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Abstract. MINIX 3 is an open-source operating system designed to be highly 

reliable, flexible, and secure. The kernel is extremely small and user processes, 

specialized servers and device drivers run as user-mode insulated processes. 

These features, the tiny amount of kernel code, and other aspects greatly 

enhance system reliability. The drawbacks of running device drivers in user-

mode are the performance penalties on input/output ports access, kernel data 

structures access, interrupt indirect management, memory copy operations, etc. 

As MINIX 3 is based on the message transfer paradigm, device drivers must 

request those operations to the System Task (a special kernel representative 

process) sending request messages and waiting for reply messages increasing 

the system overhead. This article proposes a direct call mechanism using a 

Virtual Machine (VM) approach that keeps system reliability running device 

drivers in user-mode but avoiding the message transfer, queuing, de-queuing 

and scheduling overhead.  

Keywords: Operating System, microkernel, Input/Output, Device Drivers. 

1. Introduction 

MINIX [1] is a complete, time-sharing, multitasking Operating System (OS) 

developed from scratch by Andrew S. Tanenbaum. It is a general-purpose OS broadly 

used in Computer Science degree courses. 

Though it is copyrighted, the source has become widely available for universities 

for studying and research. Its main features are: 

• Microkernel based: Provides process management and scheduling, basic memory 

management, IPC, interrupt processing and low level Input/Output (I/O) support. 

• Multilayer system: Allows modular and clear implementation of new features. 

• Client/Server model: All system services and device drivers are implemented as 

server processes with their own execution environment. 

• Message Transfer Interprocess Communications (IPC): Used for process 

synchronization and data sharing. 

• Interrupt hiding: Interrupts are converted into message transfers. 

MINIX 3 is a new open-source operating system [2] designed to be highly reliable, 

flexible, and secure. It is loosely based somewhat on previous versions of MINIX, but 

is fundamentally different in many key ways. MINIX 1 and 2 were intended as 

teaching tools; MINIX 3 adds the new goal of being usable as a serious system for 

applications requiring high reliability. 
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MINIX 3 kernel is very small (about 5000 lines of source code) and it is the only 

code that runs under kernel privilege level. User processes, system servers including 

device drivers are isolated one from another running with lower privileges (Figure 1). 

These features and other aspects greatly enhance system reliability [3]. This model 

can be characterized as a multiserver operating system. 

Figure 1: The Internal Structure of MINIX 3 [From [4]] 

The drawbacks of running device drivers in user-mode are the performance 

penalties [5] on I/O ports operations, the access to kernel data structures, the indirect 

interrupt handling mechanism, the operations of copy memory blocks among different 

address spaces, etc. As MINIX 3.X is based on the message transfer paradigm, device 

drivers must request those operations to the System Task (a special kernel 

representative server process) sending request messages and waiting for reply 

messages. As sending/receiving messages with rendezvous to another process results 

in several process switches (including system scheduler invocations), that approach 

impose a considerable overhead to the system performance. 

This article is about the following part of the work presented in [6], but using a 

Virtual Machine (VM) approach. 

The rest of this article is organized as follows. Section 2 and Section 3 are 

overviews of I/O management on MINIX 2.X and MINIX 3.X respectively. Section 4 

describes the proposed I/O model. Performance evaluation is detailed in Section 5. 

Finally, Section 6 presents conclusions and future works. 

2. MINIX 2 and MINIX 3 Input/Output Overview 

For each class of I/O device present in a MINIX system, a separate I/O task (device 

driver) is present [7]. These drivers are full-fledged processes, each one with its own 
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state, registers, stack, and so on. Device drivers communicate with each other and 

with system server processes using message passing. 

Although each device driver is an independent process, in MINIX 2 they share 

kernel memory address space and run in privileged mode, therefore: 

− They can access to kernel data structures (as the process table) to get needed 

information of processes. 

− They can use kernel routines (as copy memory blocks). 

− They can install their own interrupt handlers. 

− They can share code with other device drivers. 

− They can execute privileged I/O CPU instructions. 

A drawback of MINIX 2 structure is that device drivers run in privileged mode and 

they share the same address space with the microkernel. The overall system can be 

affected by a device driver with errors, as occurs in monolithic OSs. 

One of the main goals of MINIX 3 is reliability [2], but greater reliability will also 

improve security.  

The design of MINIX 3 is based on the following principles: 

• Small kernel size: It is based on the following statement “less code, less errors”. 

• Bugs isolation: In monolithic operating systems, device drivers reside in the kernel. 

A single bad line of code in a driver can bring down the system. Drivers cannot 

execute privileged instructions, perform I/O, or write to absolute memory. They 

have to make Kernel Calls for these services and the kernel checks each call for 

authority. 

• Limit drivers' memory access: In monolithic operating systems, a driver can write 

to any word of memory and thus accidentally trash user programs. In MINIX 3, the 

driver must request the kernel to write, making it impossible for it to write to 

addresses outside the buffer. 

• Survive bad pointers: Dereferencing a bad pointer within a driver will crash the 

driver process, but will have no effect on the system as a whole. A Reincarnation 

Server (RS) will restart the crashed driver automatically. 

• Tame infinite loops: If a driver gets into an infinite loop, the scheduler will 

gradually lower its priority until it becomes the idle process.  

• Limit damage from buffer overruns: MINIX 3 uses fixed-length messages for 

internal communication, which eliminates certain buffer overruns and buffer 

management problems. 

• Restrict access to kernel functions: Device drivers obtain kernel services (such as 

copying data to users' address spaces) by making Kernel Calls. The MINIX 3 

kernel has a bitmap for each driver specifying which calls it is authorized to make.  

• Restrict access to I/O ports: The kernel also maintains a table telling which I/O 

ports each driver may access. As a result, a driver can only touch its own I/O ports. 

• Restrict communication with OS components: Not every driver and server needs to 

communicate with every other driver and server. Accordingly, a per-process bit 

map determines which destinations each process may send to.  

• Reincarnate dead or sick drivers: A special process, called the Reincarnation 

Server (RS), periodically pings each device driver. If the driver dies or fails to 

respond correctly to pings, the RS automatically replaces it by a fresh copy.  
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• Integrate interrupts and messages: When an interrupt occurs, it is converted at a 

low level to a notification sent to the appropriate driver.  

A consequence of making major system components independent processes 

outside the kernel is that they are forbidden from doing actual I/O [1], manipulating 

kernel tables and doing other things operating system functions normally do. These 

special services are handled by the System Task (SYSTASK) through Kernel Calls.  

SYSTASK offers services to Device Drivers and Servers processes to do I/O 

operations, access kernel tables, and do other things they need to, all without being 

inside the kernel. The SYSTASK and the CLOCK Task are the only processes that 

run with kernel privileged levels sharing the kernel memory address space allowing 

them to access kernel tables and execute privileged CPU instructions. 

MINIX 3 requests need two additional messages than on MINIX 2. Those 

messages are used to request the SYSTASK for I/O operations that device drivers 

need to execute because they have not privileges for instructions like IN/OUT. The 

SYSTASK, that has the required privileges, executes I/O operations and memory 

copy functions on behalf of Device Drivers Tasks.  

Performance tests report that the average system overhead introduced by this 

approach is limited to 5-10% [8] against MINIX 2.  

Figure 2 shows the different classes of system services provided by MINIX 3 at 

different levels. 

 

Figure 2: MINIX 3 User-System Communication 

The following classification helps to clarify the terminology used in this article: 

− System Calls: They are required by the POSIX standard and are used by User 

processes. System Calls are transformed into messages to Server processes. 

− Task Calls: They are requests from Server processes to Tasks. 

− Kernel Calls: They are requests from Device Drivers or Servers processes to the 

SYSTASK. 

− IPC Primitives: They are used for interprocess communication such as send, 

receive, and notify used to implement System/Task/Kernel Calls. 

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN                                                 735



3. Enhancing Input/Output Performance  

MINIX 3 Kernel Calls are based on a Client/Server model but the message 

transfers used introduce an additional overhead to the system, particularly on I/O and 

memory copy operations that are frequently used by device drivers. 

Each I/O requested operation can be divided in the following steps to detail the 

overhead imposed by the message transfer approach: 

1. A Device Driver Task makes a CPU Trap to request SYSTASK for a Task Call 

using the sendrec() primitive. 

2. The kernel saves the context of the requesting Device Driver Task. 

3. The kernel checks the message destination against the permitted destinations. 

4. The kernel copies the message buffer from the requesting Device Driver Task 

address space to the SYSTASK message buffer.  

5. The kernel sets the requesting Device Driver Task in UNREADY state, and 

removes it from the READY queue. 

6. The kernel sets the SYSTASK in READY state, and inserts it into the READY 

queue. 

7. The kernel calls the scheduler and it selects SYSTASK as the next process to run. 

8. The kernel restores the SYSTASK context. 

9. The kernel dispatches the SYSTASK. 

10.The SYSTASK checks the privileges of the requested operation. 

11.The SYSTASK executes the requested operation. 

12.The SYSTASK makes a trap to the CPU to request a SEND operation for the 

reply. 

13.The kernel saves the SYSTASK context. 

14.The kernel checks the message destination against the permitted destinations. 

15.The kernel copies the message buffer from the the SYSTASK to the requesting 

Device Driver Task message buffer.  

16.The kernel sets the requesting Device Driver Task in READY state, and inserts it 

into the READY queue. 

17.The SYSTASK traps the CPU making a receive(), waiting for a new request. 

18.The kernel sets the SYSTASK in UNREADY state, and removes it from the 

READY queue. 

19.The kernel calls the scheduler and it selects the Requesting Task as the next 

process to run. 

20.The kernel restores the Requesting Task context. 

21.The system returns to User mode. 

The performance penalty of the IPC model with destination checks is 22% as it is 

reported in [8] on executing a getpid() System Call test.  

A Hardware Abstraction Layer (HAL) based I/O approach is proposed in [7] that 

shows a 43% of performance improvement over standard MINIX 3. 

Modern CPUs have a protection mechanism based on exceptions to avoid that  

processes with lower privileges can execute privileged instructions. Virtual Machine 

Monitors (VMM) take advantage of this mechanism to trap sensitive instructions to 

invoke the hypervisor [9]. 

A related approach to enhance MINIX 3 I/O performance is based on replacing I/O 

request and reply messages to SYSTASK by the use of exceptions caused by the 
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execution of privileged I/O instructions in User Mode. The Device Driver Task 

running in user-mode executes I/O instructions as it is running in kernel-mode, but the 

CPU raise a general protection exception and the kernel checks for the offending 

instruction. If the process has the suitable privileges for that instruction and for the 

data, the kernel runs the instruction on behalf of the device driver.  

Using exception based I/O avoid calling the scheduler as if the device driver has 

executed the I/O operations in kernel-mode. 

Each exception based I/O operation can be divided into the following steps: 

1. A Device Driver Task executes a privileged I/O instruction. 

2. The CPU raises a General Protection Exception (GPE) and calls the kernel 

exception routine. 

3. The kernel saves the context of the requesting Device Driver Task. 

4. The kernel checks the privileges of the process for the instruction. 

5. The kernel executes the requested instruction on behalf of the Device Driver Task. 

6. The kernel restores the context of the Device Driver Task. 

7. The system returns from exception to user-mode. 

The sys_privctl Kernel Call can be used to set the privileges of each process in the 

system. This call can only be used by a privileged user-mode Server, and is used, for 

example, to restrict the I/O ports that can be used by individual drivers [10]. 

3.1. Changes to MINIX 3 

The following Kernel Calls (shown as library functions) were considered as an 

example: 

− int sys_inb(port t port, u8 t *byte): Read a value into byte from port. 

− int sys_outb(port t port, u8 t byte): Write a value byte into port. 

Two new System Calls were added in equivalence of those Kernel Calls: 

− int i386inb(port t port): Return a value read from port. 

− int i386outb(port t port, u8 t byte): Write a value byte into port. 

Those device drivers that want to use the VM approach must change their source 

code to use the new I/O System Calls instead of Kernel Calls. As a proof of concept, 

the tests were carried out on the RS-232 code of the tty device driver.  A new library 

named libio386 must be linked with the device drivers object programs that use the 

VM approach. 

The following code shows the i386inb and the i386outb functions that only use the 

INB and OUTB instructions. Therefore, a device driver running in user-mode that use 

these functions will generate exceptions trying to execute INB/OUTB privileged 

instructions.   
! Read an (unsigned) byte from the i/o port   
! PUBLIC unsigned i386inb(port_t port); 
 .align 16 
_i386inb: 
 mov edx, 4(esp)! port 
 sub eax, eax 
 inb dx   ! read 1 byte 
 ret 
! Write  value  (cast to a byte)  to the I/O port   
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! PUBLIC void i386outb(port_t port, u8_t value); 
 .align 16 
_i386outb: 
 mov edx, 4(esp)! port 
 movb al, 4+4(esp)! value 
 outb dx   ! output 1 byte 
 ret 
All code changes and additions in the original MINIX source code to support the 

proposed VM approach are preceded by #ifdef HALVM and finished by #endif 

to avoid affecting the compilation of standard MINIX. The HALVM macro controls 

the compilation of the VM approach code. It is defined in 

/usr/include/minix/config.h.  

The kernel function exception() was changed to implement these limited VM 

Monitor code. This code performs the following operations: 

− Gets the address of the offending CPU instruction. 

− Decodes the instruction. 

− If the instruction is INB or OUTB, it checks for the privileges of the process 

− If the process has suitable privileges, it executes the INB or OUTB instructions 

− Returns from exception 
#if HALVM 
phys_opcode = umap_local(saved_proc, T, old_eip, 4); 
if (phys_opcode!=0 && vec_nr==0x0D && trap_errno==0) 
 {  
 phys_copy(phys_opcode,vir2phys(&opcode) 
         ,phys_bytes) 4); 
 if((priv(saved_proc)->s_call_mask & (1 <<SYS_DEVIO))) 
   { 
   switch(opcode[0]) 
      { 
      case 0xEC:  /* IN AL,DX */ 
            saved_proc->p_reg.retreg =  
                inb(saved_proc->p_reg.dx);  
   saved_proc->p_reg.pc++; 
   return; 
      case 0xEE:  /* OUT DX,AL  */ 
   outb(saved_proc->p_reg.dx, 
       saved_proc->p_reg.retreg);  
   saved_proc->p_reg.pc++; 
   return; 
      case 0x66: 
   switch(opcode[1]) 
      { 
     case 0xED: /* IN AX,DX  */ 
      saved_proc->p_reg.pc+=2; 
      return; 
     case 0xEF: /* OUT DX,AX  */ 
      saved_proc->p_reg.pc+=2; 
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      return; 
     } 
    break; 
   } 
  } 
 else 
   kprintf("exception():I/O  
          request from %d denied\n", saved_proc->p_nr); 
 } 
#endif /* HALVM */ 
As it is shown in the exception source code, the process’ I/O privileges are checked 

before the kernel executes the I/O operations on behalf of the process.  

4. Performance Evaluations  

This section describes the tests performed on MINIX Standard, MINIX with the 

I/O HAL [6] and MINIX with the I/O VM approach.  

A set of System Calls and kernel functions were added to supply the user with a set 

of performance measurement tools. They are based on the Pentium CPU Time-Stamp 

Counter (TSC) [6]. MINIX standard code has the kernel function to read TSC, but it 

has not any Kernel Call that use it.  

The tests were performed sending and receiving files through the RS-232 serial 

port at 38400 Kbps.  The I/O performance test results are presented in Figure 3 and 

the numeric results in Table 1.  The time units are CPU Hz reported by the TSC 

Register. 
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Figure 3: I/O Performance Tests Results 
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The average time to perform I/O operations with the I/O VM approach is about 

53% of the avarage time used by MINIX Standard SYSTASK, but 29% greater than 

the I/O HAL approach. 
Table 1: I/O Performance Tests Results 

 I/O VM I/O HAL SYSTASK 

 IN OUT IN OUT IN OUT 

Average 1818,0 1737,5 1415,5 1341,3 3392,7 3264,9 

Std Deviation 406,4 129,0 343,9 99,6 537,9 128,8 

Relative 

Performance 
1,00 1,00 1,28 1,30 0,54 0,53 

 

The equipment used for the tests was an Intel Pentium MMX 233.9 MHz with a L1 

Code Cache of 16 KB., L1 Data Cache of 16 KB, RAM size of 96 MB, SDRAM 

Acces Time 12 [ns], EDO Dram Acces Time 60 [ns]. 

5. Conclusions and Future Works 

MINIX has proved to be a feasible testbed for OS development and extensions that 

could be easily added to it. Its modern architecture based on a microkernel and device 

drivers in user-level make it a reliable Operating System.  

The message transfer is the paradigm used by MINIX to implement System Calls, 

Task Calls and Kernel Calls. MINIX 3 uses a new level of message transfer from 

Device Driver Tasks to the SYSTASK to execute privileged I/O instructions that the 

formers cannot execute in user mode. This new level of message transfer cause an 

additional overhead, but it can be avoided using a Virtual Machine Monitors 

paradigm based on CPU exceptions but limited to basic I/O operations. 

Comparative performance results presented in this article show noticeable 

reduction of the I/O overhead using the proposed approach without sacrificing 

security, robustness and simplicity. This fact proves that it is possible to build systems 

which employ user-level device drivers, without significant performance degradation 

[11].   

The VM approach allows that device drivers could be written as if they will be run 

with I/O privileges.  Future works address the development of device drivers using 

privileged I/O operations on virtual devices at kernel level and controlling remote 

devices as if they would be real local devices. 
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