Stats(e);
6 END IF
7 END FOREACH
8 RETURN Candidate

In line 0, variable values are initialized. In line 2 the statistical value of each

element e is compared with the current maximum value, which represents the element

that most often was the candidate and which will be taken as incoming pivot. If the
statistic value of e exceeds the current one, in line 5 e is selected as the future
incoming pivot, and the iteration continues.

5 Experimental Results

For experimentation several sets of synthetic random points in vector spaces of
dimension 8, 10, 12 and 14 are used. The Euclidean distance function is used. The
number of distance evaluations required to answer a query using the proposed
policies, how the index adjusted itself as queries are processed, and how database size
affects the index performance, was analyzed. The database contains 100,000 objects,
and range query retrieved the 0.02% elements from the database.

Number of Pivots in the Index. Our proposal creates a dynamic amount of pivots,
depending on the space dimensionality, and not on the number of objects in the
database. For experiments α=0.5 was set, in order to achieve a uniform and distant
distribution of pivots in the space. This value of α was chosen from experimental
results showed later (Figures 5 and 6). Table 1 and Figure 1 show the number of
pivots depending on the collection size, as the number of elements is growing.

Table 1: Number of pivots selected in vector spaces of dimension 8, 10, 12 and 14.

n, size of the collection (x 103)
dim 10 20 30 40 50 60 70 80 90 100
8 11 12 12 12 13 13 14 14 15 16
10 13 18 20 20 21 21 21 21 21 22
12 25 28 28 31 32 34 34 34 34 34
14 38 47 53 60 60 61 63 66 69 69

Fig. 1: Number of pivots selected in vector spaces of dimension 8, 10, 12 and 14.

As it is noted, the number of pivots grows very quickly with the insertions of the

first objects in the collection, and then continues to grow but in a slower degree until

it get to stabilize. So, with few elements inserted, number of pivots depends on
number of elements in the database. Already with a considerable amount of elements
inside, the set of current pivots covers all the metric space. In addition, number of
pivots in the index increases as the size of the space increases. So, the number of
pivots in the index depends on the complexity of the collection of objects.

Search efficiency. To analyze the efficiency of the index for searching, a database
with 10,000 objects, 1,000 queries and dimensionalities 8, 10, 12 and 14, are used. 20
periods were run, and information from all periods was averaged. For each dimension,
the amount of distance functions evaluated (#DE), the amount of pivots used in the
index (#P), and the amount of discriminations carried out (#DR), were recorded,
assessing the proposed method against SSS.

Table 2: Efficiency in synthetic metric spaces with different methods.

 dim = 8 dim = 10 dim = 12 dim = 14
Method #P #DE #DR #P #DE #DR #P #DE #DR #P #DE #DR

SSS 17 17994 6141634 24 26391 6393097 34 35721 6623490 60 62976 6915951
Proposal 15 15737 6394202 23 24380 6657667 33 34686 6717067 44 45683 7025895

Fig. 2: Number of pivots, depending on dimensions 8, 10, 12 and 14.

Table 2 shows that the number of pivots used with our proposal is always lower

than in the implementation of SSS, highlighting a marked difference in dim=14, with
16 pivots less. In the remaining dimensions, the difference is little, but it remains at
most 2 pivots less in our favour. In Figure 2, it can be noted that our proposal has a
minor number of pivots. This is an important result, because the strategy of pivots
selection of SSS presents a similar efficiency to other more complexes methods and
the number of pivots that it selects is close to the optimal number for other strategies.

Figure 3 shows the amount of distance evaluations. The number of evaluations for
our proposal always remains below, and, in general, with a uniform linear growth
when the size increases. Except in dim=14, where SSS shows a slight growth with the
amount of reviews, with a difference of about 17,000 reviews, in other dimensions the
difference never exceeds 3,000.

Fig. 3: Distance functions evaluated, depending on dimensions 8, 10, 12 and 14.

As results exposed in [8], the number of evaluations of the distance function in

SSS is always around to the best result obtained with pivot selection techniques and
strategies proposed in [10]. In conclusion, the proposal here presented, makes a
number of distance evaluations similar to the best results obtained in previous works,
even using a smaller number of pivots, which clearly implies space savings.

Figure 4 shows that the use of our proposal in searches obtains a greater number of
discriminations by pivots, in all dimensions where it was experienced.

Fig. 4: Discrimination carried out, depending of dimension 8, 10, 12 and 14.

In the first two dimensions, there is a major difference between numbers of

discriminations made. A great performance with the selected pivots with our selection
policies, in contrast with pivots selected using pure SSS, is showed. This is because,
with the time, the proposal makes an adjustment of pivots, and they make better
discrimination, reducing the amount of computations of the distance function at query
time. Thus, it shows that both selection policies of pivots (incoming and outgoing) are
good, and that maintains the dynamism of the index.

About parameter α. The value of parameter α determines the number of pivots.
Values between 0.35 and 0.40, depending on the dimensionality of the collection, are
recommended [8]. Here we decided to use values of α from 0.32 to 0.54, in order to

evaluate the number of pivots in the index, since a rise in α represents a reduction in
the number of pivots and this is noted better in spaces of higher dimension. In
dimensions 2, 8, 10, 12 and 14, α varies in the range shown above.

Fig. 5: Number of pivots selected by the parameter α.

Fig. 6: Evaluations of the distance function according to the parameter α.

As shown in Figure 5 for all dimensions, the number of pivots varies with α, with

some local maximum and minimum and large amplitude in greater dimensions. Then
the observed value 0.50 decreased the number of pivots, as expected. Figure 6 shows
the number of distance evaluations, varying α, in order to analyze the impact of our
proposal in searches. As seen, in all dimensions there is a consistent behaviour, which
gradually begins to decrease when α increases. This is because when distance
between pivots increases, the required distance function evaluations decrease. This
value has a uniform behaviour because values of 20 periods were averaged. The early
periods have largest number of assessments and with the passing of periods, pivots
were adapting to searches. In addition, it achieves more discrimination when α
increases, because with the passing of periods, in our proposal, pivots are adjusted
and searches are improved, discriminating more elements and decreasing the
computations of distance functions.

5 Conclusions

This paper presents a new indexing and similarity search method based on dynamic
selection of pivots. One of its most important features is that it uses SSS for the initial
selection of pivots, because it is an adaptive strategy that chooses pivots that are well
distributed in the space to achieve greater efficiency. In addition, two new selection
policies of pivots are added, in order to the index suites itself to searches when it is
adapted to the metric space. The proposed structure automatically adjusts to the
region where most of searches are made, to reduce the amount of distance
computations during searches. This is done using the policy of 'the most candidate'
for the incoming pivot selection, and the policy of 'the least discriminates' for the
outgoing pivot selection. Future work is to evaluate the performance of this proposal
with real metric spaces, such as collections of texts or images. Moreover, from the
results of experiments, to implement algorithms that work with indexes in secondary
memory can be proposed. An improvement to selection policies would be to use a
data warehouse for training the index with historical search data.

References

1. Chávez E., Navarro G., Baeza-Yates R., Marroquín J. L.: Searching in Metric Spaces.
ACM Computing Surveys. 33(3), pp 273--321. (2001).

2. Burkhard W. A., Keller R. M.: Some approaches to best-match file searching.
Communications of the ACM, 16(4):230-236.(1973).

3. Baeza-Yates R. A., Cunto W., Manber U., Wu S.: Proximity matching using fixed-
queries trees. In M. Crochemore and D. Gusfield, editors, Proc. of the 5th Annual
Symposium on Combinatorial Pattern Matching, LNCS 807, pages 198-212. (1994).

4. Chavez E., Navarro G., Marroquin A.: Fixed queries array: a fast and economical data
structure for proximity searching. Multimedia Tools and Applications (MTAP),
14(2):113-135. (2001).

5. Yianilos P.: Excluded middle vantage point forests for nearest neighbor search. In: 6th
DIMACS Implementation Challenge: Near Neighbour searches ALENEX’99. (1999)

6. Vidal E. An algorithm for finding nearest neighbor in (approximately) constant average
time. Pattern Recognition Letters 4, 145-157 (1986).

7. Micó L., Oncina J., Vidal R. E.: A new version of the nearest neighbor approximating and
eliminating search (AESA) with linear pre-processing time and memory requirements. In:
Pattern Recognition Letters, 15:9-17(1994).

8. Pedreira O., Brisaboa N.R.: Spatial Selection of Sparse Pivots for similarity search in
metris Spaces. In: 33nd Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM’07), LNCS vol: 4362, pp. 434--445. Springer (2007).

9. Pedreira O., Fariña A., Brisaboa N.R. and Reyes N.: Similarity search using sparse pivots
for efficient multimedia information retrieval. In: The Second IEEE International
Workshop on Multimedia Information Processing and Retrieval, pp. 881--888. (2006).

10. Bustos B., Navarro G., Chávez E.: Pivot selection techniques for proximity search in
metric spaces. In: XXI Conference of the Chilean Computer Science Society, pp. 33-44.
IEEE Computer Science Press. (2001).

