
Automatic mapping tasks to cores. Evaluating AMTHA

Algorithm in multicore architectures.

Laura De Giusti
1
, Emilio Luque

2
, Franco Chichizola

1
, Marcelo Naiouf

1
, Armando De

Giusti
1

1Instituto de Investigación en Informática (III-LIDI) – School of Computer Sciences–UNLP.

Argentina
2Universidad Autónoma de Barcelona (UAB) - Computer Architecture and Operating System

Departtment (CAOS) Spain

ldgiusti@lidi.info.unlp.edu.ar, emilio.luque@uab.es, {francoch, mnaiouf, degiusti}@lidi.info

.unlp.edu.ar

Abstract. The AMTHA (Automatic Mapping Task on Heterogeneous

Architectures) algorithm for task-to-processors assignment and the MPAHA

(Model of Parallel Algorithms on Heterogeneous Architectures) model are

presented.

The use of AMTHA is analyzed for multicore processor-based architectures,

considering the communication model among processes in use.

The results obtained in the tests carried out are presented, comparing the real

execution times on multicores of a set of synthetic applications with the

predictions obtained with AMTHA.

Finally current lines of research are presented, focusing on clusters of

multicores and hybrid programming paradigms.

Keywords: Parallel Algorithm Models – Task-to-Processor Mapping -

Performance Prediction – Multicore Architectures –

1 Introduction

A cluster is a parallel processing system formed by a set of PCs interconnected over

some kind of network and that cooperate as if they were an “only and integrated”

resource, regardless of the physical distribution of its components. When two or more

clusters are connected over a LAN or WAN network, we are in the presence of a

multicluster [13].

The hardware and operating system of the participating machines may be

different; each machine may even be a “multiprocessor”, as is the case in multicore

architectures that are so relevant nowadays. Multicore processors include several

processing elements within an integrated circuit. This type of architectures are

considered as a solution to the limitation of one core machines to increase computing

power due to the increase in temperature [13][14][15].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Figure 1 shows the typical design of a current multicore architecture, composed by

two processors that share the main memory. Each of these processors in turn is

formed by four cores that share one L3 cache memory (this memory may not be

present in some models). There is also an L2 cache memory that is shared by pairs of

cores. Finally, each core has its own L1 cache memory.

Fig. 1. Diagram of a multicore structure.

 As it can be seen from Fig. 1, the communication between the various cores is

done through the various memories of the architecture. Thus, the communication time

between two cores is given by the time required to access the corresponding memory.

In the case of Fig. 1, there are three levels of shared memory with their corresponding

communication times. It is possible to build clusters using multicores; Fig. 2 shows a

diagram of this type of architecture.

NET

 P0 P1

 P5 P4

 P7

 P6

 P2

 P3

Fig. 2. Diagram of a multicore cluster.

The advent of this type of distributed architectures that can be accessed by any user

has promoted the growth of parallel processing as a technique to increase architecture

L 2

L 2

L 3

Sh
ar

ed
 M

em
o

ry
 L 2

L 2

L 3

P1 P2

exploitation. Application programmers should implement this technique by describing

its component tasks and the interaction between them. Once the application has been

developed, the programmer or user of the application on a parallel architecture will

have to decide how to do it. That is, they should select how many of the

processors/cores in the architecture will be used and how the application tasks will be

assigned to them, in order to achieve the best possible throughput of the architecture

with the lowest response time. This problem of solving the distribution of tasks

between processors is called scheduling.

The problem of the automated scheduling of tasks to processing elements

(processors in conventional machines and cores in multicore computers) is highly

complex [1]. This complexity can be briefly represented considering the two main

elements relating the parallel application to the supporting architecture: each node’s

processing capacity and the cost in time of communicating two processing elements

[2].

The goal of modeling processing architectures is to obtain an “abstract” or

simplified version of the physical machine, capturing crucial characteristics and

disregarding minor details of the implementation [3].

A model does not necessarily represent a given real computer, but allows studying

classes of problems over classes of architectures represented by their essential

components. In this way, a real application can be studied over the architecture

model, allowing us to get a significant description of the algorithm, draw a detailed

analysis of its execution, and even predict the performance [4].

In the case of parallel systems, the most currently used architectures – due to their

cost/performance relation - are clusters and multiclusters of multicores; for this

reason, it is really important to develop models fitting the characteristics of these

platforms. Essential elements to be considered are the potential heterogeneity of

processors/cores and the different communication resources (shared memory, buses,

networks), which add complexity to the modeling [5][6].

At present, there are different graph-based models to characterize the behavior of

parallel applications in distributed architectures [7]. Among these models, we can

mention TIG (Task Interaction Graph), TPG (Task Precedence Graph), TTIG (Task

Temporal Interaction Graph) [8], TTIGHA (Task Temporal Interaction Graph on

Heterogeneous Architectures) [9] and MPAHA (Model on Parallel Algorithms on

Heterogeneous Architectures) [10].

Once the graph modeling the application has been defined, the scheduling problem

is solved by an algorithm that establishes an automatic mechanism to carry out the

assignment of tasks to processing elements, searching for the optimization of some

running parameter (usually, time) [11][12]. Among the known mapping/scheduling

algorithms, we consider AMTHA (Automatic Mapping Task on Heterogeneous

Architectures), a mapping algorithm to carry out the assignment of tasks, making up

the application to the processors of the architecture [10]. This algorithm considers the

heterogeneous characteristics of the architecture taken into account in MPAHA

(Model on Parallel Algorithms on Heterogeneous Architectures) model [10].

The AMTHA algorithm was developed to carry out the scheduling of applications

executed over cluster and multicluster architectures using conventional machines. The

focus of this paper is analyzing the operation and adaptability of the AMTHA

algorithm to multicore cluster architectures.

In Section 2, the scheduling algorithm AMTHA and the MPAHA model are

described. Section 3 deals with the possible use of AMTHA and MPAHA for

multicore clusters. In Section 4, the experimental work carried out with a multicore

machine is presented, and the results obtained are detailed in Section 5. Finally,

Section 6 presents the conclusions and the future lines of work.

2 AMTHA mapping algorithm

AMTHA is a static mapping algorithm that is applied to the graph generated by the

MPAHA model. It allows determining the assignment of tasks to the processors of the

architecture to be used, minimizing the execution time of the application. This

algorithm must also provide the order in which subtasks (forming the task) assigned

to each processor should be executed (task scheduling) [10].

The MPAHA model is based on the construction of a directed graph G (V,E),

where:

 V is the set of nodes representing each of the tasks Ti of the parallel program. Each

node represents a task Ti of the parallel program, including its subtasks (Stj) and the

order in which they should be executed to perform the task. If there is a

heterogeneous architecture, the computation times for each processor should be

taken into account (Vi (s,p) = execution time of subtask s in processor type p).

 E is the set of edges representing each of the communications between the nodes of

the graph. An edge A between two tasks Ti and Tj contains the communication

volume (in bytes), the source subtask (Ti) and a target subtask (Tj).

It should be noted that, given the heterogeneity of the interconnecting network,

instead of representing the time required for the communication, the corresponding

communication volume between two subtasks is represented.

AMTHA considers an architecture with a limited number of heterogeneous

processors. As regards the interconnecting network, the algorithm also considers that

bandwidth and transmission speed can be heterogeneous.

The AMTHA algorithm uses the values of graph G generated by the MPAHA

model; these values are the time required to compute a subtask in each type of

processor, the communication volume with adjacent processors, and the task to which

each subtask belongs.

Fig. 3. Pseudo-code with the basic steps of the AMTHA algorithm.

Calculate rank for each task.
Whereas (not all tasks have been assigned)

1. Select the next task t to assign.

2. Chose the processor p to which task t should be assigned.
3. Assign task t (selected in step 1) to processor p (selected in step 2).

4. Update the rank of the tasks involved in step 3.

The AMTHA algorithm assigns one task at a time until all tasks have been

assigned. Figure 3 shows the pseudo-code with the main steps of the algorithm.

When the execution of the AMTHA algorithm ends, all the tasks have been

assigned to one of the processors and the order in which the subtasks forming the

tasks assigned to these processors will be executed has also been determined.

The following paragraphs describe each of the three steps followed during the

execution of the AMTHA algorithm.

2.1 Calculating the rank of a task

Given a graph G, the rank of a task Rk(T) is defined as the sum of the average times

of the subtasks forming it and that are ready for execution (all predecessors have

already been assigned to a processor and are already there). Equation 1 expresses this

definition:

)()()(iavgTLi StWTRk (1)

where:

L(T) is the set of subtasks that are ready for task T.

Wavg (St) is the average time of subtask St. The average time is calculated as

shown in Equation 2.

P

pprocessoroftypeV
StW

Pp St
iavg

i

#

)(
)(

 (2)

where P is the set of processors present in the architecture and #P is the

number of processors forming this set.

2.2 Selecting the task to execute

After obtaining the rank of each application task, the task that maximizes it is

selected. If there are two or more tasks that have the same maximum value, the

algorithm breaks this tie by selecting the one that minimizes the total execution time

average for the task. Equation 3 shows this calculation:

)()(iavgTi StWTTavg (3)

2.3 Selecting the processor

Selecting the processor involves choosing the computer within the architecture that

minimizes the execution time when the selected task is assigned to that processor.

In order to understand how the time corresponding to processor p is calculated, the

fact that each processor keeps a list of subtasks LUp that were already assigned to it

and that can be executed (all its predecessors are already placed), and another list that

contains those subtasks that were assigned to p but whose execution is still pending

LNUp (some of their predecessors have not been placed yet) must be taken into

account.

Therefore, to calculate which processor p will be selected, two possible situations

are considered:

1. All subtasks of task t can be placed in p (that is, all its predecessors have

been placed).

2. Some of the subtasks of t cannot be placed in p (this happens when some

predecessor of this subtask has not been placed).

In the first case, the time Tp corresponding to processor p is given by the moment

in which p finishes the execution of the last subtask of t. However, in the second case,

the time Tp corresponding to processor p is given by the time when the last subtask of

LUp will finish plus the addition of all execution times in p for each of the subtasks on

LNUp.

2.4 Assigning the task to the selected processor

When assigning a task t to a processor p, there is an attempt to place each subtask Stk

belonging to t to the processor at a moment in time when all the adjacent subtasks

have already finished (including the predecessor subtask within t, if there is one) and

its communications have been completed. The assignment can be a free interval

between two subtasks that have already been placed in p, or an interval after them. If

subtask Stk cannot be placed, it is added to the LNUp list. Each time a subtask Stk is

added to the LU list of one of the processors, an attempt is made to place all the

predecessors belonging to already assigned tasks.

2.5 Updating the rank value of the pending tasks.

The first action within this step consists in assigning -1 as rank value to the task t that

was assigned to processor p. The reason for this is to prevent task t from being re-

selected for assignment.

Also, the following situation is considered in this step: for each subtask Stk placed

in step 3.4, the need to update the rank of the tasks to which successor subtasks Stsucc

of Stk belong is analyzed; that is, if all predecessors of Stsucc are already placed, then

the rank of the task to which Stsucc belongs is updated by increasing it by Wavg(Stsucc).

3 MPAHA and AMTHA in multicore clusters

3.1 MPAHA model

The MPAHA model described in Section 2 does not require any modification to

be used with multicore processors or multicore clusters. The directed graph G (V,E)

representing the tasks Ti and the communication among them do not change, if the

parallel program is the same; regardless of the physical architecture.

3.2 AMTHA algorithm

When the AMTHA algorithm is run over a multicore cluster architecture, the

following issues should be considered:

 The tasks that are part of the applications to execute will now be placed in some of

the cores in the architecture; these cores are grouped in the various processors.

 The heterogeneity of the architecture as regards communications is not only given

by the existence of different interconnecting networks within the architecture, but

also by the different memory levels (main or cache) shared by the cores within

each multicore machine. That is, two cores of the global architecture may

communicate through different levels of shared memory, or by means of messages

sent through an interconnecting network, which can be seen in Fig 1.

 When the algorithm assigns a task, it must consider the communication costs with

its predecessor tasks. To this end, data related to the communication types that

occur through the interconnecting network used when working with conventional

clusters are required, as well as additional information regarding average access

times for each of the memory levels in the multicores, together with information

about core distribution in the machine.

4 Experimental work

In order to analyze the applicability of the AMTHA algorithm over multicore

architectures, a set of synthetic applications with various characteristics was generated

(as indicated in Section 4.1). For each of these, task assignment to the different cores

in the architecture using the AMTHA algorithm was determined, and the execution

time of using such distribution was estimated (Test).

Based on the distribution done with AMTHA, the application was executed over

the architecture described in Section 4.2 in order to obtain the real execution time

(Texec).

Both times (Test and Texec) were compared to determine how well the AMTHA

algorithm estimates the execution time.

4.1 Choosing the set of applications to evaluate the AMTHA algorithm

A set of applications was selected, in which each of them varied in terms of: number

of tasks (15-25), task size (5-50 seconds), number of subtasks making up a task (3-6),

communication volume among subtasks, and communication probability between two

subtasks (5-35 %). In all the applications, the total computing time exceeds that of

communications (coarse grained application).

4.2 Choosing the architecture for the tests

The most widely used multicore architecture is Dell Poweredge 1950. It has the

following characteristics: 2 quad core, 2.33 GHz Intel Ceon e5410 processors; 4 Gb

of RAM (shared between both processors); 6 MB L2 cache for each pair of processor

cores.

5 Results

To analyze the results of the tests carried out, the difference between the execution

times over the real architecture (Texec) and the estimated execution times obtained

when assigning tasks with the AMTHA algorithm (Test) is calculated.

In Fig. 4, the relative percentage (%Difrel) of this difference in Texec is shown. To

calculate this value, Equation 4 is used.

 100*%
exec

estexec
rel

T

TT
Dif

 (4)

0

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

0,0016

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

%
D

if
re

l

Application

Fig. 4. %Difrel. of the different tests carried out.

As the volume of communications (or the size of the transmitted packages) between

tasks increases, so does the error as a function of the available cache in each core.

However, in the tests carried out this value was never above 4% (always in

applications with a much greater processing load than communication load).

6 Conclusions and future lines of work

As shown in Fig. 4, the %Difrel parameter did not increase beyond 0.0014 in the tests

carried out. This confirms that the AMTHA algorithm is capable of successfully

estimating the execution time of the application over a multicore architecture.

As regards related future lines of work, there are three areas to explore. First, tests

should be extended to a multicore cluster (a Blade HP BL260c G5 with 64 cores in 8

blades with 2 INTEL E5405 processors with a quad core configuration and 2Gb of

RAM will be incorporated soon). A second line of interest is the representation of

communication time in multicore architectures when the messages sent exceed the

capacity of the shared memories (main and cache). Finally, the necessary

modifications to the model (MPAHA) and the scheduling algorithm (AMTHA)

should be determined to consider hybrid programming models (integrating message

passing and shared memory).

Reference

1. Grama A., Gupta A., Karypis G., Kumar V., “An Introduction to Parallel

Computing. Design and Analysis of Algorithms. 2nd Edition”. Pearson Addison

Wesley (2003).

2. Kalinov A., Klimov S., “Optimal Mapping of a Parallel Application Processes

onto Heterogeneous Platform”. Proceeding of 19th IEEE International Parallel

and Distributed Processing Symposium (IPDPS’05), pp 123. IEEE CS Press

(2005).

3. Leopold C., “Parallel and Distributed Computing. A survey of Models, Paradigms,

and Approaches”. Wiley, New York (2001).

4. Attiya H., Welch J., “Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. 2nd Edition”. Wiley-IEEE, New Jersey (2004).

5. Topcuoglu H., Hariri S., Wu M., “Performance-Effective and Low-Complexity

Task Scheduling for Heterogeneous Computing”. IEEE Transactions on Parallel

and Distributed Systems, vol. 13, pp. 260-274 (2002)

6. Goldman, “Scalable Algorithms for Complete Exchange on Multi-Cluster

Networks”. CCGRID'02, pp. 286 – 287. IEEE/ACM, Berlin (2002).

7. Roig C., Ripoll A., Senar M.A., Guirado F., Luque E., “Modelling Message-

Passing Programas for Static Mapping”. Euromicro Workshop on Parallel and

Distributed Processing (PDP’00), pp. 229--236, IEEE CS Press, USA (1999).

8. Roig C., Ripoll A., Senar M., Guirado F., Luque E., “Exploiting knowledge of

temporal behavior in parallel programs for improving distributed mapping”.

EuroPar 2000. LNCS, vol. 1900, pp. 262--71. Springer, Heidelberg (2000).

9. De Giusti L., Chichizola F., Naiouf M., De Giusti A. “Mapping Tasks to

Processors in Heterogeneous Multiprocessor Architectures: The MATEHa

Algorithm”. Accepted for publication in the proceedings of the International

Conference of the Chilean Computer Science Society (SCCC 2008). IEEE CS

Press.

10. De Giusti L. “Mapping sobre Arquitecturas Heterogéneas”. PhD Dissertion,

Universidad Nacional de La Plata (2008).

11. Cuenca J., Gimenez D., Martinez J., “Heuristics for Work Distribution of a

Homogeneous Parallel Dynamic Programming Scheme on Heterogeneous

Systems”. Proceeding of the 3rd International Workshop on Algorithms, Models

and Tools for Parallel Computing on Heterogeneous Networks (HeteroPar’04), pp

354-361. IEEE CS Press (2004).

12. Cunha J.C., Kacsuk P., Winter S., “Parallel Program development for cluster

computing: methodology, tools and integrated environments”. Nova Science Pub.,

New York (2001).

13. Thomas W. Burger. Intel Multi-Core Processors:Quick Reference Guide.

http://cachewww.intel.com/cd/00/00/23/19/231912_231912.pdf

14. Mc. Cool Michael “Programming models for scalable multicore programming”

http://www.hpcwire.com/features/17902939.html (2007)

15. Lei Chai, Qi Gao, Dhabaleswar K. Panda. “Understanding the Impact of Multi-

Core Architecture in Cluster Computing: A Case Study with Intel Dual-Core

System”. IEEE International Symposium on Cluster Computing and the Grid

2007 (CCGRID 2007), pp. 471-478 (May 2007).

16. Suresh Siddha, Venkatesh Pallipadi, Asit Mallick. “Process Scheduling

Challenges in the Era of Multicore Processors”Intel Technology Journal, Vol. 11,

Issue 04, November 2007.

http://cachewww.intel.com/cd/00/00/23/19/231912_231912.pdf
http://www.hpcwire.com/features/17902939.html
http://www.computing.surrey.ac.uk/courses/csm23
http://www.multicoreinfo.com/research/papers/2007/Intel-jrnl-Process_Scheduling_Challenges.pdf
http://www.multicoreinfo.com/research/papers/2007/Intel-jrnl-Process_Scheduling_Challenges.pdf

