
Alternatives for Implementing Methods

for Finding Agents in a Multi-Agent Systems

Mariano Tucat Alejandro J. Garćıa

mt@cs.uns.edu.ar ajg@cs.uns.edu.ar

Artificial Intelligence Research and Development Laboratory
Department of Computer Science and Engineering, Universidad Nacional del Sur,

Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

ABSTRACT

Interaction is an essential characteristic of Multi-
Agent Systems (MASs). Agents that are part of a
MAS usually interact by exchanging messages accord-
ing to some conversation policy. Therefore, the ability
to find other agents and exchange messages with them
are features that need to be implemented in agents
that are part of a MAS. Finding an agent means been
aware of it existence and obtaining the information
needed to send to it a message. There exists different
alternatives of implementing the capability of finding
other agents. In this work we will analyze the al-
ternatives of implementing a discovery mechanism, a
centralized Agent Name Server (ANS), a distributed
ANS, or several ANSs.

1 INTRODUCTION

Interaction is an essential characteristic of Multi-
Agent Systems (MASs). Agents that are part of
a MAS usually interact by exchanging messages
according to some conversation policy. There-
fore, the ability to find other agents and exchange
messages with them are features that need to be
implemented in agents that are part of an open
MAS. Finding an agent means been aware of it
existence and obtaining the information needed
to send to it a message.

There exist different alternatives of implement-
ing MASs. One alternative is to implement
the whole MAS ad-hoc. Another way is to use
a MultiAgent development framework such as
JACK [5], JADEX [7] or 3APL [1]. Finally, an-
other alternative is to implement a MAS is using
an extension of a Programming Language that
provides the capability of finding other agents and
exchanging messages.

The alternative of implementing the whole
MAS ad-hoc means that the developer of the sys-
tem is allowed to choose the architecture of each

Partially supported by CONICET (PIP 5050) and
Agencia Nacional de Promoción Cient́ıfica y Tecnológica
(PICT 2002 Nro 13096)

agent, the way they interact and also the way they
locate each other. Thus, this alternative has the
advantage of a great flexibility in the design and
implementation of the system. However, the main
disadvantage is that the developer may have to
implement everything, including the mechanisms
used to locate the agents and also the primitives
for exchanging messages.

The alternative of using a MultiAgent devel-
opment framework such as JACK, JADEX or
3APL, will probably bound the developer of the
systems to use a specific agent architecture and
may also determine the way in which the agents
should exchange messages. This alternative has
the advantage of reducing the amount of work
needed to implement the system.

Finally, the alternative of implementing the
MAS using an extension of a Programming Lan-
guage or a framework that provides the capability
of finding other agents and exchanging messages
(such as [4], JADE [6] or MadKit [8]) allows a
flexible design of the system. This way of im-
plementing the MAS will try to maintain the ad-
vantages of the alternatives mentioned before also
avoiding their disadvantages.

In [4] we have proposed an extension of the
Logic Programming Language Prolog that pro-
vides the agents the capability of finding other
agents and also allows an easy way of exchang-
ing messages. The proposed extension include
some primitives that were motivated by the im-
plementation of multi-agent systems for dynamic
and distributed environments, where intelligent
agents communicate and collaborate. One of the
main goals of these primitives was to hide as much
of the implementation details as possible, in or-
der to provide a transparent way of finding agents
and also a transparent way of programming agent
interaction.

These primitives allow the creation of several
independent MASs, where agents communicate

CORE Metadata, citation and similar papers at core.ac.uk

Provided by El Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/301041204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


with others by just knowing the other agents’
names. These MASs are groups of agents and
any agent may join and leave these groups dy-
namically. To be member of a MAS means that
the agent knows which other agents belong to the
MAS. Any agent is allowed to be member of sev-
eral MASs simultaneously, and also to join other
existing MASs, create new ones and leave the ones
that is connected to.

There exists different alternatives of imple-
menting the capability of finding other agents.
In this work we will analyze the following four
alternatives:

1. a proper discovery mechanism in the agent
code,

2. a centralized Agent Name Server (ANS),

3. a distributed ANS, or

4. several ANSs.

2 FINDING AGENTS

As stated before, finding an agent means been
aware of it existence and obtaining the informa-
tion needed to send to it a message. There exists
different alternatives of implementing the capa-
bility of finding other agents. One alternative
is to provide the agents the ability of searching
for the existence of agents. This is, to provide a
mechanism in which each agent looks for agents
that are also trying to interact with other agents.

Another alternative is to allow the agents to
find each other by using one or more special
agents in which the agents register theirselves
and obtain information of other registered agents.
These kind of agents are often called Agent Name
Server (ANS) and they store the information of
the registered agents and answer any query made
by them.

The ANS is similar to the Agent Management
System (AMS) defined by FIPA [3] since both al-
low the agents to register theirselves and also ob-
tain information of other registered agents. How-
ever, the AMS is also responsible of the creation
and deletion of agents and represents the manag-
ing authority of the Agent Platforms (the physical
infrastructure in which agents are deployed).

We will explain next the alternatives mentioned
before for implementing the capability of finding
other agents. In this paper we will assume that
an agent is implemented by a process and we will
use the term node as usual as any environment
capable of executing a process, like a desktop PC
or a Laptop

2.1 A Discovery Mechanism

The agents may broadcast messages to find each
other (see [2] for details). This way of implement-
ing agent discovery allow a great flexibility in the
initialization of the system and also allows the
agents to dynamically discover different MASs.
However, note that using broadcast, some mes-
sages may be lost or delivered out of order. Also,
losses and misordering may vary by agent, which
means that some agents may receive the message
as intended while others may experience various
losses. Thus, in a domain in which there exists
several agents, this mechanism is not allowed to
ensure that any agent will discover any other ex-
istent agent in the system. However, this alter-
native may be useful for other purposes.

Figure 1: The mechanism of discovery imple-
mented with broadcast messages.

As an example, in Figure 1, Agent “A” broad-
cast a discovery message (dark arrows) and the
existing agents (“B” and “C”) answers this mes-
sage (dashed arrows). There exists different al-
ternatives of the way of using this kind of mes-
sages in order to allow the agents to find each
other. One alternative is to use them to locate
any existing agent in the system and then, the
agent may decide with which other ones it wants
to interact with. Another alternative is to spec-
ify in these messages certain information that al-
low the agents receiving the message to decide
whether they want to interact with this agent or
not. While the first alternative may be useful in
specific domains with a small number of agents,
the second alternative allows an efficient but dif-
ficult way of implementing MultiAgent Systems
of large number of agents.

The first alternative is implemented by every
agent replying any broadcast message received.
Thus, in a system with several agents, this behav-
ior may overload the network. Also note that, in
this kind of systems, it is unlikely that the agents
need to interact with every other existing agent.



This is, the agents should only know the existence
of the agents they may interact with.

The second alternative allow this, by specify-
ing in the broadcasted message certain informa-
tion that the agents use to detect common in-
terests, creating independent MASs. Thus, only
the agents that share the same interests will be
member of the same MAS, replying the messages
specifying common interests and achieving an ef-
ficient use of the network. However, this alter-
native requires a more detailed implementation
and also a standard or shared way of expressing
agents interests.

2.2 A Centralized Agent Name Server

This centralized approach has the advantage of
an easy development of the ANS and, in the case
of any other agent, the easy way of obtaining the
information of the other registered agents. Note
that the ANS is responsible for maintaining the
data entries consistent, specially the agent identi-
fiers, in which duplicates are not allowed. Thus, a
centralized implementation of this agent reduces
it complexity.

However, this approach have some disadvan-
tages. One disadvantage is that the ANS may
represent a performance bottleneck when the sys-
tem has several agents. Also note that this way of
implementing the ANS represents a single point
of failure in the system. This means that a fail-
ure in the ANS may disable the services provided
and thus, the agents will not be able to find each
other.

Figure 2: A Centralized ANS

In this alternative, the problem of knowing the
location of other agents is solved with the exis-
tence of the ANS that maintains this informa-
tion. Thus, the problem of finding other agents
is reduced to find only one agent: the ANS. Any
agent should know the location of the ANS in or-
der to register itself and also obtain the location

of other registered agents. For example, in Fig-
ure 2, Agent “A” (in Node 3) register itself by
exchanging messages with the ANS (in Node 2)
and it may also query for obtaining the other reg-
istered agents. The same happens for Agent “B”
in Node 4.

There exists different ways of solving the prob-
lem of finding the ANS. One alternative is to
hardcode its location to a specific node, as in Fig-
ure 2, in which the ANS may be hardcoded to
Node 3, and thus, any agent know where to find
it. Another alternative is to use a mechanism of
agent discovery as explained in the previous sub-
section. Note that, using the first alternative re-
duces the flexibility of the system, however, this
reduction in the flexibility only affects the ANS,
allowing the other agents to be executed in any
node. Also note that implementing a discovery
mechanism to find a single known agent will avoid
the problems present in this alternative.

2.3 A Distributed Agent Name Server

This alternative eliminates the single point of fail-
ure of the system and also the performance bot-
tleneck present in the centraliced approach. How-
ever, the main problem with this alternative is the
burden of implementing the ANS.

The way in which this alternative is imple-
mented is using only one ANS created by several
processes running one in each node of the sys-
tem. As can be seen in Figure 3, there exists only
one logical ANS, implemented by the processes
executing on each node. Thus, the agents inter-
act with the ANS through the process running in
the same node, solving the problem of finding the
ANS present in the alternative mentioned before.

Figure 3: A Distributed ANS

One of the problems presented in the imple-
mentation of this alternative is the different ways
of storing the information gathered by the ANS.
One approach is to replicate all the information in



all the different processes implementing the ANS.
Another way of doing this is to distribute all the
information without replicating it.

While the first approach allows the agents to
obtain the information of other registered agents
quickly, the services that modify this informa-
tion may require the exchange of several messages
in order to maintain this information consistent.
The other way allows easier modifications of the
information stored but may require more time to
obtain information of a specific agent.

2.4 Several Agent Name Servers

Another alternative is to implement one ANS for
each node, achieving most of the advantages of
the distributed approach like the easy finding of
the ANSs, and also avoiding the disadvantages of
the centraliced one, like the performance bottle-
neck and the single point of failure in the system.
The problems with this approach are the same as
the ones in the distributed approach, with the dif-
ference that the agents are aware of the existence
of several ANSs.

Figure 4: Several ANSs

Thus, one alternative is to allow the agents to
create groups of interests or MASs. Each MAS
must be managed by only one ANS. The agents
may register theirselves in different MASs, also
simultaneously. This way of storing the informa-
tion of the agents registered is similar to the cen-
traliced approach, achieving its advantage of an
easy implementation.

Any agent that wants to interact with other
agent may first interact with the local ANS in
order to register itself and obtain information of a
specific MAS. The local ANS may be the manager
of the MAS that the agent is looking for, in which
case it register the agent. However, the local ANS
may not be the responsible of the MAS, and thus,
it may inform the agent which ANS is managing
the determined MAS.

The creation of independent MASs may be im-
plicit whenever an agent requires to register itself
to an inexistent MAS. In this case, the local ANS
asks the other ANSs for the existence of the spec-
ified MAS obtaining no positive answers. Thus,
it decides to create the MAS and informs this
creation to the rest of the ANSs. Note that the
process of creating a MAS should avoid the cre-
ation of MASs with the same interests managed
by different ANSs.

3 COMPARING THE

ALTERNATIVES

In the previous section we have explained four
different alternatives of implementing the capa-
bility of finding other agents. There exists several
differences between these alternatives as we will
show next. These differences will allow the devel-
oper to choose between them also considering the
domain in which the alternative will be used.

The alternative of using a discovery mechanism
allows a great flexibility in the initialization of the
system and also allows the agents to dynamically
discover different MASs. Also note that this al-
ternative avoids relying in the existence of one or
more specific agents as the other approaches does,
representing an important disadvantage.

However, note that using broadcast, some mes-
sages may be lost or delivered out of order. Also,
losses and misordering may vary by agent, which
means that some agents may receive the message
as intended while others may experience various
losses. Thus, this mechanism is not allowed to en-
sure the discovery of every existent agent in the
system.

This problem is avoided in the other alterna-
tives by the existence of the ANS. The centralized
approach has the advantage of an easy develop-
ment of this agent and, in the case of any other
agent, the easy way of obtaining the information
of the other registered agents. However, this ap-
proach have the disadvantage that the ANS may
represent a performance bottleneck when the sys-
tem has several agents. Also note that this way of
implementing the ANS represents a single point
of failure in the system.

The distributed approach eliminates the single
point of failure of the system and also the perfor-
mance bottleneck present in the centralized one.
However, the main problem with this alternative
is the burden of implementing the ANS. Finally,
implementing several ANSs has the advantage of
an easy implementation of each agent like the cen-
traliced approach, also avoiding its disadvantages
of single point of failure and performance bottle-
neck with the existence of several ANSs.



A discovery mechanism may be used in the im-
plementation of these alternatives. It may be
used by the agents to locate the centralized ANS.
It may also be used by the distributed ANSs to
discover theirselves dynamically. Note that using
a discovery mechanism in these particular cases
will probably avoid the disadvantages of using
this alternative to find every agent in the system.

Considering the domains of application of these
approaches, in systems with a small number of
agents, a centralized ANS may solve the prob-
lem of finding agents obtaining good results and
also allowing an easy implementation of the sys-
tem. In this domains, implementing a discovery
mechanism may be a good alternative whenever
the developer wants to avoid the existence of cen-
tralized information that means the existence of
a single point of failure.

In domains in which the number of agents is
important, the centralized approach will proba-
bly result in a performance bottleneck. Thus, the
alternative of implementing several ANSs and al-
lowing the creation of independent MASs avoids
this problem and also the complexity of imple-
menting the other alternative, a distributed ANS.
In the case of the discovery mechanism, the losses
and misordering of the messages is such domain
will be greater also increasing the time needed to
find other existent agents, turning this alternative
less feasible.

4 CONCLUSION

In this paper we have mentioned different alter-
natives of implementing MASs. One of the fea-
tures that must be implemented in the develop-
ment of any MAS is the way the agents find or
locate each other. We explained four different
alternatives of implementing this capability. We
have also shown the differences existing between
these alternatives.

We compared these alternatives, finding that
the alternative of implementing a centralized

ANS allows an easy development of small MAS.
However, in larger domains, the approach of im-
plementing several ANSs may allow a better per-
formance of the whole system also avoiding the
complexity of implementing a distributed ANS.
A discovery mechanism may be used in the im-
plementation of these alternatives. A discovery
mechanism may by also used whenever the devel-
oper prefers to avoid the existence of centralized
information, at the cost of a more time consuming
location of the agents.

References

[1] 3APL. An Abstract Agent Programming Lan-
guage. http://www.cs.uu.nl/3apl/.

[2] B. Langley, M. Paolucci, and K. Sycara. Dis-
covery of Infrastructure in Multi-Agent Sys-
tems. In Workshop on Infrastructure for

Agents, MAS, and Scalable MAS, 2001.

[3] FIPA. Foundation for intelligent physical
agents. http://www.fipa.org.

[4] Alejandro J. Garćıa, Mariano Tucat, and
Guillermo R. Simari. Interaction Primitives
for Implementing Multi-agent Systems. In
VII Argentine Symposium on Artificial Intel-

ligence, Rosario, Argentina, August 2005.

[5] JACK. JACK Intelligent Agents Framework.
http://www.agent-software.com/.

[6] JADE. Java Agent DEvelopment Framework.
http://www.lpa.co.uk/atk.htm.

[7] JADEX. Jadex BDI Agent Sys-
tem. http://vsis-www.informatik.uni-
hamburg.de/projects/jadex/.

[8] The MadKit Project. Multi-Agent Develop-
ment Kit. http://www.madkit.org/.


