
Towards Scaling Up DynAlloy Analysis using
Predicate Abstraction

Rodrigo Ariño, Renzo Degiovanni, Raul Fervari,
Pablo Ponzio and Nazareno Aguirre

Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,
Ruta 36 Km. 601, Ŕıo Cuarto (5800), Argentina.
{rodrigoarino, renzo.degiovanni}@gmail.com,

{rfervari, pponzio, naguirre}@dc.exa.unrc.edu.ar

Abstract. DynAlloy is an extension to the Alloy specification language
suitable for modeling properties of executions of software systems. Dy-
nAlloy provides fully automated support for verifying properties of pro-
grams, in the style of the Alloy Analyzer, i.e., by exhaustively searching
for counterexamples of properties in bounded scenarios (bounded do-
mains and iterations of programs). But, as for other automated analy-
sis techniques, the so called state explotion problem makes the analysis
feasible only for small bounds. In this paper, we take advantage of an
abstraction technique known as predicate abstraction, for scaling up the
analysis of DynAlloy specifications. The implementation of predicate ab-
straction we present enables us to substantially increase the domain and
iteration bounds in some case studies, and its use is fully automated. Our
implementation is relatively efficient, exploiting the reuse of already cal-
culated abstractions when these are available, and an “on the fly” check
of traces when looking for counterexamples. We introduce the implemen-
tation of the technique, and some preliminary experimental results with
case studies, to illustrate the benefits of the technique.

1 Introduction

With the well established success of model checking, computer scientists and
an increasing number of practitioners have increased their interest in the con-
struction of automated tools for the verification of software systems. Despite
some breakthrough advances in automated analysis techniques, such as the use
of symbolic representations in model checking, algorithms for automated ver-
ification essentially work by performing an exhaustive exploration of the state
space of programs, and thus they can fail to terminate in a reasonable amount of
time, even for simple models/programs and properties. Automated SAT based
analyses, such as those associated with the Alloy Analyzer and bounded model
checkers, are no exception to this situation, and therefore techniques for tackling
the so called state explosion problem are necessary.
Alloy [13] is a specification language of increasing popularity in the last few
years. Alloy is based on an extension of first order logic. Its main features are its

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


simplicity and ease of use, and the availability of an automated tool -the Alloy
Analyzer- for simulating and finding violations of properties of Alloy specifica-
tions. As models of specifications (models in the sense of mathematical logic) are
potentially infinite, the tool constructs all the possible instances up to a bound
on the data domains given by the user, and checks if they satisfy the desired
property. If an instance that violates the property is found, it is showed to the
user as a counterexample. If, on the other hand, no counterexample is found, one
cannot in principle guarantee the validity of the property being checked, since
there might exist counterexamples to the property for bigger domains. However,
in the absence of counterexamples, it definitely allows us to gain more confidence
about the validity of the property.
While Alloy is useful for modeling static properties of systems, it has problems
when dealing with the dynamics of software systems. To overcome these prob-
lems an extension to the language was proposed, called DynAlloy [8]. Based
on dynamic logic, DynAlloy provides a simple way to specify properties of ex-
ecutions. DynAlloy also has an automated tool which allows users to find of
specifications, by translating DynAlloy specifications into Alloy.
The usefulness of Alloy is justified by the small scope hypothesis [13], which
asserts that most errors have counterexamples of small size. Some research sup-
porting this hypothesis has been carried out [14]. Unfortunately, the analysis
of Alloy and DynAlloy specifications do not scale up well, and analysis is only
possible using small bounds. The reason for this problem is strongly related to
the state explosion problem mentioned, and is due to the analyses being based
on a reduction to boolean satisfiability, which is a well known NP problem.
In order to overcome the scalability issues associated with automated analy-
sis techniques, many approaches have been proposed: abstraction [2, 5, 11, 6],
symbolic execution [12, 7], static analysis, etc. We are interested in a predicate
abstraction technique that allows us, given a set of predicates over the state
space of a model, to automatically construct an abstract model whose states are
boolean valuations of the predicates over concrete states. As the abstractions
that we construct are conservative, the properties that can be verified on the ab-
stract model also hold in the concrete model. Therefore, as the abstract model
is usually simpler -in the sense that it has less states than the concrete model-
less time and memory is required to complete the verification tasks.
A problem associated with abstraction is that we often construct abstract mod-
els that are too coarse to verify a certain property. For this reason, automatic
algorithms for refining abstractions have been developed [6, 1]. They are based
on the observation that when trying to verify a property over an abstract model
two different kinds of counterexamples may appear: real counterexamples that
when concretized perform a violation of the property on the concrete model,
or spurious counterexamples, i.e., undesired behaviors introduced by the loss of
information resulting from the abstraction. Given a spurious counterexample,
the information it provides can be used to construct new abstraction predicates.
The purpose of the new predicates is to refine the current abstract model, elim-
inating the spurious counterexample. The result of this may be that the new



refined model can be used to verify a property for which the original abstraction
failed.
In [10] we introduced a fully automatic predicate abstraction algorithm for Dy-
nAlloy specifications, inspired by Graf and Saidi’s work [11]. The algorithm tra-
verses the abstract state space of the DynAlloy program in a depth first order.
At each step an abstract state is constructed using only the previous abstract
state and the specification of the action currently executed. A key aspect of our
algorithm, is that previously constructed abstract states can be reused in the
construction of new abstract states. As we use Alloy to automatically construct
the abstractions, this has a big impact on the algorithm’s run time performance.
Now, we present a tool that fully implements that algorithm. This tool was de-
veloped with extensibility in mind, making it easy to add new abstraction algo-
rithms, or modifications of the current one. This tool implements an adaptation
of Das and Dill’s technique [6] in order to deal with spurious counterexamples
and refine abstractions.

2 The Alloy and DynAlloy Specification Languages

Alloy is a specificacion language based on relational logic, an extension of first
order logic designed to support relational operators: relational image, closures,
transpose, etc. Alloy syntax is OO-like and simple, it has only a few reserved
keywords, making the language easy to learn and use for people with basic
mathematical training. The language was designed with automatic tool sup-
port in mind, so it was developed together with an automatic tool -the Alloy
Analyzer- which allows users to simulate models and search for counterexamples
of properties that the model is intended to satisfy. Given an Alloy specification,
a property, and bounds over the data domains of the Alloy model, the Analyzer
constructs a propositional formula -representing the specification and the nega-
tion of the property- that is passed as input to an off-the-shelf SAT solver. If
the SAT solver finds a model, a counterexample to the property is constructed
based on this model. Otherwise the property does not have counterexamples on
the given bounds.
Alloy is a model-oriented language, designed to specify properties of software
systems. To model state change in Alloy it is necessary to introduce identifiers
for states before and after the action is executed; this is a common practice in
the Z language [15], on which Alloy was inspired. Although Alloy allows us to
describe simple (single action) state change rather easily, it does not provide an
adequate way to specify properties of more sophisticated executions of systems
[8]. One way to simulate executions in Alloy is to manually introduce a notion of
execution trace as a signature, which depends on the specification’s signatures
and operations and, therefore, must be defined on a per model (or per program)
basis. This problem was addressed by an extension of Alloy -the DynAlloy lan-
guage. DynAlloy introduces the notion of atomic action to model state change,
and operations to compose these actions, whose semantics was inspired by dy-
namic logic. For the sake of space, we will introduce the most relevant parts of



the DynAlloy language by means of examples.
The state of a system is specified in Alloy and Dynalloy using signatures. Sig-
natures define sets of elements, and relations between them. As an example, we
define the structure of linked lists of integers:

one sig Null {} sig Node { sig List {

next: Node+Null, head: Node+Null,

value: Int }

}

In the above definitions Null is a singleton set, representing the null reference,
present in most programming languages. Node is the universe of nodes that may
belong to a linked list, next is a binary relation that relates each node to its
successor and value assigns to each node the integer value stored in it. Finally,
List is the set of all possible lists, and head associates a head node (or a null
reference) with each list.
DynAlloy atomic actions are useful for describing operations over the signatures
of the model. They must be defined in terms of their corresponding pre and
postconditions. For example, an operation that deletes the element at the head
of a list can be defined as follows:

action removeFirst[l: List] {

pre { l.head != NullValue }

post { l’.head = l.head.next }

}

removeFirst can only be executed if the list’s head is non null. Note the simi-
larity of the dot expressions (like l.head) with that of object oriented languages.
The postcondition introduces the variable l’ to denote the state after the exe-
cution of the action. In this case, it states that the successor of the head of the
list becomes the new head. In this way, we can think of the postcondition of an
action as a relation between pre and post states.
DynAlloy provides three operators for composing atomic actions: sequential com-
position (;), non deterministic choice (+) and bounded iteration (*). Combining
atomic actions and tests (assertions) using these operators we form DynAlloy
programs. Programs are also annotated with pre and postconditions, to spec-
ify intended properties of programs, and then search for counterexamples. For
example:

assertCorrectness removeAll[l:List]{

pre = { }

prg = {([l.head != NullValue]?;removeFirst(l))*;[l.head = NullValue]?}

post = { l’.head = NullValue }

}

Assertion removeAll can be thought of as the specification corresponding to
the program while (head(l) != NullValue) do removeFirst(l). Its post-
condition asserts that when the program finishes the list is empty, which should



obviously be valid.
Given a DynAlloy specification, the DynAlloy Translator automatically con-
structs an equivalent Alloy model which allows one to “execute” the program
using the Alloy Analyzer. Bounds on the number of iterations to be executed
and on the number of elements of signatures are necessary to perform the trans-
lation; the user must provide them. Executions of the program that violate the
specification are shown to the user by the analyzer. It is worth noting that ex-
periments showed that the analysis of dynamic properties is more efficient using
DynAlloy (and its transation into Alloy) than the traditional Alloy approach,
explicitly defining trace signatures in Alloy [9].

3 A Predicate Abstraction Algorithm for DynAlloy

Cousot introduced the idea of Abstract Interpretation [4], which consists of in-
terpreting computations of programs over simpler (abstract) domains, that en-
code less information about the computations, but are usually easier to con-
struct and explore. The method is based on the definition of two functions:
α : ℘(S) → SA, γ : SA → ℘(S). α maps sets of concrete states to abstract
states, and is called the abstraction function; γ associates with each abstract
state the set of concrete states it represents. α and γ must conform a so called
Galois Connection, that is, α(γ(sA)) = sA and ϕ ⇒ γ(α(ϕ)); this ensures that
abstract states represent over approximations of sets of concrete states. In addi-
tion, the sets of initial states must be included in the concretization of the initial
abstract state, and applying an abstract transition τAi to an abstract state sA

must result in a set of states containing τi(γ(sA)). This requirement ensures
that each concrete trace has a a corresponding trace on the abstract model. The
advantage of Abstract Interpretation is that the (safety) properties we verify on
the abstract domain are also valid for the concrete domain. This technique is
very powerful, allowing one, for instance, to apply model checking algorithms
to infinite state systems, and to analyze systems with complex state spaces over
which model checking algorithms would fail to terminate in a reasonable amount
of time.

Two decades later, Graf and Saidi introduced Predicate Abstraction [11] as
a way to automate the construction of abstract domains, given a set ϕ1, ..., ϕl
of predicates over the state of the program, that must be provided by the user.
Based on this work we developed a predicate abstraction algorithm for DynAlloy
[10]. Our concrete state space is composed of the DynAlloy signatures defining
the state space of the program. Given abstraction predicates ϕ1(s), ..., ϕl(s),
our abstract state space consists of the set of monomials over boolean B1, ..., Bl.
A monomial is a conjunction of Bi’s and ¬Bi’s, where each of the variables ap-
pear at most once. The boolean constant false is also considered as a monomial.
Note that, to obtain the concrete set of states represented by an abstract state
(monomial) a replacement of each Bi for the correspoding ϕi suffices. Hence, the
concretization function is defined as:



γ(m) = m[B1/ϕ1, ..., Bl/ϕl]

To explain how to perform one step in the abstract execution of the program we
first need to introduce the abstraction function:

α(ψ(s)) = (
∧
{Bi|all s : ψ(s) ⇒ ϕi(s)}) ∧ (

∧
{¬Bi|all s : ψ(s) ⇒ ¬ϕi(s)})

Thus, to automatically construct the abstract monomial corresponding to ψ we
use the Alloy Analyzer to check whether ψ implies each of ϕi or ¬ϕi for all con-
crete states s. Since we use the Alloy Analyzer for performing these checks, the
answer in not necessarily absolute (we assume that a formula is valid if the An-
alyzer is unable to find bounded counterexamples for it). The bounds needed to
run the checks must be provided by the user. To perform an abstract execution
we first have to calculate the abstract state corresponding to the initial concrete
states. We do this by directly applying α to the precondition of the DynAlloy
program. Next, we have to calculate the abstract transitions and apply them in
the order prescribed by the program. Thus, given an abstract state sA and an
abstract action τAi , the idea to abstractly execute τAi starting at sA is to apply τi
to each state of γ(sA), and then abstract away the result. Now, since DynAlloy
postconditions are not predicates over the system state, but instead they relate
action’s initial states with final states, we need, in order to apply the abstraction
function, to write a predicate for the strongest postcondition (SP) of τi with re-
spect to γ(sA). That is, assuming τi has precondition preτi

(s) and postcondition
postτi

(s, s′), SP (τi, γ(q))(s′) = ∀s : preτi
(s) ∧ γ(q)(s) ∧ postτi

(s, s′). Now α can
be applied to SP (τi, γ(q))(s′) to obtain the desired abstract successor.

For example, if we consider the abstraction predicates ϕ0 = NoLoops(l) and
ϕ1 = NullHead(l), an abstract execution of the RemoveFirst action (defined in
section 2) starting at the monomial B0 ∧ ¬B1 will finish in the abstract state
B0.

It is interesting to note that our algorithm does not construct the complete
abstract state space as the technique showed in[11] does, since this is -as some
experiments have shown- very expensive. Instead, it constructs the abstractions
“on demand”, that is, the algorithm visits the program control tree in a depth
first search manner, starting by abstracting the initial states, and then apply-
ing abstract transitions in the mentioned order. The DFS algorithm executes
loops up to a bound given by the user. The postcondition of the DynAlloy pro-
gram (concrete property to verify) is always included as an abstraction predicate
(say ϕp). Therefore, as the procedure executes over approximations of concrete
traces, we can ensure that if all the abstract traces end up in a monomial with
Bp set then the concrete program satisfies the intended property (up to the
bound for loops unrolling). If this is not the case, the algorithm will stop when
it explores the first trace that does not satisfy the above requirement. These
kind of traces are called abstract counterexamples, that is, they are traces that
when concretized may or may not violate the concrete property. A concretized
abstract counterexample that violates the concrete postcondition is called a real



counterexample. Otherwise, it is a spurious counterexample: an abstract trace
that does not have any concrete counterpart, produced by the loss of informa-
tion on the abstraction process. Spurious counterexamples must be eliminated
from the abstract model if we want to continue the abstract verification. Fur-
thermore, they can be useful to refine abstractions, as it is exploited by the so
called counter example guided abstraction refinement techniques.

An important feature of the algorithm is that (part of) the abstractions
produced can be reused. As it builds the abstractions using the Alloy Analyzer,
which is based on an NP-Complete algorithm, reusing as much information as
possible is imperative to improve the running time of the algorithm. The idea
behind reuse is that, if we have previously built an abstract state s′A applying
an action τi to another state sA, then the boolean variables appearing at s′A will
be set in the same way on each state obtained by applying τi to any consistent
abstract state s′′A that is stronger than sA. This is due to the way we calculate
the abstractions (by calculating logical implications). Hence, the algorithm stores
the result of each execution of an abstract transition, and uses this information
when possible at the following uses of the same action in the DFS execution.

Due to a lack of space, we will leave out the counterexample guided refinement
process, and concentrate on the process for the construction of the abstraction
(and checking its suitability).

4 Some Notes on the Implementation

In this section, we briefly describe the implementation of a tool automating the
above described abstraction technique. The tool consists of two main modules,
the abstraction module, that implements the abstraction algorithm, and the
abstraction refinement module, that implements predicate discovery based on
the spurious counterexamples returned by the abstraction phase.

Fig. 1. Interaction of main tool’s modules.

The interaction of these modules is depicted in figure 1. The abstraction
module takes a concrete model and abstraction predicates as inputs, and it
abstractly executes the given program. As a result, either the abstract model
satisfies the specification, or an abstract counterexample trace is found. In the
first case, the user is reported about the validity of the property and the whole



execution ends. Otherwise, the counterexample found is passed as an input to
the abstraction refinement module. If the counterexample is real, it is shown to
the user and the process finishes; otherwise, the module uses the abstract trace
to generate a new abstraction predicate. The new predicate is then added to the
abstraction predicates and the abstraction process is restarted.

The tool is implemented using the Java programming language, and it in-
teracts with the latest versions of the Alloy Analyzer and DynAlloy Translator,
to perform certain tasks. As we mentioned, the tool was developed with exten-
sibility in mind, so that new abstraction algorithms and new ways to perform
predicate discovery can be incorporated straightforwardly. A diagram illustrating
the design of the abstraction module is shown in figure 2. The main components
of this module are the following:

– Main: retrieves the information from the GUI and it is responsible of execut-
ing the abstraction and the predicate discovery algorithms. Coordinates the
interaction between the Abstraction Module and the Abstraction Refinement
Module.

– IAbstractionModule: Interface that defines common operations to abstrac-
tion algorithms.

– AbstractionModule: Abstract class that contains attributes and implemen-
tations of common operations to abstraction algorithms for DynAlloy spec-
ifications. it contains attributes used to store input predicates, abstraction
bounds, number of times loops should be executed, etc.

– OnDemandAbstraction: Implementation of the predicate abstraction algo-
rithm discussed in section 3.

– IAbstractionUtils: Defines the signatures of the abstraction and concretiza-
tion functions.

– AbstractStore: Stores the results of previously executed transitions, and pro-
vides methods to easily access this information, that will be used to avoid
unnecessary calls to the Alloy Analyzer to improve the efficiency of the ab-
straction.

– AlloyUtils: Defines operations needed by the abstractor whose implemen-
tation is based on the Alloy Analyzer and the DynAlloy Translator source
code.

5 Some Experimental Results

In this section, we present some experimental results using the presented tool.
The experiments were carried out on an Intel Core 2 Duo of 2Ghz, with 2GB of
RAM, running GNU/Linux 2.6. The version of the Alloy Analyzer employed was
4.1.8. We experimented mainly with two properties over the model of linked lists
introduced before; these properties are: (P1) that the deletion method preserves
the acyclicity of linked lists, and (P2) that no occurrences of the elements to be
deleted belong to the list, before the current position of the cursor used for the
implementation of deletion.



Fig. 2. Diagram for the abstraction module.

Without using abstraction, the Alloy Analyzer was able to verify P1 in 18
minutes and 36 seconds, for 20 loop unrolls and 21 as a scope for domains, and
P2 in 27 minutes, for 15 loop unrolls and 16 as a scope for domains. The Alloy
Analyzer exhausted the available memory for 24 loop unrolls and 25 as a scope
for domains for P1, and 16 loop unrolls and 17 as domain scope for P2, and
crashed after several hours running. Using abstraction via the presented tool,
we were able to verify P1 in 4 minutes and 18 seconds for 20 loop unrolls and 21
as scope for domains (with 52428513 less calls to the Alloy Analyzer, thanks to
reuse of abstraction calculations), and in 57 mins. and 26 seconds, for 25 loop
unrolls and 26 as scope for domains (and a total of 1677721308 less calls to the
Alloy Analyzer). For P2, we were able to verify the property for 20 loop unrolls
and 21 as scope for domains in 4 mins. and 23 seconds, while it took the tool 76
mins and 18 seconds, for 25 loop unrolls and 26 as domain scope (the savings in
calls to the Alloy Analyzer were similar to those of P1)

The results are promising, but we were unable to achieve the performance
we expected. We are currently optimizing several parts of the abstraction tasks,
aiming at scaling up DynAlloy analysis for about an order of magnitude.

6 Conclusions

We presented an implementation of a predicate abstraction technique for Dy-
nAlloy specifications, developed for scaling up the analysis of DynAlloy specifi-
cations. This tool enabled us to substantially increase the domain and iteration
bounds in some case studies, and our implementation allows us to apply it au-
tomatically. For the sake of efficiency, our implementation exploits the reuse of
already calculated abstractions when these are available, and an “on the fly”
check of traces when looking for counterexamples. The preliminary results of
some experiments we carried out are promising, showing that the technique is



worthy. However, many improvements still need to be developed. First, there
are several opportunities for saving space in the representation of the concrete
and abstract computation trees, and we are currently moving to a control graph
representation. Second, in its current form the tool can only handle DynAlloy
specifications originating from code (where atomic actions are reversible); other
more abstract DynAlloy models fail to be abstracted, due to technical reasons
having to do with the calculation of weakest preconditions of traces when calcu-
lating or refining abstractions. We plan to enhance our tool so that these more
abstract DynAlloy models are also handled.

References

1. T. Ball, B. Cook, S. Das and S. Rajamani, Refining Approximations in Software
Predicate Abstraction, in Proc. of International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, LNCS, Springer, 2004.

2. E. Clarke, O. Grumberg and D. Long, Model checking and abstraction, ACM Trans-
actions on Programming Languages and Systems, 16(5), ACM Press, 1994.

3. E. Clarke, D. Kroening, N. Sharygina and K. Yorav, Predicate Abstraction of ANSI-
C Programs using SAT, Technical Report CMU-CS-03-186, Carnegie Mellon Uni-
versity, 2003.

4. P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints., Proc. of 6th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 1977. ACM Press.

5. P. Cousot, Abstract interpretation, ACM Comp. Surveys, 28(2), ACM Press, 1996.
6. S. Das and D. Dill, Counterexample Based Predicate Discovery in Predicate Ab-

straction, in Proc. of International Conference on Formal Methods in Computer
Aided Design, Portland, USA, LNCS, Springer, 2002.

7. Dennis, G., Chang, F, Jackson D. Modular Verification of Code with SAT. Proc.
of the ACM/SIGSOFT Int. Symposium on Software Testing and Analysis, 2006.

8. M. Frias, J.P. Galeotti, C. López Pombo and N. Aguirre, DynAlloy: upgrading alloy
with actions, in Proc. of the 27th International Conference on Software Engineering
ICSE 2005, ACM Press, 2005.

9. M. Frias, J.P. Galeotti, C. López Pombo and N. Aguirre, Efficient Analysis of Dy-
nAlloy Specifications, in ACM Transactions on Software Engineering and Method-
ology (TOSEM), ACM Press, 2007.

10. N. Aguirre, M. Frias, P. Ponzio, B. Cardiff, J.P. Galeotti and G. Regis, Towards Ab-
straction for DynAlloy Specifications, in Proc. of the 10th International Conference
on Formal Engineering Methods, LNCS, Springer, 2008.

11. S. Graf and H. Säıdi, Construction of abstract state graphs with PVS, in Proc. of
9th International Conference on Computer Aided Verification, Haifa, Israel, LNCS
1254, Springer, 1997.

12. S. Khurshid, C. Pasareanu, W. Visser, Generalized Symbolic Execution for Model
Checking and Testing, in Proc. of the 9th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, LNCS, Springer, 2003.

13. D. Jackson, Software Abstractions, The MIT Press, 2006.
14. A. Andoni, D. Daniliuc, S. Khurshid, and D. Marinov., Evaluating the “Small Scope

Hypothesis”, Technical Report MIT-LCS-TR-921, MIT CSAIL, 2003.
15. J. Woodcock, J. Davies, Using Z: Spec., Refinement and Proof, Prentice-Hall, 1996.


