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Abstract. This paper presents a data structure based ose&sgpatial Selection
(SSS) for similarity searching. An algorithm thaies$ periodically to adjust
pivots to the use of database index is presented.imdex is dynamic. In this
way, it is possible to improve the amount of distnations done by the pivots.
So, the primary objective of indexes is achieved:réduce the number of
distance function evaluations, as it is showedh@experimentation.
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1 Introduction

The digital age creates a growing interest in figdinformation in large repositories
of unstructured data that contain textual data,timellia, photographs, 3D objects
and strings of DNA, among others. In this casés inore useful a similarity search
than an exact search. Similarity search is usw@allgxpensive operation.

The similarity search problem can be formalizedtigh the concept of metric
space. Given a set of objects and a distance mbggtween them, which measures
how different they are, the objective is to retedkiose objects which are similar to a
given one. An index is a structure that allows fastess to objects, and accelerates
the retrieval. There are several types of indgxeposed for metric spaces that have
differences, such as how they are explored, orthew store the information.

This paper presents an improvement to Sparse $Siaction (SSS). This
improvement consists on implementing new policiédsintoming and outgoing
pivots, in order to that the index suits to seasctte dynamic collections, and to
secondary memory.

The rest of the paper is structured as follows:tiBe presents basic concepts.
Section 3 describes the problem of pivots select®sttion 4 presents the proposed
method, and Section 5 shows experimental resuitallf, conclusions and future
lines of work are presented
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2 Basic Concepts

A metric spacdX, d) consists of a universe of valid objetsnd adistance function
d:XxX - 7" defined among them. This function satisfies thepprties: strictly
positivenessd(x,y)>0, symmetryd(x,y)=(y,x), reflexivity d(x,x)=0 and triangular
inequality d(x,yxd(x,z)+d(z,y).A finite subsetDB of X, with |DBJ|=n, is the set of
elements where searches are performed. The definitf the distance function
depends on the type of objects. In a vector sphogay be a function of Minkowski
family: L%, ..o %):(Yn - W)= X=¥|° ). Some examples are: Manhattan
distance |§=1), Euclidean distance€2), and Chebychev distancp<x).

In metric databases queries of interest can bgeranarch ank-nearest neighbors
search. In the first, given a quegyand a radius, objects that are at a distance less
thanr are retrieved{u/ZDB / d(u,qkt}. In k nearest neighborsearch, thd objects
closest toq are retrieved, that iSAZDB such that|A|=k and Zu/ZA, vCDB-A,
d(q,u)sd(q,v). The basic way of implementing these operation®isompare each
object in the collection with the query. The probles that, in general, the evaluation
of the distance function has a very high computatiocost, so searching in this
manner is not efficient when the collection haargé number of elements. Thus, the
main goal of most search methods in metric spaset ireduce the number of
distance function evaluations. Building an indexd aising the triangular inequality,
objects can be discarded without comparing therh thié query. There are two types
of search method<lustering-basedand pivots-based1]. The first one splits the
metric space into a set of equivalence regionsh ed¢chem represented bychuster
center.During searches, whole regions are discarded diépgion the distance from
the cluster center to the quelivot-basedalgorithms select a set of objects in the
collection agivots An index is built by computing distances from leabject in the
database to each pivot. During the search, dissainom the query to each pivot are
computed, and then some objects of the collectian be discarded using the
triangular inequality and the distances precompudigtihg the index building phase.
Some pivot-based methods aBurkhard-Keller-Tree[2], Fixed-Queries Treg3],
Fixed-Height FQT [3], Fixed-Queries Array [4], Vantage Point Tree[5],
Approximating and Eliminating Search Algoritij6j, Linear AESA7] y SSY8,9].

This paper presents an improving to the Sparseidb@tlection (SSS) method,
implementing new policies for selecting incomingdaoutgoing pivots from the
index. The proposed method is dynamic, becausedifection can be initially empty,
or can increase or decrease with time. Also, thap@sal generates a number of
pivots based on the intrinsic dimensionality of space.

3 Reated Work on Pivots Selection

Pivots selection affects the efficiency of the shamethod in the metric space, and
the location of each pivot with respect to the oihdetermines the ability to exclude
elements of the index without directly comparingrthwith the query. Most search
pivots-based methods select pivots randomly. Aksmre are no guidelines to
determine the optimal number of pivots, paramethickv depends on the specific



collection. Several heuristics have been proposedhe selection of pivots, as if the
distance function is continuous or discrete. Ingdi¥jts are objects that maximize the
sum of distances among them. In [10] a criterianclmamparing the efficiency of two
sets of pivots of the same size is presented. Skselection strategies based on an
efficiency criterion to determine whether a givest sf pivots is more efficient than
another are also presented. The conclusion isghadl pivots are objects far away
among them and to the rest of the objects, althaébighdoes not ensure that they are
always good pivots.

In [8] the Sparse Spatial Selection (SSS) whichadtyically selects a set of pivots
well distributed throughout the metric space isspreed. It is based on the idea that,
if pivots are dispersed in the space, they willabée to discard more objects during
the search. To achieve this, when an object igtiedénto the database, it is selected
as a new pivot if it is far enough from the oth&uops. A pivot is considered to be far
enough from another pivot if it is at a distanceager than or equal tdxa. M is the
maximum distance between any two objeetis a constant parameter that influences
the number of selected pivots and its takes opterperimental values around 0.4.

In all of the analyzed techniques for selectingogsy the number of pivots must be
fixed in advance. In [10] experimental results stthat the optimal number of pivots
depends on the metric space, and this number ke gnportance in the method
efficiency. Because of this, SSS is important ideorto adjust the number of pivots as
well as possible. To improve SSS, we propose tatindex suits to searches, after
the index was adapted to the metric space.

4 Proposed M ethod

We present a new indexing and similarity searchimgthod based on dynamic
selection of pivots. The proposed methodlysamic because it could be applied to
an initially empty database that grows over timiee Thethod isdaptive because it is
not necessary to preset the number of pivots tosed because the algorithm selects
pivots as necessary to self-adapt it to space aitpl

In the construction of the index, SSS is applieddkect the initial pivots. Then, as
time passes and searches are performed, we applpalies for selecting pivots in
order to eliminate those least discriminating pévfitom the index, and to select
objects as candidate pivots to put them into thdexn In this way, we can adapt
dynamically the index to searches performed duilggven time.

4.1 Initial construction of theindex and growth of the collection

Let (X,d) be a metric space, wheBB[X is the database. L& be the maximum
distance between objectsl€max{d(x,y) | x,y2X}), and o a value between 0.35 and
0.40 [8]. The collection of elements is initiallgnpty.

The first objectx; inserted into the database, is the first ppotWhen the second
(or new) object is inserted in the database, #tadce to all pivots that are already in
the index is calculated. If these distances argyraater than or equal tdx«, this



object is added to the set of pivots. That is, bjeat of the collection will be a pivot
if it is more than a fraction of the maximum digtarof all pivots. Thus, the set of
pivots does not have to be selected randomly, Isecgivots are chosen as the
database grows. Then, distances from the new pyainst to all database objects are
calculated and stored. Also, the valuevbis updated. The pseudo code is:

Input : (X,d), DB M, o
Output : Pivots

0 Pivots ~{x}

1 FORALL x, ODBDO

2 IF( Op O Pivots,d( x,,p)>=Mx o)
3 THEN Pivots ~ Pivots o{ x}
4 END IF

5 Recalculate the value of M, and update.

6 END FOR ALL

Pivots that were selected for the initial index Breapart (oveMxa). For many
authors, this is a desirable feature of the sqtivafts. The number of pivots depends
on the initial dimensionality of the metric spa®hen the construction begins, the
number of pivots should grow rapidly in the indbext this number will be stabilized
when the database grows.

4.2 Exchange of Pivotsin the Index

Given a query(q,r), distances ofl toward all pivots is calculated. Applying triangul
inequality, all elements;/7 DB such thatd(x,p)-d(p,q)|>r for some pivotp, are
discarded. Not discarded objects form the listarididates{u,,w,... u.}/7 DB, and
should be compared directly with the query. Frais list of candidates, the statistics
on the elements of the database that are partoflseesults is increased in a uHit
max<j« [d(a.n)-d(e,p)[>r, then the elememrtis outside the query range. So, the pivot
p; discriminates the objeet/ DB. With searches, statistics of discrimination offea
pivot are stored. These statistics are calculateghvgearch results are obtained.

Selection policy for the Outgoing Pivot. When a pivot is a "bad pivot"? In a query,
at mostn elements (i.e., all elements of the database) lmreliminated. This
elimination would have split thesediscriminations betweekpivots. And in a query,
it is possible to know which pivot discriminateskalement//DB.

Taking into account the objects discriminated by ¥arious pivots, and a set Bf
queries, we define the percentage of discriminatioxr a pivot p; as
[%0Disc(py]=Disc(p)/(Bxn), where Disd(p;) is the amount of items that pivey
discriminates an@Bxn) represents the total of possible discriminatidrigen,p; is a
“bad pivot” when [9Disc(py] < 1k where 1K is an experimental threshold, which is
proposed as a constant that depends on the nunibpivats in the index. If
[%0Disc(py] < 1k, we say thap; is very little relevant to discriminate, at leastight
of the B searches made to the database. Then, it is sleste victim, and it could be
replaced in a future. So, the selection policy eicaim pivot within the index is to
choose the "less discriminating pivot". AftBr searches the pivot with the lower



percentage of discrimination is determined. IBitess than a threshold of tolerance
with valueT, it is replaced. Thern = 1 / (1.XKk) represents a 10% of tolerance, used
to stabilize the algorithm. This parameter has besaluated experimentally.
Recalling thak is the current number of pivots in the index, tosistant of tolerance
is used in the next situation:

0 IF(min 15 < discrimine [ j1<1/(11 x Kk)) THEN {
1 OutgoingPivot ~ GetPivot();
2 ChangePivot();

3 Generatelndex();

4}

In line O, it is evaluated whether the proportidrj-th discrimination is less than
the tolerance threshold. If so, this pivot is defims the “least discriminating pivot”
leaving it available for pivots exchanging (line ¥Yhen a pivot is replaced, a whole
column of the distance matrix between the inconpingt, which is returned from
GetPivof) method, and all elements of the database aedcdated Generatelnde}
method). The complexity of changing a pivot ms<@(distance function) If
discrimination percentage is not less tAamothing is done.

Selection policy for the Incoming Pivot. To choose which object becomes a pivot,
the policy is to propose "the candidate pivot". Bpgproach is similar than to select a
victim pivot. The idea is to use statistical dafadatabase elements obtained from
queries. An object/7 DB will be a candidate pivot if it is most of the &in the list
of candidates, because an element that was oftenopdhe list of candidates is
difficult to discriminate with the current pivot$his implies that if this element is
selected as pivot, in future searches it will iny@rdhe percentage of discrimination
around the region that surrounds it. Another berisfithat it adapts automatically
pivots to the region where the majority of searches made. This transforms the
index into a dynamic structure, achieving its mainjective: to reduce distance
computations in searches. Then, the element that often was a candidate will be
taken as the incoming pivot.

The following pseudo code shows the implementatibthe policy for selecting
incoming pivot GetPivof) method). In this method the account of timeg
element was part of the list of candidates is u3édis, the element that most often
was taken as a candidate is chosen as the cangidatdo enter to the index.

Input _: DB, Stats

Output : Stats, an array with the time they get the items
in the database in the list of candidates.

0 Candidate = NULL; maxCurrentStats = 0;

1 FOREACH ( e on Database)) DO

2 IF (Stats( e) > maxCurrentStats)

4 THEN Candidate = e;

5 maxCurrentStats = Stats( e);
6 ENDIF

7 END FOREACH
8 RETURN Candidate

In line O, variable values are initialized. In lifethe statistical value of each
elemente is compared with the current maximum value, whighresents the element



that most often was the candidate and which wiltdden as incoming pivot. If the
statistic value ofe exceeds the current one, in lineeSs selected as the future
incoming pivot, and the iteration continues.

5 Experimental Results

For experimentation several sets of synthetic remdmints in vector spaces of
dimension 8, 10, 12 and 14 are used. The Euclidéstance function is used. The
number of distance evaluations required to answeuery using the proposed
policies, how the index adjusted itself as quesiesprocessed, and how database size
affects the index performance, was analyzed. Thabdae contains 100,000 objects,
and range query retrieved the 0.02% elements fhendatabase.

Number of Pivots in the Index. Our proposal creates a dynamic amount of pivots,
depending on the space dimensionality, and nothennumber of objects in the
database. For experimenis0.5 was set, in order to achieve a uniform andadts
distribution of pivots in the space. This valuewfvas chosen from experimental
results showed later (Figures 5 and 6). Table 1 Rigdre 1 show the number of
pivots depending on the collection size, as thebmrof elements is growing.

Table 1: Number of pivots selected in vector spaces of dsi@n 8, 10, 12 and 14
n, size of the collection (x £

dim|10{20]|30|40|50|60|70]80(90]| 100
8 11|12|12|12|13|13|14|14]15]|16
10 |13]18]|20|20]|21|21|21|21|21|22
12 |25|28|28|31]|32|34)|34|34|34|34
14 |38|47]|53|60|60|61|63|66|69|69
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Fig. 1. Number of pivots selected in vector spaces of dsimn8, 10, 12 and 14.

As it is noted, the number of pivots grows veryalfly with the insertions of the
first objects in the collection, and then contintegrow but in a slower degree until



it get to stabilize. So, with few elements insertedmber of pivots depends on

number of elements in the database. Already withresiderable amount of elements
inside, the set of current pivots covers all therimespace. In addition, number of

pivots in the index increases as the size of ttecespncreases. So, the number of
pivots in the index depends on the complexity efabllection of objects.

Search efficiency. To analyze the efficiency of the index for seargh a database
with 10,000 objects, 1,000 queries and dimensitealB, 10, 12 and 14, are used. 20
periods were run, and information from all periogss averaged. For each dimension,
the amount of distance functions evaluated (#Dig),amount of pivots used in the
index (#P), and the amount of discriminations eafrout (#DR), were recorded,
assessing the proposed method against SSS.

Table 2: Efficiency in synthetic metric spaces with diffat methods.

dm=28 dim =10 dim=12 dim=14
Method | #P | #DE | #DR | #P | #DE | #DR [#P [#DE | #DR | #P | #DE | #DR
SSS [ 17]179946141634 24 | 263916393097 34 | 357216623490 60 | 629766915951

Proposal| 15 [ 157376394202 23 [ 243806657667 33 | 346866717067 44 | 456837025891
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Fig. 2: Number of pivots, depending on dimensions 8, 10ari 14.

Table 2 shows that the number of pivots used withgroposal is always lower
than in the implementation of SSS, highlighting arked difference imlim=14, with
16 pivots less. In the remaining dimensions, thH&edince is little, but it remains at
most 2 pivots less in our favour. In Figure 2,ahde noted that our proposal has a
minor number of pivots. This is an important resbicause the strategy of pivots
selection of SSS presents a similar efficiency ttteomore complexes methods and
the number of pivots that it selects is close ®dhptimal number for other strategies.

Figure 3 shows the amount of distance evaluatibhs.number of evaluations for
our proposal always remains below, and, in genevdh a uniform linear growth
when the size increases. Exceptlim=14, where SSS shows a slight growth with the
amount of reviews, with a difference of about 1D,0€views, in other dimensions the
difference never exceeds 3,000
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Fig. 3: Distance functions evaluated, depending on dimess3p 10, 12 and 14.

As results exposed in [8], the number of evaluaioh the distance function in
SSS is always around to the best result obtaindd piwot selection techniques and
strategies proposed in [10]. In conclusion, theppeal here presented, makes a
number of distance evaluations similar to the bestlts obtained in previous works,
even using a smaller number of pivots, which cleamiplies space savings.

Figure 4 shows that the use of our proposal incbesrobtains a greater number of
discriminations by pivots, in all dimensions whérevas experienced.
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Fig. 4: Discrimination carried out, depending of dimensgri0, 12 and 14.

In the first two dimensions, there is a major difece between numbers of
discriminations made. A great performance withgékected pivots with our selection
policies, in contrast with pivots selected usingep8SS, is showed. This is because,
with the time, the proposal makes an adjustmenpiebts, and they make better
discrimination, reducing the amount of computatiohthe distance function at query
time. Thus, it shows that both selection policiépigots (incoming and outgoing) are
good, and that maintains the dynamism of the index.

About parameter a. The value of parameter determines the number of pivots.
Values between 0.35 and 0.40, depending on therdiimeality of the collection, are
recommended [8]. Here we decided to use valuesfodm 0.32 to 0.54, in order to



evaluate the number of pivots in the index, sinesea ina represents a reduction in
the number of pivots and this is noted better iaces of higher dimension. In
dimensions 2, 8, 10, 12 and Idvaries in the range shown above.
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Fig. 5: Number of pivots selected by the parameter
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Fig. 6: Evaluations of the distance function accordinghe parameten.

As shown in Figure 5 for all dimensions, the numbkpivots varies withy, with
some local maximum and minimum and large amplitindgreater dimensions. Then
the observed value 0.50 decreased the number ofspias expected. Figure 6 shows
the number of distance evaluations, varyéingn order to analyze the impact of our
proposal in searches. As seen, in all dimensiogietis a consistent behaviour, which
gradually begins to decrease whenincreases. This is because when distance
between pivots increases, the required distancetiumevaluations decrease. This
value has a uniform behaviour because values @E2@ds were averaged. The early
periods have largest number of assessments ancthetpassing of periods, pivots
were adapting to searches. In addition, it achiewese discrimination whem
increases, because with the passing of periodsuirproposal, pivots are adjusted
and searches are improved, discriminating more eésn and decreasing the
computations of distance functions.



5 Conclusions

This paper presents a new indexing and similaggreh method based on dynamic
selection of pivots. One of its most important feas is that it uses SSS for the initial
selection of pivots, because it is an adaptiveegsathat chooses pivots that are well
distributed in the space to achieve greater effigye In addition, two new selection
policies of pivots are added, in order to the indeites itself to searches when it is
adapted to the metric space. The proposed strueturematically adjusts to the
region where most of searches are made, to redoeeamount of distance
computations during searches. This is done usiagptilicy of 'the most candidate
for the incoming pivot selection, and the policy'thfe least discriminatedor the
outgoing pivot selection. Future work is to evatutite performance of this proposal
with real metric spaces, such as collections ofstex images. Moreover, from the
results of experiments, to implement algorithmg thark with indexes in secondary
memory can be proposed. An improvement to selegimities would be to use a
data warehouse for training the index with histalrgearch data.
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