
Access Coordination: Group of Processes

Karina M. Cenci and Jorge R. Ardenghi

Laboratorio de Investigación en Sistemas Distribuidos
Departamento de Ciencias e Ingenieŕıa de la Computación

Universidad Nacional del Sur
{kmc,jra}@cs.uns.edu.ar

Abstract. We propose a distributed algorithm for the group mutual
exclusion problem in a network with no share memory whose members
only communicate by messages. The proposed algorithm is composed
by two players: groups and processes, groups are passive players while
processes are active players. For the coordination access to the resource,
each group has assigned a quorum. The groups have associated priorities
in each stage, meanwhile the processes have the same level priority. An
important feature is that processes have associated a time to participate
in the group in each stage.

Keywords: Mutual Exclusion - Group Mutual Exclusion - Concurrency
- Distributed Systems

1. Introduction

In distributed systems there are processes that compete in using resources and
others that cooperate and share resources for solving a task. The main problem
to solve is to recognize it as a mutual exclusion one. This problem arise in
multiprogramming environments because processes require exclusive access for
using resources, e.g. printers, database. Differents solution have proposed to
solve this problem, e.g. [2], [3], [10], [11], [12]. When some processes cooperate
and others compete appears a difference of the original problem, knowed as
group mutual exclusion, there are differents approach for this problem using
differents paradigms and implementations, e.g. [4], [5], [7], [8], [13]. In the new
approach two properties are important: exclusion among competing processes
and concurrence among cooperative processes.

In this paper, we propose a distributed algorithm to the problem of group
mutual exclusion coordination, considering that the processes require a time to
share the resource in a group. We consider that every group has an associated
priority.

2. Preliminaries

Let be a set of n processes p0, p1, ..., pn−1; a set of m groups g0, g1, ..., gm−1

and a unique, non shareable, resource among the m groups. The processes may

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

work alone or in cooperation with others processes in a group. Any of the n

processes is able to participate in a group. Only one group at a time is allowed
to use the resource.

Initially each process works alone. When the process wants to work in a team,
selects a group. Each process may select any of the differents groups with a finite
time of work in the team. Figure 1 shows an example of relation between the
groups and the processes; where p1, p2 and p7 are linked to the group g3, this
is active and has the permission to use the resource, that means that all the
processes are using concurrently the resource. Processes p0 and p8 are linked to
the group g3 that is competing to gain the access to the resource.

Resource

Groups

ProcessesP
0

P
1

P
2

P
7

G
1

G
3

G
m

P
8

P
n

Fig. 1. Example of Relation between the players

The model of two players, posed in [6], proposed a general solution to this
problem using two players: groups and processes. Figure 2 shows the communi-
cation between the players. The processes are active players and the groups are
passive players, the relation between the players is temporary. When the player
group is activated, begins the competition to access the resource.

Player Processi Player Groupk

Selects

Ok

Finish

Fig. 2. Communication between the players

The design of a solution for this problem requires an algorithm that satisfies
the followings requirements.

– Mutual Exclusion: if some process is in a group, then no other process can
be in a different group simultaneously.

– Bounded Delay: a process attempting to participate in a group will eventu-
ally succeed.

– Progress: when the resource is available (the critical section is empty), and
some groups are waiting, at some later point one group gain the access to
the resource.

– Concurrent Entering: if some processes are interested in a group and no
process is interested in a different group, then the processes can participate
in the group concurrently.

3. Algorithm GPTP (Group Priority Time Process)

This section presents a solution to the problem of group mutual exclusion includ-
ing time associated with the players (groups and processes), using messages for
the communication. Applying the model of the two players, [6], to this situation,
we obtain the following:

– When the player process wants to participate in a group, first specifies his
time and then selects the group. Waits until the group allow the access.

– At the moment the player group activates, its assigns the time (duration) of
the first process to use the resource.
While the player group is waiting to access to the resource (entry section):

When a request from a player process arrives, adds the request to
the active queue and compares the duration of the process with de
group duration, if it is greater, then sets the duration to the maximal
duration of the new player process.

While the player group is using the resource (critical section):
When a request from a player process arrives, compares if the dura-
tion of the process in not greater than remainder duration (group du-
ration - elapsed duration) then adds the request to the active queue
and accept the request, otherwise adds the request to the waiting
queue until the next stage.

The time associated with each player does not represent deadline time but
represents its duration in the critical section. In distributed environment, we
have to consider the communication time (time delay). We assume a reliable
network, with a estimated communication time tc, and a finite time of use of
the resource. The communication time is necessary to adjust the remainder time
(duration), for accept or not a new player process while the player group is in
the critical section. We define the following variables:

– tci,k: Delay estimation of the communication between the group Gk and the
process Pi

– tpoduri: Process time associated to the group in a stage
– gtpok: Group time in a stage

When the player group receives a request from a process and it is in the
critical section, the acceptance control for a new process is the following: tpoduri

< (remainder timek - tci,k), where remainder timek = (gtpok - tpousek)
When the time group finishes, we consider the following options:

1. Waits until all the associated processes release the group.
2. Inform the associated processes in order to finish theirs associations. We

could consider different possibilities.
(a) Waiting for all of the process acknowledge. The delay time could be

unpredictable.
(b) Release the critical section (release the resource) and allow another group

to access. This option avoids the waiting time, but the notification could
be delay to a associated process and continue using the resource while a
different group gain the access to the critical section. This situation no
guarrantees the group mutual exclusion property.

In accordance with the constrains imposed for allowing the active association
in the group, we assume that the group does not take in acount its own time,
when each process finish that, informs to the group; when the group is empty
of participants processes release the critical section, this option simplifies the
solution and is acceptable because the associated time is not critical.

The figure 1 shows the actions of the player process. The process, in each
stage, sends two messages to the group and receives one message from the group.

process Pi

RemainderSection
...

EntrySection
Gk = chosen group
tpoduri = chosen the time to use the resource
send Req-Process (Gk, Pi, topduri)
receive Rep-Process (Gk, Pi)

CriticalSection
... duration tpoduri

ExitSection
send Rel-Process (Gk, Pi)

Fig. 3. Actions of Player Process Pi

– Req-Process (Gk, Pi, topduri): the process Pi sends a request message to the
group Gk to participate in during a period topduri.

– Rep-Process (Gk, Pi): the process Pi receives the reply of his request from
Gk, that allow to access the resource.

– Rel-Process (Gk, Pi): the process Pi sends a message to the group Gk to
inform, it has finihed the period in the group and it is unlink.

The time that the process stays in the critical section is tpoduri and then
release its association with the group.

The figure 4 shows the variables of the group Gk. The figure 5 shows the
actions of the player group associated with the process and the others groups.
The states of the group are the followings: Inactive: is waiting for participating
processes, Active: is waiting to access the resource, CS is using the resource and
Exit is releasing the resource. Each linked process has the same priority, and
each group has an associated priority, two different groups could have the same
priority. The proposed protocol is based on priority without prompt meanwhile
the group with lower priority is using the resource.

Variables
state (Inactive, Active, CS, Exit)
LP: keeps information of all the linked process.
LG: keeps information of all the pendent request of lock.
gtpok: keeps the time to use the resource.
priori: keeps the priority of the group in the stage.

Fig. 4. Variables Group Gk

The group communicates with the associated processes and with the others
groups. Messages received from the process are:

– Req-Process(Gk, Pi, tpoduri) this message is received from a process, if the
group is Inactive then changes its state to Active, adds the request to the
list LP and sets the length of time of the group (gtpok) with the length of
time of the process (tpoduri). If the group is Active adds the request, and
checks the length of time of the group with the length of time of the process,
if it is the lowest then sets its current time length with the process time
length. If the group is in SC adds the request and checks the remaining time
group with the length of time process, if it is the greatest then accepts the
process request and allow to participate in this stage, otherwise the process
has to wait for the next stage.

– Rel-Process(Gk, Pi) this message comes from a process to release his link
with the group. Removes the request from the list LP. If the list LP is empty
of active process then release the resource. If exit waiting processes in the
list then the group begins a new stage.

Figure 6 (a) shows the state of the group gk (Active) with their linked
processes pi, pj and pm, the time of the group is equal to the time of process
pm. Figure 6 (b) shows when arrives a new request from process ps to link the
group with a time (tpodurs > gtpok), since the group is in the Active state,
sets the value of its time with the time of ps, figure 6 (c) shows this modification.

group Gk

♦ Receive Req-Process(Gk, Pi, tpoduri)
case state of

“Inactive”: gtpok = tpoduri; state = “Active”;
conj = ∅; priori = chosen priority; AddLp(LP, Pi)
AddLG(LG, Gk, priori); send multicast Req-Grupo(Gk, prior)

“Active”: if tpoduri > gtpok then gtpok = tpoduri

AddLp(LP, Pi)
“SC”: AddLp(LP, Pi)

if tpoduri ≤ (gtpok - tpousek - tci,k) then send Rep-Process(Gk, Pi)
“Exit”: AddLp(LP, Pi)

♦ Receive Rel-Process(Gk, Pi)
DeleLp(LP, Pi)
if activeempty(LP) then

state = “Exit”; send multicast Lib-Group(Gk); Gl = SelectGroup(LG)
send Rec-Group(Gl, Gk); state =“Inactive”
if not empty(LG) then

state = “Active”; conj = ∅; priori = chosen priority
send multicast Req-Group(Gk, priori)

♦ Receive Req-Group(Gl, priori)
if empty(LG) then

AddListGroup(LG, Gl, priori); send Rec-Group(Gk, Gl)
else

if HigherPriori(LG, Gl, priori) then Gs = findHigh(LG);
send Rel-Group(Gs, Gk); AddListGroup(LG, Gl, priori)

else
AddListGroup(LG, Gl, priori)

♦ Receive Rec-Group (Gl, Gk)
if Gl /∈ conj then

conj = conj ∪ {Gl}
if |conj|=|Sk| then

state = “CS”
For each process in LP do

send Rep-Process(Gk,Pi)

♦ Receive Rel-Group (Gl, Gk)
if state 6= “CS” then conj = conj - {Gl}; send Rep-Rel-Group(Gk, Gl)

♦ Receive Rep-Rel-Grupo (Gl, Gk)
Gs = findHigher(LG); send Rec-Grupo(Gk, Gs)

♦ Receive Lib-Group (Gl)
DeleListGroup(LG, Gl)
if not emptyListGroup(LG) then

Gs = findHigher(LG); send Rec-Group(Gk, Gs)

Fig. 5. Actions of Player Group Gk

gk

gtpo
k

pi

tpodur
i

pj

tpodur
j

pm

tpodur
m

(a) Group Active -Entry Sectionk

gk

gtpo
k

pi

tpodur
i

pj

tpodur
j

pm

tpodur
m

(b) Group Active -Entry Section. Request from pk s

ps

tpodur
s

gk

gtpo
k

pi

tpodur
i

pj

tpodur
j

pm

tpodur
m

(c) Group Active -Entry Section. Request accepted of pk s

ps

tpodur
s

gk

gtpo
k

pi

tpodur
i

pj

tpodur
j

pm

tpodur
m

(d) Group CS -Critical Sectionk

gk

gtpo
k

pi

tpodur
i

pj

tpodur
j

pm

tpodur
m

(e) Group SC -Critical Section. Request from pk s

ps

tpodur
s

gk

gtpo
k

pi

tpodur
i

pj

tpodur
j

pm

tpodur
m

(f) Group SC -Critical Section. Request of p has to waitk s

ps

tpodur
s

tpouse
k

tpouse
k

tpouse
k

waits

Fig. 6. Concurrency

Figure 6 (d) shows the state of the group gk (SC) with their linked processes pi,
pj and pm, and the tpousek > 0. Figure 6 (e) shows when arrives a new request
from process ps to link the group with a time tpodurs. Since the time tpodurs

is greater than (gtpok - tpousek - tcs,k) and the group is in SC then the process
ps has to wait for the next stage, figure 6 (e) shows this case.

The messages among the groups correspond to the competition for gain the
access of the resource. The algorithm uses messages to obtain the permissions
from the others groups. Each group has associated a quorum (set of groups) to
request the permission of access (Sk). To select the quorum, we use the Maekawa
method [11], the size of the quorum is

√

M , where M is the number of groups.
When the group obtains all the permissions can use the resource and inform to
his associated processes.

The algorithm satisfies the properties of mutual exclusion, progress and con-
current entering. But has problems and not satisfies bounded delay, this happens
because we consider priorities associated to the groups, know as starvation. To
minimize this:

– When a group with a lower priority is using the resource, the others groups
with higer priority that want to access they must wait.

– When a group is using the resource (state = “SC”), accepts new requests of
processes only if the time associated is less than his remainder time. With
this consideration, none of the groups stays indefinitely using the resource.

4. Complexity

The complexity of the algorithms can be measure using different topics, like
the number of access to shared memory, the delay time between entries in the
critical section, the number of exchanged messages. The election of the measure
depends on the type of the algorithm.

The complexity of the algorithm is measured in function of the number of
the messages requires. In the best case, each group requires for gain the access
and release 3(

√

M − 1) messages, where (
√

M − 1) for request the permission,
(
√

M − 1) for grant the permission, (
√

M − 1) for release the permission. If it
has associated: one process, in total requires 3+3(

√

M −1); l processes, in total
requires 3l + 3(

√

M − 1). The worst case could not be estimated, because the
algorithm suffers from starvation. If in average, each group has to yield once so,
the number of messages requires are 5(

√

M − 1), where (
√

M − 1) for yield the
permission, (

√

M − 1) for grant the permission, with l associated processes in
total requires 3l + 5(

√

M − 1).

5. Conclusions

In this paper, we proposed a distributed algorithm for group mutual exclu-
sion considering that processes have an associated time to share the group, this
should be the duration they will cooperatively work in the group in each stage.

The algorithm is based on priorities over the groups with no prompt, the com-
munication among the processes and groups uses messages. The groups have
assigned a quorum, that it uses in the competition for reach the permissions to
access the resource.

The algorithm guarantees mutual exclusion, progress and concurrent en-
tering, but suffers of starvation because of the priorities. In the best case,
where the group does not yield the permission, with l processes linked, requieres
3l + 3(

√

M − 1) messages. This solution may suffer of starvation, it could be
improved through the concept of aging.

References

1. Attiya H., Hendler D., Woelfel P. Tight RMR Lower Bounds for Mutual Exclusion
and other Problems Proc. 27 th. ACM Proceedings on Distributed Computing, pp
447, 2008.

2. D. Barbara, H. Garćıa-Molina. Mutual exclusion in partitioned distributed systems.
Distributed Computing, vol. 1, no. 2, pp. 119–132, 1986.

3. Karina Cenci, Jorge Ardenghi Exclusión Mutua para Coordinación de Sistemas
Distribuidos. CACIC 2001.

4. K. Cenci, J. Ardenghi Algoritmo para Coordinar Exclusión Mutua y Concurrencia
de Grupos de Procesos CACIC 2002.

5. K. Cenci, J. Ardenghi Exclusión Mutua en Grupos de Procesos a través de Men-
sajes CACIC 2003.

6. K. Cenci, J. Ardenghi Modelos Dos Actores para grupos de procesos CACIC 2008.
7. C. Reyes, K. Cenci Modelo Temporizado de Exclusión para Grupos de Procesos

CACIC 2006.
8. Yuh-Jzer Joung Asynchronous Group Mutual Exclusion (extended abstract). In

Proc. 17 th. ACM Proceedings on Distributed Computing, 1998.
9. Y. J. Joung. Quorum-Based Algorithms for Group Mutual Exclusion. IEEE Trans-

actions on Parallel and Distributed Systems, pp. 463–476, Mayo 2003.
10. L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System.

Communications of the ACM, Julio 1978.
11. M. Maekawa. A

√
N Algorithm for Mutual Exclusion in Decentralized Systems.

ACM Transactions on Computer Systems, vol 3, issue 2, pp. 145–159, Mayo 1985.
12. Michael Raynal. Algorithms for Mutual Exclusion. MIT Press, Cambridge, 1986.
13. K. P. Wu, Y. J. Joung. Asynchronous Group Mutual Exclusion in Ring Networks.

13th International Parallel Processing Symposium / 10th Symposium on Parallel
and Distributed Processing (IPPS / SPDP ’99), 12-16 Abril 1999. Proceedings.
IEEE Computer Society, pp. 539–543, 1999.

