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Abstract. This paper presents a data structure based on Sparse Spatial Selection 
(SSS) for similarity searching. An algorithm that tries periodically to adjust 
pivots to the use of database index is presented. This index is dynamic. In this 
way, it is possible to improve the amount of discriminations done by the pivots. 
So, the primary objective of indexes is achieved: to reduce the number of 
distance function evaluations, as it is showed in the experimentation.  
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1   Introduction 

The digital age creates a growing interest in finding information in large repositories 
of unstructured data that contain textual data, multimedia, photographs, 3D objects 
and strings of DNA, among others. In this case, it is more useful a similarity search 
than an exact search. Similarity search is usually an expensive operation.  

The similarity search problem can be formalized through the concept of metric 
space. Given a set of objects and a distance function between them, which measures 
how different they are, the objective is to retrieve those objects which are similar to a 
given one. An index is a structure that allows fast access to objects, and accelerates 
the retrieval.  There are several types of indexes proposed for metric spaces that have 
differences, such as how they are explored, or how they store the information. 

This paper presents an improvement to Sparse Spatial Selection (SSS). This 
improvement consists on implementing new policies of incoming and outgoing 
pivots, in order to that the index suits to searches, to dynamic collections, and to 
secondary memory. 

The rest of the paper is structured as follows: Section 2 presents basic concepts. 
Section 3 describes the problem of pivots selection. Section 4 presents the proposed 
method, and Section 5 shows experimental results. Finally, conclusions and future 
lines of work are presented. 
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2   Basic Concepts 

A metric space (Χ, d) consists of a universe of valid objects X and a distance function 
d:X×X→ℜ+ defined among them. This function satisfies the properties: strictly 
positiveness d(x,y)>0, symmetry d(x,y)=(y,x), reflexivity d(x,x)=0 and triangular 
inequality d(x,y)≤d(x,z)+d(z,y). A finite subset DB of X, with |DB|=n, is the set of 
elements where searches are performed. The definition of the distance function 
depends on the type of objects. In a vector space, d may be a function of Minkowski 
family:  Ls((x1, ..., xk),(y1, ..., yk))=(∑ |xi–yi|

s )1/s. Some examples are: Manhattan 
distance (p=1), Euclidean distance (p=2), and Chebychev distance (p=∞).  

In metric databases queries of interest can be: range search and k-nearest neighbors 
search. In the first, given a query q and a radius r, objects that are at a distance less 
than r are retrieved: {u∈DB / d(u,q)≤r}.  In k nearest neighbors search, the k objects 
closest to q are retrieved, that is: A⊆DB such that |A|=k and ∀u∈A, v∈DB-A, 
d(q,u)≤d(q,v). The basic way of implementing these operations is to compare each 
object in the collection with the query. The problem is that, in general, the evaluation 
of the distance function has a very high computational cost, so searching in this 
manner is not efficient when the collection has a large number of elements. Thus, the 
main goal of most search methods in metric spaces is to reduce the number of 
distance function evaluations. Building an index, and using the triangular inequality, 
objects can be discarded without comparing them with the query. There are two types 
of search methods: clustering-based and pivots-based [1]. The first one splits the 
metric space into a set of equivalence regions, each of them represented by a cluster 
center. During searches, whole regions are discarded depending on the distance from 
the cluster center to the query. Pivot-based algorithms select a set of objects in the 
collection as pivots. An index is built by computing distances from each object in the 
database to each pivot. During the search, distances from the query q to each pivot are 
computed, and then some objects of the collection can be discarded using the 
triangular inequality and the distances precomputed during the index building phase. 
Some pivot-based methods are: Burkhard-Keller-Tree [2], Fixed-Queries Tree [3], 
Fixed-Height FQT [3], Fixed-Queries Array [4], Vantage Point Tree [5], 
Approximating and Eliminating Search Algorithm [6], Linear AESA [7] y SSS [8,9]. 

This paper presents an improving to the Sparse Spatial Selection (SSS) method, 
implementing new policies for selecting incoming and outgoing pivots from the 
index. The proposed method is dynamic, because the collection can be initially empty, 
or can increase or decrease with time. Also, this proposal generates a number of 
pivots based on the intrinsic dimensionality of the space.  

3   Related Work on Pivots Selection  

Pivots selection affects the efficiency of the search method in the metric space, and 
the location of each pivot with respect to the others determines the ability to exclude 
elements of the index without directly comparing them with the query. Most search 
pivots-based methods select pivots randomly. Also, there are no guidelines to 
determine the optimal number of pivots, parameter which depends on the specific 



collection. Several heuristics have been proposed for the selection of pivots, as if the 
distance function is continuous or discrete. In [7] pivots are objects that maximize the 
sum of distances among them. In [10] a criterion for comparing the efficiency of two 
sets of pivots of the same size is presented. Several selection strategies based on an 
efficiency criterion to determine whether a given set of pivots is more efficient than 
another are also presented. The conclusion is that good pivots are objects far away 
among them and to the rest of the objects, although this does not ensure that they are 
always good pivots.  

In [8] the Sparse Spatial Selection (SSS) which dynamically selects a set of pivots 
well distributed throughout the metric space is presented. It is based on the idea that, 
if pivots are dispersed in the space, they will be able to discard more objects during 
the search. To achieve this, when an object is inserted into the database, it is selected 
as a new pivot if it is far enough from the other pivots. A pivot is considered to be far 
enough from another pivot if it is at a distance greater than or equal to M×α. M is the 
maximum distance between any two objects. α is a constant parameter that influences 
the number of selected pivots and its takes optimal experimental values around 0.4. 

In all of the analyzed techniques for selecting pivots, the number of pivots must be 
fixed in advance. In [10] experimental results show that the optimal number of pivots 
depends on the metric space, and this number has great importance in the method 
efficiency. Because of this, SSS is important in order to adjust the number of pivots as 
well as possible. To improve SSS, we propose that the index suits to searches, after 
the index was adapted to the metric space. 

4   Proposed Method  

We present a new indexing and similarity searching method based on dynamic 
selection of pivots. The proposed method is dynamic, because it could be applied to 
an initially empty database that grows over time. The method is adaptive, because it is 
not necessary to preset the number of pivots to be used because the algorithm selects 
pivots as necessary to self-adapt it to space complexity. 

In the construction of the index, SSS is applied to select the initial pivots. Then, as 
time passes and searches are performed, we apply new policies for selecting pivots in 
order to eliminate those least discriminating pivots from the index, and to select 
objects as candidate pivots to put them into the index. In this way, we can adapt 
dynamically the index to searches performed during a given time. 

4.1   Initial construction of the index and growth of the collection 

Let (X,d) be a metric space, where DB⊂X is the database. Let M be the maximum 
distance between objects (M=max{d(x,y) | x,y ∈X}), and α a value between 0.35 and 
0.40 [8]. The collection of elements is initially empty.  

The first object x1 inserted into the database, is the first pivot p1. When the second 
(or new) object is inserted in the database, its distance to all pivots that are already in 
the index is calculated. If these distances are all greater than or equal to M×α, this 



object is added to the set of pivots. That is, an object of the collection will be a pivot 
if it is more than a fraction of the maximum distance of all pivots. Thus, the set of 
pivots does not have to be selected randomly, because pivots are chosen as the 
database grows. Then, distances from the new pivot against to all database objects are 
calculated and stored. Also, the value of M is updated. The pseudo code is: 
  

Input : (X,d), DB ,M , α 
Output : Pivots 
0   Pivots ← { x

1
}  

1   FOR ALL x
i
 ∈ DB DO 

2           IF( ∀p ∈ Pivots, d( x
i
, p) >= M× α)  

3               THEN Pivots ← Pivots ∪ { x
i
} 

4           END IF 
5           Recalculate the value of M, and update.  
6   END FOR ALL  

 
Pivots that were selected for the initial index are far apart (over M×α). For many 

authors, this is a desirable feature of the set of pivots. The number of pivots depends 
on the initial dimensionality of the metric space. When the construction begins, the 
number of pivots should grow rapidly in the index, but this number will be stabilized 
when the database grows. 

4.2   Exchange of Pivots in the Index 

Given a query (q,r), distances of q toward all pivots is calculated. Applying triangular 
inequality, all elements xi∈ DB such that |d(xi,pj)−d(pj,q)|>r for some pivot pj are 
discarded. Not discarded objects form the list of candidates, {u1,u2,... un}⊂ DB,  and 
should be compared directly with the query.  From this list of candidates, the statistics 
on the elements of the database that are part of search results is increased in a unit. If 
max1≤j≤k |d(q,pj)-d(e,pj)|>r , then the element e is outside the query range. So, the pivot 
pj discriminates the object e∈ DB. With searches, statistics of discrimination of each 
pivot are stored. These statistics are calculated when search results are obtained.  
 
Selection policy for the Outgoing Pivot. When a pivot is a "bad pivot"? In a query, 
at most n elements (i.e., all elements of the database) can be eliminated. This 
elimination would have split these n discriminations between k pivots. And in a query, 
it is possible to know which pivot discriminates each element e∈ DB. 

Taking into account the objects discriminated by the various pivots, and a set of B 
queries, we define the percentage of discrimination for a pivot pi as 
[%Disc(pi)]=Disc(pi))/(B×n), where Disc(pi) is the amount of items that pivot pi 
discriminates and (B×n) represents the total of possible discriminations. Then, pi is a 
“bad pivot” when [%Disc(pi)] < 1/k where 1/k is an experimental  threshold, which is 
proposed as a constant that depends on the number of pivots in the index. If 
[%Disc(pi)] < 1/k, we say that pi is very little relevant to discriminate, at least in light 
of the B searches made to the database. Then, it is selected as a victim, and it could be 
replaced in a future. So, the selection policy of a victim pivot within the index is to 
choose the "less discriminating pivot". After B searches the pivot with the lower 



percentage of discrimination is determined.  If it is less than a threshold of tolerance 
with value T, it is replaced. Then, T = 1 / (1.1×k) represents a 10% of tolerance, used 
to stabilize the algorithm. This parameter has been evaluated experimentally. 
Recalling that k is the current number of pivots in the index, this constant of tolerance 
is used in the next situation:   

  
  0   IF ( min

1≤j≤k discrimine [ j] < 1 / (1.1 × k) ) THEN { 
1     OutgoingPivot ← GetPivot(); 
2   ChangePivot();   

  3       GenerateIndex(); 
  4   }  

 
In line 0, it is evaluated whether the proportion of j-th discrimination is less than 

the tolerance threshold. If so, this pivot is defined as the “least discriminating pivot” 
leaving it available for pivots exchanging (line 2). When a pivot is replaced, a whole 
column of the distance matrix between the incoming pivot, which is returned from 
GetPivot() method, and all elements of the database are recalculated (GenerateIndex() 
method). The complexity of changing a pivot is n×Θ(distance function). If 
discrimination percentage is not less than T, nothing is done. 

 
Selection policy for the Incoming Pivot. To choose which object becomes a pivot, 
the policy is to propose "the candidate pivot". The approach is similar than to select a 
victim pivot. The idea is to use statistical data of database elements obtained from 
queries. An object e∈ DB will be a candidate pivot if it is most of the times in the list 
of candidates, because an element that was often part of the list of candidates is 
difficult to discriminate with the current pivots. This implies that if this element is 
selected as pivot, in future searches it will improve the percentage of discrimination 
around the region that surrounds it. Another benefit is that it adapts automatically 
pivots to the region where the majority of searches are made. This transforms the 
index into a dynamic structure, achieving its main objective: to reduce distance 
computations in searches. Then, the element that most often was a candidate will be 
taken as the incoming pivot. 

The following pseudo code shows the implementation of the policy for selecting 
incoming pivot (GetPivot() method). In this method the account of times that i-th 
element was part of the list of candidates is used. Thus, the element that most often 
was taken as a candidate is chosen as the candidate pivot to enter to the index.  

 
Input : DB, Stats 
Output : Stats, an array with the time they get the items 

in the database in the list of candidates. 
0 Candidate = NULL; maxCurrentStats = 0; 
1 FOREACH ( e on Database)) DO 
2     IF (Stats( e) > maxCurrentStats)  
4           THEN Candidate =  e;  
5   maxCurrentStats = Stats( e); 
6     END IF 
7 END FOREACH 
8 RETURN Candidate 

 
In line 0, variable values are initialized. In line 2 the statistical value of each 

element e is compared with the current maximum value, which represents the element 



that most often was the candidate and which will be taken as incoming pivot. If the 
statistic value of e exceeds the current one, in line 5 e is selected as the future 
incoming pivot, and the iteration continues. 

5   Experimental Results 

For experimentation several sets of synthetic random points in vector spaces of 
dimension 8, 10, 12 and 14 are used. The Euclidean distance function is used. The 
number of distance evaluations required to answer a query using the proposed 
policies, how the index adjusted itself as queries are processed, and how database size 
affects the index performance, was analyzed. The database contains 100,000 objects, 
and range query retrieved the 0.02% elements from the database. 

 
Number of Pivots in the Index. Our proposal creates a dynamic amount of pivots, 
depending on the space dimensionality, and not on the number of objects in the 
database. For experiments α=0.5 was set, in order to achieve a uniform and distant 
distribution of pivots in the space. This value of α was chosen from experimental 
results showed later (Figures 5 and 6). Table 1 and Figure 1 show the number of 
pivots depending on the collection size, as the number of elements is growing.  
 
Table 1: Number of pivots selected in vector spaces of dimension 8, 10, 12 and 14. 

n, size of the collection (x 103 ) 
dim 10 20 30 40 50 60 70 80 90 100 
8 11 12 12 12 13 13 14 14 15 16 
10 13 18 20 20 21 21 21 21 21 22 
12 25 28 28 31 32 34 34 34 34 34 
14 38 47 53 60 60 61 63 66 69 69 

 

 
Fig. 1: Number of pivots selected in vector spaces of dimension 8, 10, 12 and 14. 

 
As it is noted, the number of pivots grows very quickly with the insertions of the 

first objects in the collection, and then continues to grow but in a slower degree until 



it get to stabilize. So, with few elements inserted, number of pivots depends on 
number of elements in the database. Already with a considerable amount of elements 
inside, the set of current pivots covers all the metric space. In addition, number of 
pivots in the index increases as the size of the space increases. So, the number of 
pivots in the index depends on the complexity of the collection of objects. 

 
Search efficiency. To analyze the efficiency of the index for searching, a database 
with 10,000 objects, 1,000 queries and dimensionalities 8, 10, 12 and 14, are used. 20 
periods were run, and information from all periods was averaged. For each dimension, 
the amount of distance functions evaluated (#DE), the amount of pivots used in the 
index (#P), and the amount of discriminations carried out (#DR), were recorded, 
assessing the proposed method against SSS.  

 
Table 2: Efficiency in synthetic metric spaces with different methods. 

 dim = 8 dim = 10 dim = 12 dim = 14 
Method #P #DE #DR #P #DE #DR #P #DE #DR #P #DE #DR 

SSS 17 17994 6141634 24 26391 6393097 34 35721 6623490 60 62976 6915951 
Proposal 15 15737 6394202 23 24380 6657667 33 34686 6717067 44 45683 7025895 
 

 
Fig. 2: Number of pivots, depending on dimensions 8, 10, 12 and 14. 

 
Table 2 shows that the number of pivots used with our proposal is always lower 

than in the implementation of SSS, highlighting a marked difference in dim=14, with 
16 pivots less. In the remaining dimensions, the difference is little, but it remains at 
most 2 pivots less in our favour. In Figure 2, it can be noted that our proposal has a 
minor number of pivots. This is an important result, because the strategy of pivots 
selection of SSS presents a similar efficiency to other more complexes methods and 
the number of pivots that it selects is close to the optimal number for other strategies. 

Figure 3 shows the amount of distance evaluations. The number of evaluations for 
our proposal always remains below, and, in general, with a uniform linear growth 
when the size increases. Except in dim=14, where SSS shows a slight growth with the 
amount of reviews, with a difference of about 17,000 reviews, in other dimensions the 
difference never exceeds 3,000.  



 
Fig. 3: Distance functions evaluated, depending on dimensions 8, 10, 12 and 14. 

 
As results exposed in [8], the number of evaluations of the distance function in 

SSS is always around to the best result obtained with pivot selection techniques and 
strategies proposed in [10]. In conclusion, the proposal here presented, makes a 
number of distance evaluations similar to the best results obtained in previous works, 
even using a smaller number of pivots, which clearly implies space savings. 

Figure 4 shows that the use of our proposal in searches obtains a greater number of 
discriminations by pivots, in all dimensions where it was experienced.  

 

 
Fig. 4: Discrimination carried out, depending of dimension 8, 10, 12 and 14. 

 
In the first two dimensions, there is a major difference between numbers of 

discriminations made. A great performance with the selected pivots with our selection 
policies, in contrast with pivots selected using pure SSS, is showed. This is because, 
with the time, the proposal makes an adjustment of pivots, and they make better 
discrimination, reducing the amount of computations of the distance function at query 
time. Thus, it shows that both selection policies of pivots (incoming and outgoing) are 
good, and that maintains the dynamism of the index. 

 
About parameter α. The value of parameter α determines the number of pivots. 
Values between 0.35 and 0.40, depending on the dimensionality of the collection, are 
recommended [8]. Here we decided to use values of α from 0.32 to 0.54, in order to 



evaluate the number of pivots in the index, since a rise in α represents a reduction in 
the number of pivots and this is noted better in spaces of higher dimension. In 
dimensions 2, 8, 10, 12 and 14, α varies in the range shown above.  
 

 
Fig. 5: Number of pivots selected by the parameter α.  

 

 
Fig. 6: Evaluations of the distance function according to the parameter α.  

 
As shown in Figure 5 for all dimensions, the number of pivots varies with α, with 

some local maximum and minimum and large amplitude in greater dimensions. Then 
the observed value 0.50 decreased the number of pivots, as expected. Figure 6 shows 
the number of distance evaluations, varying α, in order to analyze the impact of our 
proposal in searches. As seen, in all dimensions there is a consistent behaviour, which 
gradually begins to decrease when α increases. This is because when distance 
between pivots increases, the required distance function evaluations decrease. This 
value has a uniform behaviour because values of 20 periods were averaged. The early 
periods have largest number of assessments and with the passing of periods, pivots 
were adapting to searches. In addition, it achieves more discrimination when α 
increases, because with the passing of periods, in our proposal, pivots are adjusted 
and searches are improved, discriminating more elements and decreasing the 
computations of distance functions. 



5   Conclusions  

This paper presents a new indexing and similarity search method based on dynamic 
selection of pivots. One of its most important features is that it uses SSS for the initial 
selection of pivots, because it is an adaptive strategy that chooses pivots that are well 
distributed in the space to achieve greater efficiency. In addition, two new selection 
policies of pivots are added, in order to the index suites itself to searches when it is 
adapted to the metric space. The proposed structure automatically adjusts to the 
region where most of searches are made, to reduce the amount of distance 
computations during searches. This is done using the policy of 'the most candidate' 
for the incoming pivot selection, and the policy of 'the least discriminates' for the 
outgoing pivot selection. Future work is to evaluate the performance of this proposal 
with real metric spaces, such as collections of texts or images. Moreover, from the 
results of experiments, to implement algorithms that work with indexes in secondary 
memory can be proposed. An improvement to selection policies would be to use a 
data warehouse for training the index with historical search data.  
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