
Metrics Development for UML Tools evaluation

A. Dasso, A. Funes, M. Peralta, C. Salgado

{ arisdas, afunes, mperalta, csalgado} @unsl.edu.ar

SEG

Universidad Nacional de San Luis

Ejército de los Andes 950

D5700HHW San Luis

Argentina

http://sel.unsl.edu.ar/

Tel.: +54 (0) 2652 42 4027 ext. 251

Fax: +54 (0) 2652 43 0224

Abstract. The Unified Modelli ng Language (UML) has become a defacto standard for software development
practitioners. There are several tools that help the use of UML. Users of those tools must evaluate and compare different
versions of the tools they intend to use or are using to assess the possibilit y of changing or acquiring one. There are
several ways to perform this evaluation from the simple rule-of-thumb to numeric or quantitative methods. We present
an ongoing project that evaluates UML tools using the Logic Scoring of Preference (LSP) method. This method is very
briefly presented and also some of the ongoing work in building a model directed to UML tool evaluation is explained.

Introduction

The Unified Modelli ng Language (UML) [BRJ98], [OMG98] has lately become a defacto standard
for software developers, whether for documenting an existing system, when doing reverse
engineering on legacy systems or for development purposes from the early stages of development
up to and including coding.

There are several tools that help the use of UML in any of its different applications. Users of those
tools must evaluate and compare different versions of the tools they intend to use or are using to
assess the possibilit y of changing or acquiring one. There are several ways to perform this
evaluation from the simple rule-of-thumb to numeric or quantitative methods.

We present an ongoing project that evaluates different families of UML tools using the Logic
Scoring of Preference (LSP) method. This method is very briefly presented and also some of the
ongoing evaluation work directed to UML tool evaluation is explained.

Evaluating families of software tools such as database management systems, programming
languages, web browsers, operating systems, or any other kind of software tools, etc., is done to
choose one particular software among several possibiliti es or simply to asses several pieces of
software.

Although this activity can have a great economic impact it is not always carry out with the care it
should. There are several methods to do this evaluation ranging from the most informal to the more
careful and formal, from the simpler form based on the personal opinion of evaluators, to the one
that using the opinion of evaluators or users can construct a li st of desired characteristics of the
software and then analyse them against those characteristics, particularly assigning numerical
values for the satisfiabilit y of every desired characteristic for every software being evaluated. The
result of this assignment can be a simple addition or more complex and sophisticated methods can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be used.

One of them is the Logic Scoring of Preference, which is the method we have been using to
evaluate different families of software: web browsers, web programming languages and others to
come. For more information on the method see [DUJ96], [DuBa97] and [DuEl82].

Past and Current Work

We have already used the LSP method to evaluate Data Base Management Systems [DFPS04], web
browsers [FDD00] and also web programming languages [DPS03], as well as in the human
resources field [DDF03]. We have constructed a list of desired characteristics for all of these
evaluations and then used the LSP method to aggregate them and obtain results.

LSP is a method for the realization of complex criterion functions and their application in the
evaluation, optimisation, comparison and selection of general complex systems.

As a starting point in the LSP method, it must be clearly determined what the user requirements, the
main attributes of the system and their preference values are. These attributes are called
performance variables. Each one of these variables is mapped into an elementary preference by
defining and applying the corresponding elementary criteria.

In order to develop an exhaustive list of requirements, a hierarchical decomposition process for
requirement derivation is applied. At the beginning all major groups of requirements are defined,
and then through successive decompositions each group is decomposed into subgroups. By
repeating this process the system Requirement Tree is obtained. The tree leaves correspond to the
performance variables.

Elementary criteria are functions that transform real values from a performance variable into a value
called elementary preference, which belongs to the [0,1] interval. They represent the degree of
fulfilment of the requirements. Therefore, to define the different elementary criteria is necessary to
have some previous experience to determine what is the range of acceptable values for each
performance variable.

The elementary preferences are used as input for the LSP criterion function. This function yields a
single global indicator of the degree of fulfilment of the system requirements. The LSP criterion
function is built by aggregating the elementary preferences. To aggregate preferences means to
replace a group of preferences (the input preferences) by a single preference (the output preference).
It denotes the degree of satisfaction of the evaluator with respect to the group of input preferences.
The process starts by aggregating groups of related elementary preferences and generating
subsystem preferences. Therefore, the elementary preferences, corresponding to the system
requirement tree leaves, are aggregated in new preferences, one by each elementary preference
parent. This bottom-up process is repeated with the resulting groups of subsystem preferences until
a single global preference can be computed.

If we want to aggregate n elementary preferences E1,...,En in a single preference E, the resulting
preference E –interpreted as the degree of satisfaction of the n requirements– must be expressed as a
function having the following properties:

1. The relative importance of each elementary preference Ei (i= 1...n) can be expressed by a
weight Wi ,

2. min(E1,...,En) ≤ E ≤ max(E1,..., En) .

These properties can be achieved using the weighted power means:

 E(r) = (W1 E
r
11 + W2 E

r
2 +...+ Wn E

r
n)

1/r , where

0 < Wi < 1, 0 ≤ Ei ≤ 1, i = 1, ..., n

W1 + ...+Wn = 1,

∞ ≤ r ≤ +∞

The choice of r determinates the location of E(r) between the minimum value Emin = min(E1,...,En)
and the maximum value Emax = max(E1,...,En). For r = -∞ the weighted power mean reduces to the
pure conjunction (the minimum function) and for r =
+∞ to the pure disjunction (the maximum function),
giving place to a Continuous Logic Preference (CPL).
For a more detailed description of the technique for
selection of r see [3], [4].

Normally the range between pure conjunction and
pure disjunction is covered by a sequence of
equidistantly located CPL operators: C, C++, C+,
C+–, CA, C–+, C–, C– –, A, D– –, D–, D–+, DA,
D+–, D+, D++, D.

In order to perform the evaluation more automatically
we have developed a tool that implements the LSP
method [DFPS01]. This tool has been used in several
evaluations done by our group. An example of a
screen of the tool is shown in Figure 1.

UML Tools Requirements

As was said above the first step when using the LSP method is to determine precisely the user’s
needs to be able to build the corresponding Requirement Tree.

In this particular case we are considering ourselves the users, so the process of building the
Requirement Tree reverts to us. So we are currently developing the Requirement Tree and working
on the desired characteristics that will help us to evaluate different UML tools.

Our ongoing research has examined some of the categories that would go into the Requirement
Tree. Some of them are shown below. There is a brief discussion of what each item should evaluate.

• Complete UML support.

This metric measures the extent to which tools support the different features of UML.
Supported features are considered for all of the static and dynamic UML diagrams, that is Class
Diagrams, Use Case Diagrams, Collaboration Diagrams, Sequence Diagrams, State Diagrams,
Implementation Diagrams and Activity Diagrams.

• Direct and Reverse Engineering.

Tools should support direct and reverse engineering into different languages –Java, C++,
Delphi, etc. So this item will have a nearly direct relation to the number and probably the
current ‘weight’– of the languages supported.

When doing Direct Engineering is useful to be able to go from the model to the code as well as
from the code to the model to resynchronise the model with code at the end of every iteration.

Also when doing Reverse Engineering this feature becomes useful in generating a model from
the code when there was not a previous model.

• HTML Documentation.

Figure 1 Example of tool screen.

Tools should permit hyperlink navigation, reasonable documentation generation times and
bitmap images of the model.

• Selection Lists.

In some diagrams –i.e. class– tools should provide the possibilit y of associating an object to a
class chosen from a list, select messages send between objects, import or export classes to and
from other packets or modules.

• Model Exportation and Importation

A useful feature for a tool is the possibly of import and export models in a standard format such
as XMI and also to save models in graphics formats such as JPEG, GIF, etc.

• Versioning.

Different versions of the model should coexist and tools should have the possibilit y of keeping
track of them.

• Navigation.

This item measures the provisions for model navigation between different diagrams and
versions. Zoom options as well as source code.

Conclusions and Future Work

We have been now for several years evaluating different software tools using LSP. We have
presented here an outline of our current work in constructing a model for evaluating UML tools.
The first step in the LSP evaluation process is the building of the Requirement Tree, which is the
task that we are now undertaking.

The LSP method implies a permanent review process of every step that is quite similar to a spiral
model. Therefore we expect to continue improving our current model and also starting to define
Elementary Criteria and assigning values to the different Performance Variables and later
constructing an Aggregation Structure.

We also are planning to continue expanding in the future the use of the LSP method to the
evaluation of other software tools.

References

[BRJ98] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modelli ng Language User Guide”.
ISBN 0-201-57168-4. Addison-Wesley, Reading, MA, 1998.

[DDF03] N. Debnath, A. Dasso, A. Funes, G. Montejano, D. Riesco, and R. Uzal, "The LSP
Method Applied to Human Resources Evaluation and Selection", Journal of Computer
Science and Information Management, Publication of the Association of
management/International Association of Management, Volume 3, Number 2, 2003,
ISBN 1525-4372, pp.1-12.

[DFPS01] A. Dasso, A. Funes, M. Peralta, C. Salgado, “Una Herramienta para la Evaluación de
Sistemas”, Workshop de Investigadores en Ciencias de la Computación, WICC 2001,
Universidad Nacional de San Luis, San Luis, Argentina, May 2001.

[DFPS04] A. Dasso, A. Funes, M.Peralta, C. Salgado, “User Oriented Evaluation Models for
DBMSs”, 33 Jaiio (ASIS 04), Córdoba, Argentina, 20-24 de Septiembre, 2004.

[DPS03] N. Debnath, M. Peralta, C. Salgado, A. Funes, A. Dasso, D. Riesco, G. Montejano, R.
Uzal, "Web Programming Language Evaluation using LSP", Proceedings de CAINE03,
Las Vegas, USA, 11-13 de Noviembre, 2003.

[DuBa97] J. J. Dujmovic and A. Bayucan, “Evaluation and Comparison of Windowed
environments”, Proceedings of the IASTED Interna Conference Software Engineering
(SE' 97), pp 102-105, 1997.

[DuEl82] J. J. Dujmovic and R. Elnicki, “A DMS Cost/Benefit Decision Model: Mathematical
Models for Data management System Evaluation, Comparison, and Selection”, National
Bureau of Standards, Washington, D.C., No. NBS-GCR-82-374, NTIS No. PB82-
170150 (155 pages), 1982.

[DUJ96] J. J. Dujmovic, “A Method for Evaluation and Selection of Complex Hardware and
Software Systems”, The 22nd International Conference for t he Resource Management
and Performance Evaluation of Enterprise Computing Systems. CMG96 Proceedings,
vol. 1, pp.368-378, 1996.

[FDD00] A. Funes, A. Dasso, J. Dujmovic, G. Montejano, D. Riesco, R. Uzal, “Web Browsers
Performance Analysis using LSP Method”. Proceedings of the International Conference
on Software Engineering Applied to Networking and Parallel/ Distributed Computing,
SNPD ' 00. Reims, France, May 18-21, 2000.

[OMG98] Object Management Group, “OMG Unified Modelling Language Specification”.
Framingham, MA, 1998. URL: http//www.omg.org

